首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
To test the anticorrelated relationship that was recently displayed in conventional molecular dynamics (MD) simulations, several different restrained MD simulations on a wild type and on the V82F/I84V drug-resistant mutant of HIV-1 protease were performed. This anticorrelated relationship refers to the observation that compression of the peripheral ear-to-cheek region of HIV protease (i.e., the elbow of the flap to the fulcrum and the cantilever) occurred as the active site flaps were opening, and, conversely, expansion of that ear-to-cheek region occurred as both flaps were closing. An additional examination of this anticorrelated relationship was necessary to determine whether it can be harnessed in a useful manner. Consequently, six different MD experiments were performed that incorporated pairwise distance restraints in that ear-to-cheek region (i.e., the distance between the alpha-carbons of Gly40 and Gln61 was restrained to either 7.7 or 10.5 A, in both monomers). Pushing the backbones of the ear and the cheek regions away from each other slightly did force the flaps that guard the active site to remain closed in both the wild type and the mutant systems-even though there were no ligands in the active sites. Thus, these restrained MD simulations provided evidence that the anticorrelated relationship can be exploited to affect the dynamic behavior of the flaps that guard the active site of HIV-1 protease. These simulations supported our hypothesis of the mechanism governing flap motion, and they are the first step towards validating that peripheral surface as a new target for drug design.  相似文献   

2.
One of the most serious side effects associated with the therapy of HIV-1 infection is the appearance of viral strains that exhibit resistance to protease inhibitors. The active site mutant V82F/I84V has been shown to lower the binding affinity of protease inhibitors in clinical use. To identify the origin of this effect, we have investigated the binding thermodynamics of the protease inhibitors indinavir, ritonavir, saquinavir, and nelfinavir to the wild-type HIV-1 protease and to the V82F/I84V resistant mutant. The main driving force for the binding of all four inhibitors is a large positive entropy change originating from the burial of a significant hydrophobic surface upon binding. At 25 degrees C, the binding enthalpy is unfavorable for all inhibitors except ritonavir, for which it is slightly favorable (-2.3 kcal/mol). Since the inhibitors are preshaped to the geometry of the binding site, their conformational entropy loss upon binding is small, a property that contributes to their high binding affinity. The V82F/I84V active site mutation lowers the affinity of the inhibitors by making the binding enthalpy more positive and making the entropy change slightly less favorable. The effect on the enthalpy change is, however, the major one. The predominantly enthalpic effect of the V82F/I84V mutation is consistent with the idea that the introduction of the bulkier Phe side chain at position 82 and the Val side chain at position 84 distort the binding site and weaken van der Waals and other favorable interactions with inhibitors preshaped to the wild-type binding site. Another contribution of the V82F/I84V to binding affinity originates from an increase in the energy penalty associated with the conformational change of the protease upon binding. The V82F/I84V mutant is structurally more stable than the wild-type protease by about 1.4 kcal/mol. This effect, however, affects equally the binding affinity of substrate and inhibitors.  相似文献   

3.
The emergence of drug-resistant mutants of HIV-1 is a tragic effect associated with conventional long-treatment therapies against acquired immunodeficiency syndrome. These mutations frequently involve the aspartic protease encoded by the virus; knowledge of the molecular mechanisms underlying the conformational changes of HIV-1 protease mutants may be useful in developing more effective and longer lasting treatment regimes. The flap regions of the protease are the target of a particular type of mutations occurring far from the active site. These mutations modify the affinity for both substrate and ligands, thus conferring resistance. In this work, molecular dynamics simulations were performed on a native wild type HIV-1 protease and on the drug-resistant M46I/G51D double mutant. The simulation was carried out for a time of 3.5 ns using the GROMOS96 force field, with implementation of the SPC216 explicit solvation model. The results show that the flaps may exist in an ensemble of conformations between a “closed” and an “open” conformation. The behaviour of the flap tips during simulations is different between the native enzyme and the mutant. The mutation pattern leads to stabilization of the flaps in a semi-open configuration.  相似文献   

4.
The efficacy of HIV-1 protease inhibition therapies is often compromised by the appearance of mutations in the protease molecule that lower the binding affinity of inhibitors while maintaining viable catalytic activity and substrate affinity. The V82F/I84V double mutation is located within the binding site cavity and affects all protease inhibitors in clinical use. KNI-764, a second-generation inhibitor currently under development, maintains significant potency against this mutation by entropically compensating for enthalpic losses, thus minimizing the loss in binding affinity. KNI-577 differs from KNI-764 by a single functional group critical to the inhibitor response to the protease mutation. This single difference changes the response of the two inhibitors to the mutation by one order of magnitude. Accordingly, a structural understanding of the inhibitor response will provide important guidelines for the design of inhibitors that are less susceptible to mutations conveying drug resistance. The structures of the two compounds bound to the wild type and V82F/I84V HIV-1 protease have been determined by X-ray crystallography at 2.0 A resolution. The presence of two asymmetric functional groups, linked by rotatable bonds to the inhibitor scaffold, allows KNI-764 to adapt to the mutated binding site cavity more readily than KNI-577, with a single asymmetric group. Both inhibitors lose about 2.5 kcal/mol in binding enthalpy when facing the drug-resistant mutant protease; however KNI-764 gains binding entropy while KNI-577 loses binding entropy. The gain in binding entropy by KNI-764 accounts for its low susceptibility to the drug-resistant mutation. The heat capacity change associated with binding becomes more negative when KNI-764 binds to the mutant protease, consistent with increased desolvation. With KNI-577, the opposite effect is observed. Structurally, the crystallographic B factors increase for KNI-764 when it is bound to the drug-resistant mutant. The opposite is observed for KNI-577. Consistent with these observations, it appears that KNI-764 is able to gain binding entropy by a two-fold mechanism: it gains solvation entropy by burying itself deeper within the binding pocket and gains conformational entropy by losing interaction with the protease.  相似文献   

5.
The development of HIV-1 protease inhibitors has been the historic paradigm of rational structure-based drug design, where structural and thermodynamic analyses have assisted in the discovery of novel inhibitors. While the total enthalpy and entropy change upon binding determine the affinity, often the thermodynamics are considered in terms of inhibitor properties only. In the current study, profound changes are observed in the binding thermodynamics of a drug-resistant variant compared to wild-type HIV-1 protease, irrespective of the inhibitor bound. This variant (Flap+) has a combination of flap and active site mutations and exhibits extremely large entropy-enthalpy compensation compared to wild-type protease, 5-15 kcal/mol, while losing only 1-3 kcal/mol in total binding free energy for any of six FDA-approved inhibitors. Although entropy-enthalpy compensation has been previously observed for a variety of systems, never have changes of this magnitude been reported. The co-crystal structures of Flap+ protease with four of the inhibitors were determined and compared with complexes of both the wild-type protease and another drug-resistant variant that does not exhibit this energetic compensation. Structural changes conserved across the Flap+ complexes, which are more pronounced for the flaps covering the active site, likely contribute to the thermodynamic compensation. The finding that drug-resistant mutations can profoundly modulate the relative thermodynamic properties of a therapeutic target independent of the inhibitor presents a new challenge for rational drug design.  相似文献   

6.
Amprenavir is one of six protease inhibitors presently approved for clinical use in the therapeutic treatment of AIDS. Biochemical and clinical studies have shown that, unlike other inhibitors, Amprenavir is severely affected by the protease mutation I50V, located in the flap region of the enzyme. TMC-126 is a second-generation inhibitor, chemically related to Amprenavir, with a reported extremely low susceptibility to existing resistant mutations including I50V. In this paper, we have studied the thermodynamic and molecular origin of the response of these two inhibitors to the I50V mutation and the double active-site mutation V82F/I84V that affects all existing clinical inhibitors. Amprenavir binds to the wild-type HIV-1 protease with high affinity (5.0 x 10(9) M(-1) or 200 pM) in a process equally favored by enthalpic and entropic contributions. The mutations I50V and V82F/I84V lower the binding affinity of Amprenavir by a factor of 147 and 104, respectively. TMC-126, on the other hand, binds to the wild-type protease with extremely high binding affinity (2.6 x 10(11) M(-1) or 3.9 pM) in a process in which enthalpic contributions overpower entropic contributions by almost a factor of 4. The mutations I50V and V82F/I84V lower the binding affinity of TMC-126 by only a factor of 16 and 11, respectively, indicating that the binding affinity of TMC-126 to the drug-resistant mutants is still higher than the affinity of Amprenavir to the wild-type protease. Analysis of the data for TMC-126 and KNI-764, another second-generation inhibitor, indicates that their low susceptibility to mutations is caused by their ability to compensate for the loss of interactions with the mutated target by a more favorable entropy of binding.  相似文献   

7.
The monomer-dimer equilibrium for the human immunodeficiency virus type 1 (HIV-1) protease has been investigated under physiological conditions. Dimer dissociation at pH 7.0 was correlated with a loss in beta-sheet structure and a lower degree of ANS binding. An autolysis-resistant mutant, Q7K/L33I/L63I, was used to facilitate sedimentation equilibrium studies at neutral pH where the wild-type enzyme is typically unstable in the absence of bound inhibitor. The dimer dissociation constant (KD) of the triple mutant was 5.8 microM at pH 7.0 and was below the limit of measurement (approximately 100 nM) at pH 4.5. Similar studies using the catalytically inactive D25N mutant yielded a KD value of 1.0 microM at pH 7.0. These values differ significantly from a previously reported value of 23 nM obtained indirectly from inhibitor binding measurements (Darke et al., 1994). We show that the discrepancy may result from the thermodynamic linkage between the monomer-dimer and inhibitor binding equilibria. Under conditions where a significant degree of monomer is present, both substrates and competitive inhibitors will shift the equilibrium toward the dimer, resulting in apparent increases in dimer stability and decreases in ligand binding affinity. Sedimentation equilibrium studies were also carried out on several drug-resistant HIV-1 protease mutants: V82F, V82F/I84V, V82T/I84V, and L90M. All four mutants exhibited reduced dimer stability relative to the autolysis-resistant mutant at pH 7.0. Our results indicate that reductions in drug affinity may be due to the combined effects of mutations on both dimer stability and inhibitor binding.  相似文献   

8.
KNI-764 is a powerful HIV-1 protease inhibitor with a reported low susceptibility to the effects of protease mutations commonly associated with drug resistance. In this paper the binding thermodynamics of KNI-764 to the wild-type and drug-resistant mutant V82F/I84V are presented and the results compared to those obtained with existing clinical inhibitors. KNI-764 binds to the wild-type HIV-1 protease with very high affinity (3.1 x 10(10) M(-1) or 32 pM) in a process strongly favored by both enthalpic and entropic contributions to the Gibbs energy of binding (Delta G = -RTlnK(a)). When compared to existing clinical inhibitors, the binding affinity of KNI-764 is about 100 fold higher than that of indinavir, saquinavir, and nelfinavir, but comparable to that of ritonavir. Unlike the existing clinical inhibitors, which bind to the protease with unfavorable or only slightly favorable enthalpy changes, the binding of KNI-764 is strongly exothermic (-7.6 kcal/mol). The resistant mutation V82F/I84V lowers the binding affinity of KNI-764 26-fold, which can be accounted almost entirely by a less favorable binding enthalpy to the mutant. Since KNI-764 binds to the wild type with extremely high affinity, even after a 26-fold decrease, it still binds to the resistant mutant with an affinity comparable to that of other inhibitors against the wild type. These results indicate that the effectiveness of this inhibitor against the resistant mutant is related to two factors: extremely high affinity against the wild type achieved by combining favorable enthalpic and entropic interactions, and a mild effect of the protease mutation due to the presence of flexible structural elements at critical locations in the inhibitor molecule. The conclusions derived from the HIV-1 protease provide important thermodynamic guidelines that can be implemented in general drug design strategies.  相似文献   

9.
Mutations in HIV-1 protease (PR) that produce resistance to antiviral PR inhibitors are a major problem in AIDS therapy. The mutation F53L arising from antiretroviral therapy was introduced into the flexible flap region of the wild-type PR to study its effect and potential role in developing drug resistance. Compared to wild-type PR, PR(F53L) showed lower (15%) catalytic efficiency, 20-fold weaker inhibition by the clinical drug indinavir, and reduced dimer stability, while the inhibition constants of two peptide analog inhibitors were slightly lower than those for PR. The crystal structure of PR(F53L) was determined in the unliganded form at 1.35 Angstrom resolution in space group P4(1)2(1)2. The tips of the flaps in PR(F53L) had a wider separation than in unliganded wild-type PR, probably due to the absence of hydrophobic interactions of the side-chains of Phe53 and Ile50'. The changes in interactions between the flaps agreed with the reduced stability of PR(F53L) relative to wild-type PR. The altered flap interactions in the unliganded form of PR(F53L) suggest a distinct mechanism for drug resistance, which has not been observed in other common drug-resistant mutants.  相似文献   

10.
The internal motions of proteins may serve as a "gate" in some systems, which controls ligand-protein association. This study applies Brownian dynamics simulations in a coarse-grained model to study the gated association rate constants of HIV-1 proteases and drugs. The computed gated association rate constants of three protease mutants, G48V/V82A/I84V/L90M, G48V, and L90M with three drugs, amprenavir, indinavir, and saquinavir, yield good agreements with experiments. The work shows that the flap dynamics leads to "slow gating". The simulations suggest that the flap flexibility and the opening frequency of the wild-type, the G48V and L90M mutants are similar, but the flaps of the variant G48V/V82A/I84V/L90M open less frequently, resulting in a lower gated rate constant. The developed methodology is fast and provides an efficient way to predict the gated association rate constants for various protease mutants and ligands.  相似文献   

11.
The goal of this study was to use X-ray crystallography to investigate the structural basis of resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors. We overexpressed, purified, and crystallized a multidrug-resistant (MDR) HIV-1 protease enzyme derived from a patient failing on several protease inhibitor-containing regimens. This HIV-1 variant contained codon mutations at positions 10, 36, 46, 54, 63, 71, 82, 84, and 90 that confer drug resistance to protease inhibitors. The 1.8-angstrom (A) crystal structure of this MDR patient isolate reveals an expanded active-site cavity. The active-site expansion includes position 82 and 84 mutations due to the alterations in the amino acid side chains from longer to shorter (e.g., V82A and I84V). The MDR isolate 769 protease "flaps" stay open wider, and the difference in the flap tip distances in the MDR 769 variant is 12 A. The MDR 769 protease crystal complexes with lopinavir and DMP450 reveal completely different binding modes. The network of interactions between the ligands and the MDR 769 protease is completely different from that seen with the wild-type protease-ligand complexes. The water molecule-forming hydrogen bonds bridging between the two flaps and either the substrate or the peptide-based inhibitor are lacking in the MDR 769 clinical isolate. The S1, S1', S3, and S3' pockets show expansion and conformational change. Surface plasmon resonance measurements with the MDR 769 protease indicate higher k(off) rates, resulting in a change of binding affinity. Surface plasmon resonance measurements provide k(on) and k(off) data (K(d) = k(off)/k(on)) to measure binding of the multidrug-resistant protease to various ligands. This MDR 769 protease represents a new antiviral target, presenting the possibility of designing novel inhibitors with activity against the open and expanded protease forms.  相似文献   

12.
BACKGROUND: The human immunodeficiency virus type 1 (HIV-1) protease is an essential viral protein that is a major drug target in the fight against Acquired Immune Deficiency Syndrome (AIDS). Access to the active site of this homodimeric enzyme is gained when two large flaps, one from each monomer, open. The flap movements are therefore central to the function of the enzyme, yet determining how these flaps move at an atomic level has not been experimentally possible. RESULTS: In the present study, we observe the flaps of HIV-1 protease completely opening during a 10 ns solvated molecular dynamics simulation starting from the unliganded crystal structure. This movement is on the time scale observed by Nuclear Magnetic Resonance (NMR) relaxation data. The highly flexible tips of the flaps, with the sequence Gly-Gly-Ile-Gly-Gly, are seen curling back into the protein and thereby burying many hydrophobic residues. CONCLUSIONS: This curled-in conformational change has never been previously described. Previous models of this movement, with the flaps as rigid levers, are not consistent with the experimental data. The residues that participate in this hydrophobic cluster as a result of the conformational change are highly sensitive to mutation and often contribute to drug resistance when they do change. However, several of these residues are not part of the active site cavity, and their essential role in causing drug resistance could possibly be rationalized if this conformational change actually occurs. Trapping HIV-1 protease in this inactive conformation would provide a unique opportunity for future drug design.  相似文献   

13.
Ohtaka H  Schön A  Freire E 《Biochemistry》2003,42(46):13659-13666
The appearance of viral strains that are resistant to protease inhibitors is one of the most serious problems in the chemotherapy of HIV-1/AIDS. The most pervasive drug-resistant mutants are those that affect all inhibitors in clinical use. In this paper, we have characterized a multiple-drug-resistant mutant of the HIV-1 protease that affects indinavir, nelfinavir, saquinavir, ritonavir, amprenavir, and lopinavir. This mutant (MDR-HM) contains six amino acid mutations (L10I/M46I/I54V/V82A/I84V/L90M) located within and outside the active site of the enzyme. Microcalorimetric and enzyme kinetic measurements indicate that this mutant lowers the affinity of all inhibitors by 2-3 orders of magnitude. By comparison, the multiiple-drug-resistant mutant only increased the K(m) of the substrate by a factor of 2, indicating that the substrate is able to adapt to the changes caused by the mutations and maintain its binding affinity. To understand the origin of resistance, three submutants containing mutations in specific regions were also studied, i.e., the active site (V82A/I84V), flap region (M46I/I54V), and dimerization region (L10I/L90M). None of these sets of mutations by themselves lowered the affinity of inhibitors by more than 1 order of magnitude, and additionally, the sum of the effects of each set of mutations did not add up to the overall effect, indicating the presence of cooperative effects. A mutant containing only the four active site mutations (V82A/I84V/M46I/I54V) only showed a small cooperative effect, suggesting that the mutations at the dimer interface (L10I/L90M) play a major role in eliciting a cooperative response. These studies demonstrate that cooperative interactions contribute an average of 1.2 +/- 0.7 kcal/mol to the overall resistance, most of the cooperative effect (0.8 +/- 0.7 kcal/mol) being mediated by the mutations at the dimerization interface. Not all inhibitors in clinical use are affected the same by long-range cooperative interactions between mutations. These interactions can amplify the effects of individual mutations by factors ranging between 2 and 40 depending on the inhibitor. Dissection of the energetics of drug resistance into enthalpic and entropic components provides a quantitative account of the inhibitor response and a set of thermodynamic guidelines for the design of inhibitors with a lower susceptibility to this type of mutations.  相似文献   

14.
Sadiq SK  Wan S  Coveney PV 《Biochemistry》2007,46(51):14865-14877
We provide insight into the first stages of a kinetic mechanism of lateral drug expulsion from the active site of HIV-1 protease, by conducting all atom molecular dynamics simulations with explicit solvent over a time scale of 24 ns for saquinavir bound to the wildtype, G48V, L90M and G48V/L90M mutant proteases. We find a consistent escape mechanism associated with the G48V mutation. First, increased hydrophilic and hydrophobic flap coupling and water mediated disruption of catalytic dyad hydrogen bonding induce drug motion away from the dyad and promote protease flap transition to the semi-open form. Conversely, flap-inhibitor motion is decoupled in the wildtype. Second, the decrease of total interactions causes unidirectional lateral inhibitor translation by up to 4 A toward the P3 subsite exit of the active site, increased P3 subsite exposure to solvent and a complete loss of hydrophobic interactions with the opposite end of the active site. The P1 subsite moves beyond the hydrophobic active site side pocket, the only remaining steric barrier to complete expulsion being the "breathable" residue, P81. Significant inhibitor deviation is reported over 24 ns, and subsequent complete expulsion, implemented using steered molecular dynamics simulations, is shown to occur most easily for the G48V-containing mutants. Our simulations thus provide compelling support for lateral drug escape from a protease in a semi-open flap conformation. It is likely that some mutations take advantage of this escape mechanism to increase the rate of inhibitor dissociation from the protease. Finally, unidirectional translation may be countered by designing inhibitors with terminal subsites that provide sufficient anchoring to the flaps, thus increasing the steric barrier for translation in either direction.  相似文献   

15.
The vast majority of HIV-1 infections worldwide are caused by the C and A viral subtypes rather than the B subtype prevalent in the United States and Western Europe. Genomic differences between subtypes give rise to sequence variations in the encoded proteins, including those identified as targets for antiretroviral therapies. In the case of the HIV-1 protease, we reported earlier [Velazquez-Campoy et al. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 6062-6067] that proteases from the C and A subtypes exhibit a higher biochemical fitness in the presence of widely prescribed protease inhibitors. In this paper we present a complete thermodynamic dissection of the differences between proteases from different subtypes and the effects of the V82F/I84V drug-resistant mutation within the framework of the B, C, and A subtypes. These studies involved four inhibitors in clinical use (indinavir, saquinavir, ritonavir, and nelfinavir) and a second-generation protease inhibitor (KNI-764). Naturally occurring amino acid polymorphisms found in proteases from the C and A subtypes lower the binding affinities of existing clinical inhibitors by factors ranging between 2 and 7.5 which by themselves are not enough to cause drug resistance. The preexisting lower affinity in the C and A subtypes, however, significantly amplifies the effects of the drug-resistant mutation. Relative to the wild-type B subtype protease, the V82F/I84V drug-resistant mutation within the C and A subtypes lowers the binding affinity of inhibitors by factors ranging between 40 and 3000. When the enzyme kinetic properties (k(cat) and K(m)) are included in the analysis, the biochemical fitness of the C and A subtype drug-resistant mutants can be up to 1000-fold higher than that of the wild-type B subtype protease in the presence of the studied inhibitors. From a thermodynamic standpoint, the combined effects of the drug-resistant mutations and the natural amino acid polymorphisms on the Gibbs energy are additive and involve significant alterations in the enthalpy and entropy changes associated with inhibitor binding. At the biochemical level, the combined effects of naturally existing polymorphisms and drug-resistant mutations might have important consequences on the long-term viability of current HIV-1 protease inhibitors.  相似文献   

16.
The compound UIC-94017 (TMC-114) is a second-generation HIV protease inhibitor with improved pharmacokinetics that is chemically related to the clinical inhibitor amprenavir. UIC-94017 is a broad-spectrum potent inhibitor active against HIV-1 clinical isolates with minimal cytotoxicity. We have determined the high-resolution crystal structures of UIC-94017 in complexes with wild-type HIV-1 protease (PR) and mutant proteases PR(V82A) and PR(I84V) that are common in drug-resistant HIV. The structures were refined at resolutions of 1.10-1.53A. The crystal structures of PR and PR(I84V) with UIC-94017 ternary complexes show that the inhibitor binds to the protease in two overlapping positions, while the PR(V82A) complex had one ordered inhibitor. In all three structures, UIC-94017 forms hydrogen bonds with the conserved main-chain atoms of Asp29 and Asp30 of the protease. These interactions are proposed to be critical for the potency of this compound against HIV isolates that are resistant to multiple protease inhibitors. Other small differences were observed in the interactions of the mutants with UIC-94017 as compared to PR. PR(V82A) showed differences in the position of the main-chain atoms of residue 82 compared to PR structure that better accommodated the inhibitor. Finally, the 1.10A resolution structure of PR(V82A) with UIC-94017 showed an unusual distribution of electron density for the catalytic aspartate residues, which is discussed in relation to the reaction mechanism.  相似文献   

17.
Drug resistance is a major problem affecting the clinical efficacy of antiretroviral agents, including protease inhibitors, in the treatment of infection with human immunodeficiency virus type 1 (HIV-1)/AIDS. Consequently, the elucidation of the mechanisms by which HIV-1 protease inhibitors maintain antiviral activity in the presence of mutations is critical to the development of superior inhibitors. Tipranavir, a nonpeptidic HIV-1 protease inhibitor, has been recently approved for the treatment of HIV infection. Tipranavir inhibits wild-type protease with high potency (K(i) = 19 pM) and demonstrates durable efficacy in the treatment of patients infected with HIV-1 strains containing multiple common mutations associated with resistance. The high potency of tipranavir results from a very large favorable entropy change (-TDeltaS = -14.6 kcal/mol) combined with a favorable, albeit small, enthalpy change (DeltaH = -0.7 kcal/mol, 25 degrees C). Characterization of tipranavir binding to wild-type protease, active site mutants I50V and V82F/I84V, the multidrug-resistant mutant L10I/L33I/M46I/I54V/L63I/V82A/I84V/L90M, and the tipranavir in vitro-selected mutant I13V/V32L/L33F/K45I/V82L/I84V was performed by isothermal titration calorimetry and crystallography. Thermodynamically, the good response of tipranavir arises from a unique behavior: it compensates for entropic losses by actual enthalpic gains or by sustaining minimal enthalpic losses when facing the mutants. The net result is a small loss in binding affinity. Structurally, tipranavir establishes a very strong hydrogen bond network with invariant regions of the protease, which is maintained with the mutants, including catalytic Asp25 and the backbone of Asp29, Asp30, Gly48 and Ile50. Moreover, tipranavir forms hydrogen bonds directly to Ile50, while all other inhibitors do so by being mediated by a water molecule.  相似文献   

18.
Darunavir and tipranavir are two inhibitors that are active against multi-drug resistant (MDR) HIV-1 protease variants. In this study, the invitro inhibitory efficacy was tested against a MDR HIV-1 protease variant, MDR 769 82T, containing the drug resistance mutations of 46L/54V/82T/84V/90M. Crystallographic and enzymatic studies were performed to examine the mechanism of resistance and the relative maintenance of potency. The key findings are as follows: (i) The MDR protease exhibits decreased susceptibility to all nine HIV-1 protease inhibitors approved by the US Food and Drug Administration (FDA), among which darunavir and tipranavir are the most potent; (ii) the threonine 82 mutation on the protease greatly enhances drug resistance by altering the hydrophobicity of the binding pocket; (iii) darunavir or tipranavir binding facilitates closure of the wide-open flaps of the MDR protease; and (iv) the remaining potency of tipranavir may be preserved by stabilizing the flaps in the inhibitor-protease complex while darunavir maintains its potency by preserving protein main chain hydrogen bonds with the flexible P2 group. These results could provide new insights into drug design strategies to overcome multi-drug resistance of HIV-1 protease variants.  相似文献   

19.
Muzammil S  Ross P  Freire E 《Biochemistry》2003,42(3):631-638
A major problem in the chemotherapy of HIV-1 infection is the appearance of drug resistance. In the case of HIV-1 protease inhibitors, resistance originates from mutations in the protease molecule that lower the affinity of inhibitors while still maintaining a viable enzymatic profile. Drug resistance mutations can be classified as active site or non-active site mutations depending on their location within the protease molecule. Active site mutations directly affect drug/target interactions, and their action can be readily understood in structural terms. Non-active site mutations influence binding from distal locations, and their mechanism of action is not immediately apparent. In this paper, we have characterized a mutant form of the HIV-1 protease, ANAM-11, identified in clinical isolates from HIV-1 infected patients treated with protease inhibitors. This mutant protease contains 11 mutations, 10 of which are located outside the active site (L10I/M36I/S37D/M46I/R57K/L63P/A71V/G73S/L90M/I93L) and 1 within the active site (I84V). ANAM-11 lowers the binding affinity of indinavir, nelfinavir, saquinavir, and ritonavir by factors of 4000, 3300, 5800, and 80000, respectively. Surprisingly, most of the loss in inhibitor affinity is due to the non-active site mutations as demonstrated by additional experiments performed with a protease containing only the 10 non-active site mutations (NAM-10) and another containing only the active site mutation (A-1). Kinetic analysis with two different substrates yielded comparable catalytic efficiencies for A-1, ANAM-11, NAM-10, and the wild-type protease. These studies demonstrate that non-active site mutations can be the primary source of resistance and that their role is not necessarily limited to compensate deleterious effects of active site mutations. Analysis of the structural stability of the proteases by differential scanning calorimetry reveals that ANAM-11 and NAM-10 are structurally more stable than the wild-type protease while A-1 is less stable. Together, the binding and structural thermodynamic results suggest that the non-active site mutants affect inhibitor binding by altering the geometry of the binding site cavity through the accumulation of mutations within the core of the protease molecule.  相似文献   

20.
The escape mutant of HIV-1 protease (PR) containing 20 mutations (PR20) undergoes efficient polyprotein processing even in the presence of clinical protease inhibitors (PIs). PR20 shows >3 orders of magnitude decreased affinity for PIs darunavir (DRV) and saquinavir (SQV) relative to PR. Crystal structures of PR20 crystallized with yttrium, substrate analogue p2-NC, DRV, and SQV reveal three distinct conformations of the flexible flaps and diminished interactions with inhibitors through the combination of multiple mutations. PR20 with yttrium at the active site exhibits widely separated flaps lacking the usual intersubunit contacts seen in other inhibitor-free dimers. Mutations of residues 35-37 in the hinge loop eliminate interactions and perturb the flap conformation. Crystals of PR20/p2-NC contain one uninhibited dimer with one very open flap and one closed flap and a second inhibitor-bound dimer in the closed form showing six fewer hydrogen bonds with the substrate analogue relative to wild-type PR. PR20 complexes with PIs exhibit expanded S2/S2' pockets and fewer PI interactions arising from coordinated effects of mutations throughout the structure, in agreement with the strikingly reduced affinity. In particular, insertion of the large aromatic side chains of L10F and L33F alters intersubunit interactions and widens the PI binding site through a network of hydrophobic contacts. The two very open conformations of PR20 as well as the expanded binding site of the inhibitor-bound closed form suggest possible approaches for modifying inhibitors to target extreme drug-resistant HIV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号