首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transient extracellular pH changes accompany the exchange of chloride for sulfate across the erythrocyte membrane. The direction of the extracellular pH change during chloride efflux and sulfate influx depends on experimental conditions. When bicarbonate is present, the extracellular pH drops sharply at the outset of the anion exchange and tends to follow the partial ionic equilibrium described by Wilbrandt (W. Wilbrandt, 1942. Pfluegers Arch. 246:291). When bicarbonate is absent, however, the anion exchange causes the pH to rise, indicating that protons are cotransported with sulfate during chloride-sulfate exchange. The pH rise can be reversed by the addition of HCO(-3) (4 muM) or 2,4-dinitrophenol (90 muM). This demonstrates that the proton-sulfate cotransport can drive proton transport uphill. The stoichiometry of the transport is that one chloride exchanges for one sulfate plus one proton. These results support the titratable carrier model proposed by Gunn (Gunn, R.B. 1972, In: Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status. M. Rorth and P. Astrup, editors. p. 823. Munksgaard, Copenhagen) for erythrocyte membrane anion exchange.  相似文献   

2.
A new method has been developed for the chemical modification and labeling of carboxyl groups in proteins. Carboxyl groups are activated with Woodward's reagent K (N-ethyl-5-phenylisoxazolium 3'-sulfonate), and the adducts are reduced with [3H]BH4. The method has been applied to the anion transport protein of the human red blood cell (band 3). Woodward's reagent K is a reasonably potent inhibitor of band 3-mediated anion transport; a 5-min exposure of intact cells to 2 mM reagent at pH 6.5 produces 80% inhibition of transport. The inhibition is a consequence of modification of residues that can be protected by 4,4'-dinitrostilbene-2,2'-disulfonate. Treatment of intact cells with Woodward's reagent K followed by B3H4 causes extensive labeling of band 3, with minimal labeling of intracellular proteins such as spectrin. Proteolytic digestion of the labeled protein reveals that both the 60- and the 35-kDa chymotryptic fragments are labeled and that the labeling of each is inhibitable by stilbenedisulfonate. If the reduction is performed at neutral pH the major labeled product is the primary alcohol corresponding to the original carboxylic acid. Liquid chromatography of acid hydrolysates of labeled affinity-purified band 3 shows that glutamate but not aspartate residues have been converted into the hydroxyl derivative. This is the first demonstration of the conversion of a glutamate carboxyl group to an alcohol in a protein. The labeling experiments reveal that there are two glutamate residues that are sufficiently close to the stilbenedisulfonate site for their labeling to be blocked by 4,4'-diisothiocyanodihydrostilbene-2,2'-disulfonate and 4,4'-dinitrostilbene-2,2'-disulfonate.  相似文献   

3.
K Izuhara  K Okubo  N Hamasaki 《Biochemistry》1989,28(11):4725-4728
Diethyl pyrocarbonate inhibited the phosphate exchange across the human erythrocyte membrane. The exchange rate was inhibited only when the membranes were modified with the reagent from the cytosolic surface of resealed ghosts. The intracellular modification by diethyl pyrocarbonate inhibited the extracellular binding of [3H]dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid to band 3 protein. Furthermore, the extracellular 4,4'-dinitrostilbene-2,2'-disulfonic acid protected the membranes from the intracellular modification by diethyl pyrocarbonate. These results suggest that the extracellular binding of 4,4'-dinitrostilbene-2,2'-disulfonic acid to band 3 protein induces the conformational change of the intracellular counterpart of band 3 protein and the diethyl pyrocarbonate susceptible residue(s) is (are) hidden from the cytosolic surface of the cell membrane in connection with the conformational change. Conversely, under the conditions where the diethyl pyrocarbonate modification is confined to the intracellular side of the membrane, the extracellular binding site of [3H]dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid is hidden from the cell surface.  相似文献   

4.
Anion exchange in human red blood cell membranes was inactivated using the impermeant carbodiimide 1-ethyl-3-(4-azonia-4,4-dimethylpentyl)-carbodiimide (EAC). The inactivation time course was biphasic: at 30 mM EAC, approximately 50% of the exchange capacity was inactivated within approximately 15 min; this was followed by a phase in which irreversible exchange inactivation was approximately 100-fold slower. The rate and extent of inactivation was enhanced in the presence of the nucleophile tyrosine ethyl ester (TEE), suggesting that the inactivation is the result of carboxyl group modification. Inactivation (to a maximum of 10% residual exchange activity) was also enhanced by the reversible inhibitor of anion exchange 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS) at concentrations that were 10(3)-10(4) times higher than those necessary for inhibition of anion exchange. The extracellular binding site for stilbenedisulfonates is essentially intact after carbodiimide modification: the irreversible inhibitor of anion exchange 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) eliminated (most of) the residual exchange activity: DNDS inhibited the residual (DIDS-sensitive) Cl- at concentrations similar to those that inhibit Cl- exchange of unmodified membranes: and Cl- efflux is activated by extracellular Cl-, with half-maximal activation at approximately 3 mM Cl-, which is similar to the value for unmodified membranes. But the residual anion exchange function after maximum inactivation is insensitive to changes of extra- and intracellular pH between pH 5 and 7. The titratable group with a pKa of approximately 5.4, which must be deprotonated for normal function of the native anion exchanger, thus appears to be lost after EAC modification.  相似文献   

5.
The Na(+)/H(+) exchanger 1 (NHE1) exists as a homo-dimer in the plasma membranes. In the present study, we have investigated the functional significance of the dimerization, using two nonfunctional NHE1 mutants, surface-expression-deficient G309V and transport-deficient E262I. Biochemical and immunocytochemical experiments revealed that these NHE1 mutants are capable of interacting with the wild-type NHE1 and, thus, forming a heterodimer. Expression of G309V retained the wild-type NHE1 to the ER membranes, suggesting that NHE1 would first form a dimer in the ER. On the other hand, expression of E262I markedly reduced the exchange activity of the wild-type NHE1 through an acidic shift in the intracellular pH (pH(i)) dependence, suggesting that dimerization is required for exchange activity in the physiological pH(i) range. However, a dominant-negative effect of E262I was not detected when exchange activity was measured at acidic pH(i), implying that one active subunit is sufficient to catalyze ion transport when the intracellular H(+) concentration is sufficiently high. Furthermore, intermolecular cysteine cross-linking at extracellular position Ser(375) with a bifunctional sulfhydryl reagent dramatically inhibited exchange activity mainly by inducing the acidic shift of pH(i) dependence and abolished extracellular stimuli-induced activation of NHE1 without causing a large change in the affinities for extracellular Na(+) or an inhibitor EIPA. Because monofunctional sulfhydryl regents had no effect, it is likely that cross-linking inhibited the activity of NHE1 by restricting a coupled motion between the two subunits during transport. Taken together, these data support the view that dimerization of two active subunits are required for NHE1 to possess the exchange activity in the neutral pH(i) range, although each subunit is capable of catalyzing transport in the acidic pH(i) range.  相似文献   

6.
Ionization effects on the binding of the potential transition state analogues 2-phosphoglycolate and 2-phosphoglycolohydroxamate appear to be attributable to the changing state of ionization of the ligands themselves, therefore it is unnecessary to postulate the additional involvement of an ionizing residue at the active site of triosephosphate isomerase to explain the influence of changing pH on Ki in the neutral range. The binding of the competitive inhibitor inorganic sulfate is insensitive to changing pH in the neutral range. 3-Chloroacetol sulfate, synthesized as an active-site-specific reagent for triosephosphate isomerase, is used to provide an indication of the pKa of the essential carboxyl group of this enzyme. Previously described active-site-specific reagents for the isomerase were phosphate esters, and their changing state of ionization (accompanied by possible changes in their affinity for the active site) may have complicated earlier attempts to determine the pKa of the essential carboxyl group from the pH dependence of the rate of inactivation. Being a strong monoprotic acid, chloroacetol sulfate is better suited to the determination of the pKa of the carboxyl group. Chloroacetol sulfate inactivates triosephosphate isomerase by the selective esterification of the same carboxyl group as that which is esterified by the phosphate esters described earlier. From the pH dependence of the rate of inactivation of yeast triosephosphate isomerase, the apparent pKa of the active-site carboxyl group is estimated as 3.9 +/- 0.1.  相似文献   

7.
The exchange of anions across the erythrocyte membrane has been studied using 31P nuclear magnetic resonance (NMR) to monitor inorganic phosphate influx and 35Cl NMR to monitor chloride ion efflux. The 31P NMR resonances for intracellular Pi and extracellular Pi could be observed separately by adjusting the initial extracellular pH to 6.4, while the intracellular pH was 7.3. The 35Cl NMR resonance for intracellular Cl- was so broad as to be virtually undetectable (line width greater than 200 Hz), while that of extracellular Cl-is relatively narrow (line width of about 30 Hz). The transports of Pi and Cl-were both totally inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonate, a potent inhibitor of the band 3 protein. Since the 31P resonance of Pi varies with pH, intra- and extracellular pH changes could also be determined during anion transport. The extracellular pH rose and intracellular pH fell during anion transport, consistent with the protonated monoanionic H2PO4-form of Pi being transported into the erythrocyte rather than the deprotonated dianionic HPO24-form. The rates of Cl-efflux and Pi influx were determined quantitatively and were found to be in close agreement with values determined by isotope measurements. The Cl-efflux was found to coincide with the influx of the monoanionic H2PO4-form of Pi.  相似文献   

8.
Chloride exchange in resealed human erythrocyte ghosts can be irreversibly inhibited with phenylglyoxal, a reagent specific for the modification of arginyl residues in proteins. Phenylglyoxal inhibits anion transport in two distinct ways. At 0 degrees C, inhibition is instantaneous and fully reversible, whereas at higher temperature in an alkaline extracellular medium, covalent binding of phenylglyoxal leads to an irreversible inhibition of the transport membranes system. Indiscriminate modification of membrane arginyl residues was prevented by reacting the with phenylglyoxal in an alkaline extracellular medium while maintaining intracellular pH near neutrality. The rate of modification of anion transport depends on phenylglyoxal concentration, pH, temperature, and the presence of anions and reversible inhibitors of the anion transport system in fashions that are fully compatible with the conclusion that phenylglyoxal modifies arginyl residues that are essential for anion binding and translocation. Phenylglyoxal reacts rapidly with the deprotonated form of the reactive groups. It is proposed that the effects of anions and of negatively charged transport inhibitors on the rate of irreversible binding of phenylglyoxal are related to the effects of the anions on a positive interfacial potential. This potential determines the local pH, and thereby the concentration of deprotonated groups, in an exofacial region of the anion transport protein.  相似文献   

9.
The SLC4A1/AE1 gene encodes the electroneutral Cl(-)/HCO(3)(-) exchanger of erythrocytes and renal type A intercalated cells. AE1 mutations cause familial spherocytic and stomatocytic anemias, ovalocytosis, and distal renal tubular acidosis. The mutant mouse Ae1 polypeptide E699Q expressed in Xenopus oocytes cannot mediate Cl(-)/HCO(3)(-) exchange or (36)Cl(-) efflux but exhibits enhanced dual sulfate efflux mechanisms: electroneutral exchange of intracellular sulfate for extracellular sulfate (SO(4)(2-)(i)/SO(4)(2-)(o) exchange), and electrogenic exchange of intracellular sulfate for extracellular chloride (SO(4)(2-)(i)/Cl(-)(o) exchange). Whereas wild-type AE1 mediates 1:1 H(+)/SO(4)(2-) cotransport in exchange for either Cl(-) or for the H(+)/SO(4)(2-) ion pair, mutant Ae1 E699Q transports sulfate without cotransport of protons, similar to human erythrocyte AE1 in which the corresponding E681 carboxylate has been chemically converted to the alcohol (hAE1 E681OH). We now show that in contrast to the normal cis-stimulation by protons of wild-type AE1-mediated SO(4)(2-) transport, both SO(4)(2-)(i)/Cl(-)(o) exchange and SO(4)(2-)(i)/SO(4)(2-)(o) exchange mediated by mutant Ae1 E699Q are inhibited by acidic pH(o) and activated by alkaline pH(o). hAE1 E681OH displays a similarly altered pH(o) dependence of SO(4)(2-)(i)/Cl(-)(o) exchange. Elevated [SO(4)(2-)](i) increases the K(1/2) of Ae1 E699Q for both extracellular Cl(-) and SO(4)(2-), while reducing inhibition of both exchange mechanisms by acid pH(o). The E699Q mutation also leads to increased potency of self-inhibition by extracellular SO(4)(2-). Study of the Ae1 E699Q mutation has revealed the existence of a novel pH-regulatory site of the Ae1 polypeptide and should continue to provide valuable paths toward understanding substrate selectivity and self-inhibition in SLC4 anion transporters.  相似文献   

10.
The extracellular lysine residues in the human erythrocyte anion transport protein (band 3) have been investigated using chemical modification with the impermeant homobifunctional active ester bis(sulfosuccinimidyl)-suberate (BSSS). This agent forms covalent intra- and intermolecular cross-links in human band 3 in intact cells (Staros and Kakkad. 1983. J. Membr. Biol. 74:247). We have found that the intermolecular cross-link has no detectable effect on the anion transport function of band 3. The intramolecular cross-link, however, causes major changes in the characteristics of the anion transport. These functional alterations are caused by the modification of lysine residues at the stilbene disulfonate binding site. BSSS pretreatment at pH 7.4 irreversibly inhibits Cl-Br exchange by at least 90% when the transport is assayed at extracellular pH above 8. In the same BSSS-pretreated cells, however, the Cl-Br exchange rate is activated by lowering the pH of the flux medium (intracellular pH fixed at 7). The flux is maximal at pH 5-6; a further lowering of the extracellular pH inhibits the anion exchange. This acid-activated Cl-Br exchange in the BSSS-treated cells is mediated by band 3, as indicated by phenylglyoxal and phloretin inhibition of the flux. Thus, the BSSS pretreatment has little effect on the maximal Cl-Br exchange flux catalyzed by band 3, but it shifts the alkaline branch of its extracellular pH dependence by approximately 5 pH units. BSSS also eliminates the self-inhibition of Cl-halide exchange by high extracellular Br or I concentrations. These results indicate that the BSSS-modified lysines do not participate directly in anion translocation, but that one of the lysines normally provides a positive charge that is necessary for substrate anion binding. This positive charge is removed by the BSSS treatment but can be replaced by lowering the extracellular pH. The results also provide insight regarding the halide selectivity of the maximal rate of chloride-halide exchange: the native selectivity (Br much greater than I) is nearly abolished by BSSS treatment, which suggests that the selectivity results from the very strong binding of iodide to an outward-facing modifier site.  相似文献   

11.
Treatment of the erythrocyte membrane with dansyl chloride leads to the following effects: (i) SO4(2-) transport is enhanced, Cl- transport is reduced. At maximal acceleration of sulfate exchange, Cl- exchange is only partially inhibited. The two effects are lineary related suggesting that the Cl- and SO4(2-) transporting forms of band 3 are derived from the same pool. (ii) The maximum of the pH dependence of SO4(2-) equilibrium exchange as measured at low sulfate concentrations is replaced by a plateau. It now resembles the pH dependence of Cl- exchange in untreated red cells. The pH dependence of SO4(2-) equilibrium exchange as measured at high sulfate concentrations is virtually unchanged after dansylation. The pH dependence of the partially inhibited Cl- equilibrium exchange across the dansylated membrane as measured at high chloride concentrations remains similar as in the untreated red cells but is somewhat less pronounced. (iii) SO4(2-)/H+ cotransport remains essentially unaltered after modification by dansyl chloride. The effects of dansylation are discussed in terms of a model similar to the titratable carrier model originally proposed by Gunn (Gunn, R.B. (1972) in Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status (Rorth, M. and Astrup, P., eds.), pp. 823-827, Munksgaard, Copenhagen).  相似文献   

12.
The catalytic amino acid residues of the extracellular beta-D-xylosidase (beta-D-xyloside xylohydrolase, EC 3.2.1.37) from Aspergillus carbonarius was investigated by the pH dependence of reaction kinetic parameters and chemical modifications of the enzyme. The pH dependence curves gave apparent pK values of 2.7 and 6.4 for the free enzyme, while pK value of 4.0 was obtained for the enzyme-substrate complex using p-nitrophenyl beta-D-xyloside as a substrate. These results suggested that a carboxylate group and a protonated group--presumably a histidine residue--took part in the binding of the substrate but only a carboxylate group was essential in the substrate cleavage. Carbodiimide- and Woodward's reagent K-mediated chemical modifications of the enzyme also supported that a carboxylate residue, located in the active center, was fundamental in the catalysis. The pH dependence of inactivation revealed the involvement of a group with pK value of 4.4, proving that a carboxylate residue relevant for hydrolysis was modified. During modification V(max) decreased to 10% of that of the unmodified enzyme and K(m) remained unchanged, supporting that the modified carboxylate group participated in the cleavage and not in the binding of the substrate. We synthesized and tested a new, potential affinity label, N-bromoacetyl-beta-d-xylopyranosylamine for beta-D-xylosidase. The A. carbonarius beta-D-xylosidase was irreversible inactivated by N-bromoacetyl-beta-D-xylopyranosylamine. The competitive inhibitor beta-D-xylopyranosyl azide protected the enzyme from inactivation proving that the inactivation took place in the active center. Kinetic analysis indicated that one molecule of reagent was necessary for inactivation of one molecule of the enzyme.  相似文献   

13.
Ouabain-Insensitive Sodium Movements in the Human Red Blood Cell   总被引:15,自引:6,他引:9  
Red blood cells exposed to ouabain are capable of net Na outflux against an electrochemical gradient; the net outflux is inhibited by the diuretic, furosemide. In ouabain-treated cells, both the unidirectional Na outflux and the unidirectional Na influx are inhibited by furosemide. Furosemide also inhibits the ouabain-sensitive Na-Na exchange accomplished by the Na-K pump in K-free solutions. From the interaction of extracellular K, furosemide, and ouabain with the transport system, it seems possible that the ouabain-insensitive Na outflux is accomplished by the same mechanism that is responsible for the ouabain-sensitive Na-K exchange. The ouabain-insensitive Na outflux is increased by extracellular Na, and the influx increases as the intracellular Na increases. In fresh cells, high extracellular K concentrations decrease the ouabain-insensitive Na outflux and increase the ouabain-insensitive Na influx. When the rate constant for sodium outflux and the rate constant for sodium influx in ouabain-treated cells are plotted against the extracellular K concentration, the curves obtained are mirror images of each other. In starved cells, extracellular K increases the ouabain-insensitive Na outflux as does extracellular Na, and it has little effect on the Na influx.  相似文献   

14.
Studies in Chinese hamster ovary cells demonstrate the presence of an anion exchanger, which has some of the properties of the band 3 transporter in erythrocytes. 1) Extracellular chloride is a competitive inhibitor of sulfate influx and stimulates sulfate efflux, suggesting that the mechanism of uptake is SO2-(4)/Cl- exchange. 2) The anion exchange inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid inhibits sulfate uptake in a dose-dependent manner. Half-maximal inhibition is achieved at 0.06 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. 3) Low extracellular pH markedly stimulates sulfate uptake. A 6-fold decrease in the apparent Km is observed at pHout 5.5 as compared to pHout 7.5. However, studies carried out over a broad range of extracellular SO2-(4) concentrations indicate the presence of three components of this transport activity in Chinese hamster ovary cells: two high affinity low capacity systems, one in the range 0.5 microM less than [SO2-(4)]out less than 50 microM and one in the range 50 microM less than [SO2-(4)]out less than 150 microM, and a low affinity, high capacity system (at [SO2-(4)]out greater than 150 microM). These properties have not been previously reported for the erythroid band 3 transporter. The availability of mutants deficient in these activities has enabled us to carry out studies which suggest that the high affinity systems are functionally independent of the low affinity system, but that all systems are dependent on the same anion exchange protein. Studies in a mutant which lacks all components of the transport activity indicates that the anion exchanger may be instrumental in the regulation of the intracellular pH in Chinese hamster ovary cells.  相似文献   

15.
The band 3 protein of the human red blood cell membrane contains a glutamate residue that must be protonated in order for divalent (SO4=) anion transport to take place at an appreciable rate. The carboxyl side chain on this glutamate residue can be converted to the primary alcohol by treatment of intact cells with Woodward's reagent K (N-ethyl-5-phenylisoxazolium 3'-sulfonate) followed by reductive cleavage with BH4-. Edman degradation of CNBr fragments from band 3 labeled in intact cells with Woodward's reagent K and [3H]BH4- showed that Glu681 is heavily labeled under conditions in which Cl- exchange is inhibited, SO4= exchange is accelerated, and Cl- conductance is accelerated. No other glutamate residue in band 3 is detectably labeled under the conditions of these experiments, as demonstrated either by Edman degradation or by the lack of label in major known proteolytic fragments. It is concluded that Glu681 is the binding site for the H+ that is transported with SO4= during band 3-catalyzed H+/SO4= cotransport. This residue is conserved among all species of red cell band 3 (AE1) as well as the related proteins AE2 and AE3. Glu681 is the first amino acid residue in band 3 which has been identified as a binding site for a transported substrate (H+). The functional characteristics of this residue suggest that it lies within the transport pathway and can be alternately exposed to the intracellular and extracellular media.  相似文献   

16.
T Endo  T Ueda  H Yamada  T Imoto 《Biochemistry》1987,26(7):1838-1845
Nuclear magnetic resonance analyses have been made of the individual hydrogen-deuterium exchange rates of tryptophan indole N-1 hydrogens in native lysozyme and its chemically modified derivatives including lysozyme with an ester cross-linkage between Glu-35 and Trp-108, lysozyme with an internal amide cross-linking between the epsilon-amino group of Lys-13 and the alpha-carboxyl group of Leu-129, and lysozyme with the beta-aspartyl sequence at Asp-101. The pH dependence curves of the exchange rates for Trp-63 and Trp-108 are different from those expected for tryptophan. The pH dependence curve for Trp-108 exchange exhibits the effects from molecular aggregation at pH above 5 and from a transition between the two conformational fluctuations at around pH 4. The exchange rates for tryptophan residues in native lysozyme and modified derivatives are not correlated with the thermodynamic or kinetic parameters in protein denaturation, suggesting that the fluctuations responsible for the exchange are not global ones. The exchange rates for tryptophan residues remote from the modification site are perturbed. Such tryptophan residues are found to be involved in a small but distinct conformational change due to the modification. Therefore, the perturbations of the N-1 hydrogen exchange rates are related to the minor change in local conformation or in conformational strain induced by the chemical modification.  相似文献   

17.
W K?ller  P E Kolattukudy 《Biochemistry》1982,21(13):3083-3090
Cutinase from Fusarium solani f. sp. pisi was inhibited by diisopropyl fluorophosphate and phenylboronic acid, indicating the involvement of an active serine residue in enzyme catalysis. Quantitation of the number of phosphorylated serines showed that modification of one residue resulted in complete loss of enzyme activity. One essential histidine residue was modified with diethyl pyrocarbonate. This residue was buried in native cutinase and became accessible to chemical modification only after unfolding of the enzyme by sodium dodecyl sulfate. The modification of carboxyl groups with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide in the absence of sodium dodecyl sulfate did not result in inactivation of the enzyme; however, such modifications in the presence of sodium dodecyl sulfate resulted in complete loss of enzyme activity. The number of residues modified was determined by incorporation of [14C]glycine ethyl ester. Modification of cutinase in the absence of sodium dodecyl sulfate and subsequent unfolding of the enzyme with detergent in the presence of radioactive glycine ester showed that one buried carboxyl group per molecule of cutinase resulted in complete inactivation of the enzyme. Three additional peripheral carboxyl groups were modified in the presence of sodium dodecyl sulfate. Carbethoxylation of the essential histidine and subsequent incubation with the esterase substrate p-nitrophenyl [1-14C]acetate revealed that carbethoxycutinase was about 10(5) times less active than the untreated enzyme. The acyl-enzyme intermediate was stabilized under these conditions and was isolated by gel permeation chromatography. The results of the present chemical modification study indicate that catalysis by cutinase involves the catalytic triad and an acyl-enzyme intermediate, both characteristic for serine proteases.  相似文献   

18.
Sulfate transport in human lung fibroblasts (IMR-90)   总被引:3,自引:0,他引:3  
Sulfate transport in a fibroblast cell line derived from human lung (IMR-90) occurred mainly via high- and low-affinity, SITS-sensitive pathways and to a lesser extent by an SITS-insensitive mechanism. In low-ionic-strength media (sucrose substituted for salts) the apparent Km of the carrier-mediated sulfate influx was 1 mM. At 0.3 mM, the sulfate concentration normally found in human serum, the contribution of the SITS-insensitive pathway was negligible. In physiological salts solution, an SITS-sensitive, high-affinity (Km 34 +/- 14 microM) sulfate influx system was observed at extracellular sulfate concentrations less than 100 microM. Between 100 and 500 microM sulfate, the range normally found in human serum, sulfate influx occurred via an SITS-sensitive, low-affinity pathway and to a small extent by an SITS-insensitive mechanism. Extracellular chloride inhibited the influx and stimulated the efflux of sulfate. Bicarbonate and thiosulfate inhibited sulfate influx but had no effect on sulfate efflux. Phosphate, arsenate, or Na+ did not affect sulfate uptake. These results indicate that in human lung fibroblast IMR-90 cells sulfate is transported mainly via an SO4(2-)/Cl- exchange system independent of the phosphate or Na+ transport. Since sulfate concentration as high as 50 mM only slightly increased sulfate efflux, SO4(2-)/SO4(2-) exchange is probably a minor component of sulfate uptake.  相似文献   

19.
Laila Zaki 《FEBS letters》1984,169(2):234-240
The reaction of phenylglyoxal, a reagent specific for arginine residues, with erythrocyte membrane at pH 7.4 results in complete inhibition of sulfate equilibrium exchange across human red cells. The inactivation was found to be concentration and time depenent. The binding sites of this reagent in the anion transport protein (band 3) under these conditions were determined by using [14C]phenylglyoxal. The rate of incorporation of the radioactivity into band 3 gave a good correlation with the rate of inactivation. Under conditions where the transport is completely inhibited about 6 mol [14C]phenylglyoxal are incorporated into 1 mol band 3. Treating the [14C]phenylglyoxalated ghosts at different degrees of inactivation with extracellular chymotrypsin showed that about two-thirds of these binding sites are located on the 60 kDa fragment.  相似文献   

20.
Angiotensin II, a potent vasoconstrictor, is known to stimulate Ca2+ mobilization and Na+ influx in vascular smooth muscle cells (VSMC). The fact that the Na+/H+ exchange inhibitor, amiloride, blocks angiotensin II-stimulated Na+ influx and is itself a vasodilator suggests that Na+/H+ exchange may play a role in the angiotensin II-mediated effects on VSMC. We have used a pH-sensitive fluorescent dye to study Na+/H+ exchange in cultured rat aortic VSMC. Basal intracellular pH was 7.08 in physiological saline buffer. Angiotensin II stimulation caused an initial transient acidification, followed by a Na+-dependent alkalinization. Angiotensin II increased the rate of alkalinization with apparent threshold, half-maximal, and maximal effect of 0.01, 3, and 100 nM, respectively. Angiotensin II stimulation appeared to be mediated by a shift in the Km of the Na+/H+ exchanger for extracellular Na+. Since angiotensin II activates phospholipase C in VSMC, we tested the possibility that angiotensin II increased Na+/H+ exchange by activation of protein kinase C via stimulation of diacylglycerol formation. The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated Na+/H+ exchange in VSMC cultured for 24 h in serum-free medium, and the subsequent angiotensin II response was inhibited. However, VSMC grown in serum and treated for 24 h with TPA to decrease protein kinase C activity showed no inhibition of angiotensin II-stimulated Na+/H+ exchange. TPA caused no intracellular alkalinization of VSMC grown in serum, while the angiotensin II response was actually enhanced compared to VSMC deprived of serum for 24 h. We conclude that angiotensin II stimulates an amiloride-sensitive Na+/H+ exchange system in cultured VSMC which is mediated by protein kinase C-dependent and -independent mechanisms. Angiotensin II-mediated Na+ influx and intracellular alkalinization may play a role in excitation-response coupling in vascular smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号