首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In order to monitor the membrane fluidity of cells without perturbation by an introduced probe, we developed a method for large-scale preparation of 2H-labeled melanoma cells for a 2H NMR study by incubating melanoma cells with [18,18,18-2H3]stearic acid/phosphatidylcholine liposomes for 2 h at 37 degrees C. It turned out that this treatment did not significantly change the cell viability, lipid metabolism or membrane fluidity. The 2H from C-18 of stearic acid is dominantly located at the original position of the fatty acid in the 2H-labeled membrane vesicles, as studied by a tracer experiment with [1-14C]stearic acid. We found that three to four 2H-labeled species were present at 19 degrees C in 2H NMR spectra of the 2H-labeled membrane vesicles prepared from B16 melanoma cells. The extent of peak-splittings due to 2H-quadrupole interaction decreased as the temperature rose, and a definite point of phase transition was not observed. At elevated temperature, 2H-labeled lipids undergo fast exchange between the bilayer and an isotropic phase such as oil phase of triolein or inverted micelles in lipid polymorphs. We further analyzed the change of membrane organization in mouse B16 melanoma cells treated with 12-O-tetradecanoylphorbol-13-acetate (TPA), which strongly inhibited melanogenesis. The magnitude of the quadrupole splitting at 19 degrees C in membranes from TPA-treated cells was significantly less (40%) than in the untreated control. This is mainly explained by decreased molecular ordering (fluidity) due to the increased amount of unsaturated fatty acids in the membranes of TPA-treated cells.  相似文献   

2.
B P Cho  L Zhou 《Biochemistry》1999,38(23):7572-7583
19F NMR spectroscopy was used to probe the conformation of a DNA adduct derived from the carcinogen 7-fluoro-N-acetyl-2-aminofluorene (FAAF) in three structural contexts: as a monomer and incorporated into single- and double-stranded DNA. The 19F NMR spectrum of dG-C8-FAAF [N-(deoxyguanosin-8-yl)-N-acetyl-7-fluoro-2-aminofluorene] in methanol at -30 degrees C exhibited four interconvertible signals in a 11:52:26:11 ratio. Dynamic NMR analysis indicated that the four torsional isomers arise from restricted rotation about the amide (gamma) (14.4 kcal/mol) and the guanyl-nitrogen (alpha) bonds. The conformational heterogeneity persisted in a single strand FAAF-12-mer, d(CTTCTTG[FAAF]ACCTC), whose 19F NMR spectrum at 22 degrees C and pH 7.0 gave only two signals in a 40:60 ratio, instead of four. The two 19F signals followed a two-site exchange with the rotation barrier of 14.7 kcal/mol about the amide (gamma') bond. A similar conformational theme was observed in the FAAF-12-mer duplex, d(CTTCTTG[FAAF]ACCTC).d(GAGGTCAAGAAG), which revealed two 19F resonances in a 41:59 ratio at 22 degrees C and pH 7.0. According to solvent-induced isotope and magnetic anisotropy effects, the two duplex conformers adopt exclusively a base displacement structure, being different only in their relative acetyl group orientations, cis (gamma' approximately 180 degrees) or trans (gamma' approximately 0 degrees ). Dynamic NMR data indicated that the two conformers do not exchange over a wide range of temperatures. This contrasts with the nonacetylated counterpart, which exhibits an equilibrium between the "B-type" and "stacked" conformers [Zhou, L., et al. (1997) J. Am. Chem. Soc. 119, 5384-5389]. The exclusive stacked nature of the AAF adducts may provide insight into why AAF adducts are more mutagenic and prone to repair than the nonacetylated AF adducts.  相似文献   

3.
The reactivity of 4-[13C]- and 5-[13C]-5-chloro-2-methylisothiazol-3-one (MCI) and 2-methylisothiazol-3-one (MI) towards a model peptide and glutathione was followed by 13C and 1H[13C] NMR spectroscopy. Both molecules were found to react with GSH but in addition MCI was found to react with histidine and lysine to form adducts of a different nature. Reaction with histidine led to stable substitution adducts through an addition-elimination reaction at position 5 while reaction with lysine led to the formation of open adducts of the thioamide or amide type.  相似文献   

4.
(13)C NMR monitored the dynamics of exchange from specific hydrogens of hepatic [2-(13)C]glutamate and [3-(13)C]aspartate with deuterons from intracellular heavy water providing information on alpha-ketoglutarate/glutamate exchange and subcellular compartmentation. Mouse livers were perfused with [3-(13)C]alanine in buffer containing or not 50% (2)H(2)O for increasing periods of time (1 min < t < 30 min). Liver extracts prepared at the end of the perfusions were analyzed by high resolution (13)C NMR (150.13 MHz) with (1)H decoupling only and with simultaneous (1)H and (2)H decoupling. (13)C-(2)H couplings and (2)H-induced isotopic shifts observed in the glutamate C2 resonance, allowed to estimate the apparent rate constants (forward, reverse; min(-1)) for (i) the reversible exchange of [2-(13)C]glutamate H2 as catalyzed mainly by aspartate aminotransferase (0.32, 0.56), (ii) the reversible exchange of [2-(13)C]glutamate H3(proS) as catalyzed by NAD(P) isocitrate dehydrogenase (0.1, 0.05), and (iii) the irreversible exchanges of glutamate H3(proR) and H3(proS) as catalyzed by the sequential activities of mitochondrial aconitase and NAD isocitrate dehydrogenase of the tricarboxylic acid cycle (0.035), respectively. A similar approach allowed to determine the rates of (1)H-(2)H exchange for the H2 (0.4, 0.5) or H3(proR) (0.3, 0.2) or the H2 and H3(proS) hydrogens (0.20, 0.23) of [3-(13)C]aspartate isotopomers. The ubiquitous subcellular localization of (1)H-(2)H exchange enzymes and the exclusive mitochondrial localization of pyruvate carboxylase and the tricarboxylic acid cycle resulted in distinctive kinetics of deuteration in the H2 and either or both H3 hydrogens of [2-(13)C]glutamate and [3-(13)C]aspartate, allowing to follow glutamate and aspartate trafficking through cytosol and mitochondria.  相似文献   

5.
In this study we determined in vivo conversions of human 3H-labeled cholesteryl ester-labeled HDL3 [( 3H]CE-HDL3) in male rats and the effects of partially purified lipid transfer protein on the conversion processes. Zonal centrifugation techniques were used to prepare the [3H]CE-HDL3 and to follow the conversion processes. One hour after the injection, a complete conversion of HDL3 to the HDL2-density species was found. With time, [3H]CE separated with apoE-rich HDL1 and, by 18 hr, 35.9% of plasma radioactivity was associated with the apoE-rich HDL1 lipoprotein fraction. In vitro incubation of [3H]CE-HDL3 in rat plasma reproduced in part the HDL3----HDL2 conversion, but no movement of radioactivity to HDL1 was observed. Injection of the rats with partially purified lipid transfer proteins induced [3H]CE exchange between lipoproteins. The conversion of HDL3 to HDL2, however, was minimally affected. Formation of [3H]CE-HDL1, in contrast, was reduced to about one-half of that found in control animals. It is concluded that in vivo conditions are necessary for conversions of HDL3 (and HDL2) to HDL1, and that lipid transfer reactions delay this process.  相似文献   

6.
The metabolic fate of 1-O-[3H]alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF-acether) upon interaction with primary cultured adult rat hepatocytes was investigated. [3H]PAF-acether was transformed time-dependently into [3H]lyso-PAF-acether, 1-O-[3H]alkylglycerol and finally converted to 3H-labeled fatty aldehyde. 1-O-[3H]Alkyl-2-acyl-sn-glycero-3-phosphocholine (alkylacyl-GPC) was formed after a long incubation time and with a smaller amount compared with that formed in platelets and neutrophils. When lipids from cells, cell surfaces and incubation medium were analyzed separately, most of the transformed products of [3H]PAF-acether remained in the cells. When 1-O-[3H]alkyl-2-lyso-sn-glycero-3-phosphocholine was incubated with hepatocytes, it was mainly converted into 1-O-[3H]alkylglycerol. 3H-labeled fatty aldehyde and [3H]alkylacyl-GPC were also found. Hepatocytes metabolized slowly from 1-O-[1-14C]hexadecylglycerol to 3H-labeled fatty aldehyde and 3H-labeled phospholipid. These findings suggest that cultured hepatocytes mainly catabolize exogeneous PAF-acether by removing the acetyl residue and the polar head group and, finally, by cleaving an ether bond. The deacetylation-reacylation step, which is important in platelets and neutrophils, was not shown to be a main metabolic pathway of PAF-acether in cultured hepatocytes.  相似文献   

7.
After in vivo radiolabeling of Ehrlich cells for 24h with conventional myo-[2-3H]inositol we previously demonstrated an aberrant 3H-labeling of ATP that interfered in the HPLC analysis of inositol trisphosphates. This aberrant 3H-labeling was accounted for by the extensive kidney catabolism of myo-[2-3H] inositol with delivery of 3H-labeled metabolites to extrarenal tissues. As expected, the aberrant labeling of ATP is markedly reduced with the use of 3H-myo-inositol labeled at L-C1 rather than at C2, reflecting that the 3H at L-C1 disappears in the first step of the myo-inositol catabolism: the oxidative conversion to D-glucuronate. In contrast, with the 3H at C2 of myo-inositol, the 3H-C2 passes into the pentose phosphate conversions with resulting labeling of nucleotides. The extent of catabolism to 3H-labeled water, the cellular accumulation of 3H-myo-inositol, the incorporation into cellular inositol phospholipids, and the labeling pattern of cellular phosphoinositides were all found to be similar for the two labeled myo-inositol moieties. With the use of L-myo-[1-3H]inositol an aberrant 3H-labeling at about 25% remained, for which a presumptive mechanism is proposed. L-myo-[1-3H]Inositol appears nevertheless to be a preferable alternative to myo-[2-3H]inositol for tracing the intact myo-inositol molecule after in vivo labeling, with minimized interference from aberrant 3H-labeling of nucleotides.  相似文献   

8.
The adenine nucleotide stores of cultured adrenal medullary cells were radiolabeled by incubating the cells with 32Pi and [3H]adenosine and the turnover, subcellular distribution, and secretion of the nucleotides were examined. ATP represented 84-88% of the labeled adenine nucleotides, ADP 11-13%, and AMP 1-3%. The turnover of 32P-adenine nucleotides and 3H-nucleotides was biphasic and virtually identical; there was an initial fast phase with a t1/2 of 3.5-4.5 h and a slow phase with a half-life varying from 7 to 17 days, depending upon the particular cell preparation. The t1/2 of the slow phase for labeled adenine nucleotides was the same as that for the turnover of labeled catecholamines. The subcellular distribution of labeled adenine nucleotides provides evidence that there are at least two pools of adenine nucleotides which make up the component with the long half-life. One pool, which contains the bulk of endogenous nucleotides (75% of the total), is present within the chromaffin vesicles; the subcellular localization of the second pool has not been identified. The studies also show that [3H]ATP and [32P]ATP are distributed differently within the cell; 3 days after labeling 75% of the [32P]ATP was present in chromaffin vesicles while only 35% of the [3H]ATP was present in chromaffin vesicles. Evidence for two pools of ATP with long half-lives and for the differential distribution of [32P]ATP and [3H]ATP was also obtained from secretion studies. Stimulation of cell cultures with nicotine or scorpion venom 24 h after labeling with [3H]adenosine and 32Pi released relatively twice as much catecholamine as 32P-labeled compounds and relatively three times as much catecholamine as 3H-labeled compounds.  相似文献   

9.
Characterisation by 19F NMR of fluorine-labelled indicators of cytosolic free Ca2+ concentration (by 5FBAPTA) and pH (by Fquene) is described, together with the techniques used to load the cell suspensions with the indicators for NMR spectroscopy. Useful features of the 19F NMR indicators include direct identification of the intracellular cation bound to the indicators, internal calibration of [Ca]i and pHi from the spectra, and simultaneous measurements of two or more indicators in the same cell suspension. Perturbations of cellular functions by 5FBAPTA and quin 2 are very similar, but vary widely in different cell systems. The [Ca]i and pHi responses of normal and transformed cells to mitogens and growth factors in serum are compared with data from similar experiments using fluorescence indicators. The only major discrepancy in [Ca]i measurements using the two independent assays was observed in Ehrlich ascites tumour cells. These cells have a high intracellular Zn2+ content which substantially quenches the quin 2 fluorescence, but does not affect [Ca]i measurements by 5FBAPTA. The Zn2+ present in the cells is detected as a separate response in the 5FBAPTA spectrum. The time course of the Ca signal in 2H3 cells stimulated by antigen to release histamine by exocytosis has been defined using 5FBAPTA and quin 2. Extension of the 19F NMR technique to [Ca] i and pHi measurements in perfused organs is illustrated in rat heart and responses to pharmacological agents are demonstrated. Developments in prospect to improve sensitivity and to measure [Na]i with a new family of indicators are outlined.  相似文献   

10.
Rats fed a fat-free diet containing no drug, 0.02% or 0.10% halofenate, or 0.25% clofibrate for 14 days were injected intravenously with equivalent amounts of either [2-3H]glycerol or [1(3)-3H]glycerol. Blood samples were collected at times up to 150 min after injection and serum triglycerides were isolated and assayed for radioactivity. Kinetic analysis of the serum appearance and clearance curves of 3H-labeled triglyceride permits estimation of serum total 3H-labeled triglyceride formation and triglyceride fractional turnover rates. The total amounts of 3H-labeled triglyceride formed from [2-3H] or from [1(3)-3H] glycerol in control-fed animals were very similar. Over 95% of the serum 3H-labeled triglyceride formed from either substrate circulated in a rapidly turning-over triglyceride pool (t1/2 = 8 min). Treatment with 0.10% halofenate or 0.25% clofibrate decreased labeling of serum triglycerides by 75-80% without increasing serum 3H-labeled triglyceride fractional turnover rates. Furthermore, both drugs decreased incorporation in vivo of 14C from [U-14C]glycerol into hepatic but not intestinal triglycerides without significantly decreasing incorporation of 14C into total phospholipids of either tissue. From these observations we suggest that, in the intact normal rat, sustained reduction of serum triglyceride levels produced by treatment with halofenate or clofibrate is due to inhibition of hepatic triglyceride formation.  相似文献   

11.
Multiple lipid interactions of the Sendai virus fusogenic protein   总被引:1,自引:0,他引:1  
The membrane topology of the envelope of Sendai virus was investigated using various radioactive photoactivable hydrophobic reagents: 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine and the two phospholipid analogues, 1-palmitoyl-2-(2-azido-4-nitro)benzoyl-sn -glycero-3- phospho[3H]choline and 1-myristoyl-2,12-amino-(4-N-3-nitro-1-azidophenyl)dodecanoyl-sn-glycero- 3-phospho[14C]choline. The hemagglutinin-neuraminidase glycoprotein and the fusogenic (F) glycoprotein were labeled by all three probes, confirming that these proteins are integral components of the viral envelope. The labeled F glycoprotein, composed of the two subunits F1 and F2, was cleaved in situ with trypsin to yield two fragments, F32 (32 kDa) and F19 (19 kDa). F2 was not labeled by any of the probes, suggesting an external location; whereas F19 was labeled by all probes and hence contains the portion of the F glycoprotein which traverses the viral envelope. Fragment F32 reacted both with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine and with 1-palmitoyl-2-(2-azido-4-nitro)benzoyl-sn-glycero-3-phospho[3H]choline, but not with 1-myristoyl-2,12-amino-(4-N-3-nitro-1-azidophenyl)dodecanoyl-sn-glycero- 3- phospho[14C]choline. This result opens the possibility that the F glycoprotein is formed by a loop-like structure having multiple interactions with viral lipids.  相似文献   

12.
Ganglioside GM2, 3H-labeled in the sphingoid base, was added to the culture medium of normal and GM2 gangliosidosis fibroblasts. Ganglioside was found to adsorb rapidly to the cell surface, most of it could however be removed by trypsination. The trypsin-resistant incorporation was about 10 nmol/mg cell protein, after 48 h. The rates of adsorption and incorporation depended strongly on the concentration of fetal calf serum in the medium, higher serum concentrations being inhibitory. After various incubation times, the lipids were extracted, separated by thin-layer chromatography and visualized by fluorography. In normal cells a variety of degradation products as well as sphingomyelin was found whereas in GM2 gangliosidosis cells, only trace amounts of such products (mainly GA2) were found. In contrast, the higher gangliosides GM1 and GD1a were formed in comparable amounts (2.2-3.6% of total radioactivity after 92 h) in normal and pathologic cell lines. Supplementation of cells from GM2 gangliosidosis, variant AB, with purified GM2-activator protein restored ganglioside GM2 degradation to almost normal rates but had no effect on its glycosylation to gangliosides GM1 and GD1a. From these results we conclude that the synthesis of higher gangliosides from incorporated GM2 can occur by direct glycosylation and not only via lysosomal degradation and resynthesis from [3H]sphinganine-containing degradation products. Preliminary studies with subcellular fractionation after various times of [3H]ganglioside incorporation indicated biphasic kinetics for the net transport of membrane-inserted ganglioside to lysosomes, compatible with the notion that a portion of the glycolipids can also escape from secondary lysosomes and migrate to Golgi compartment or cell surface.  相似文献   

13.
The 5,6-dimethylbenzimidazole moiety of vitamin B12 is formed from riboflavin in aerobic and some aerotolerant bacteria. Thereby C1' of riboflavin is transformed into C2 of the vitamin B12 base. In the present publication a study on this transformation with riboflavin 2H-labeled in the 1'R or 1'S position is described. This study was undertaken in order to find out if one of the two hydrogens at C1' is transferred to C2 of 5,6-dimethylbenzimidazole. The 2H-labeled riboflavin samples were synthesized starting from unlabeled or 1-2H-labeled ribose and 3,4-dimethylaniline yielding N-beta-D-ribopyranosyl-3,4-dimethylaniline. The unlabeled riboside was reduced to N-D-ribityl-3,4-dimethylaniline with sodium cyanoborotrideuteride, the 2H-labeled riboside with sodium cyanoborohydride. The ribityl derivatives were transformed into N-D-ribityl-2-phenylazo-4,5-dimethylaniline, and condensed with barbituric acid to riboflavin. The reduction of the ribosyl compound to the ribityl derivative is only partially stereospecific. Thus the riboflavin synthesized from unlabeled ribose had a 2H ratio of 3/1 (1'R/1'S), the riboflavin obtained from D-[1-2H1]ribose of 1/3 (1'R/1'S). The 2H content in these positions was determined from the 1H-NMR spectra. These spectra showed also that 1 mol 2H/mol riboflavin was present in position 1'. The deuterated riboflavin samples were incubated under aerobic conditions with broken cell preparations of Propionibacterium shermanii. The deuterium content of the 5,6-dimethylbenzimidazole isolated was determined by mass spectrometry and by 1H NMR. These measurements revealed that the hydrogen in the pro-S position at C1' of riboflavin is retained during 5,6-dimethylbenzimidazole formation, and is thus found at C2 of this base.  相似文献   

14.
We have obtained proton-coupled carbon-13 nuclear magnetic resonance (NMR) spectra of a variety of lipid-water and lipid-drug-water systems, at 11.7 T, as a function of temperature, using the "magic-angle" sample-spinning (MAS) NMR technique. The resulting spectra show a wide range of line shapes, due to interferences between dipole-dipole and dipole-chemical shielding anisotropy interactions. The differential line-broadening effects observed are particularly large for aromatic and olefinic (sp2) carbon atom sites. Coupled spectra of the tricyclic antidepressants desipramine and imipramine, in 1,2-dimyristoyl-sn-glycero-3-phosphocholine-water mesophases, show well-resolved doublets having different line shapes for each of the four aromatic methine groups, due to selective averaging of the four C-H dipolar interactions due to rapid motion about the director (or drug C2) axis. 2H NMR spectra of [2,4,6,8-2H4]desipramine (and imipramine) in the same 1,2-dimyristoyl-sn-glycero-3-phosphocholine-water mesophase exhibit quadrupole splittings of approximately 0-2 and approximately 20 kHz, indicating an approximate magic-angle orientation of the C2-2H(1H) and C8-2H(1H) vectors with respect to an axis of motional averaging, in accord with the 13C NMR results. Selective deuteration of imipramine confirms these ideas. Spectra of digalactosyl diglyceride [primarily 1,2-di[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl ]-3- (alpha-D-galactopyranosyl-1-6-beta-D-galactopyranosyl)-sn-glycerol]-H2O (in the L alpha phase) show a large differential line broadening for C9 but a reduced effect for C10, consistent with the results of 2H NMR of specifically 2H-labeled phospholipids [Seelig, J., & Waespe-Saracevic, N. (1978) Biochemistry 17, 3310-3315].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effects of in vivo electrical stimulation of the sympathetic nerve of the eye on phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis in rabbit iris and release of arachidonate and prostaglandin (PG) E2 into aqueous humor were investigated. myo-[3H]Inositol or [1-14C]arachidonate was injected intracamerally into each eye 3 h before electrical stimulation of one of the sympathetic trunks. Tissue phosphoinositides were determined by TLC, and 3H-labeled inositol phosphates were analyzed by either ion-exchange chromatography or HPLC. The aqueous humor was analyzed for 14C-labeled arachidonate and PGE2 by radiochromatography and for unlabeled PGE2 by radioimmunoassay. The results obtained from this study can be summarized as follows: (a) The rates of in vivo incorporation of myo-[3H]inositol into phosphoinositides and accumulation of 3H-labeled inositol phosphates in the iris muscle increased with time and then leveled off between 3 and 5 h. (b) Distribution of 3H radioactivity in inositol phosphates, as determined by HPLC, showed that of the total radioactivity in inositol phosphates, 53.6% was recovered in myo-inositol 1-phosphate, 36% in myo-inositol bisphosphate, 0.95% in myo-inositol 1,3,4-trisphosphate (1,3,4-IP3), and 2.6% in 1,4,5-IP3. (c) Electrical stimulation of the sympathetic nerve resulted in a significant loss of 3H radioactivity from PIP2 and a concomitant increase of that in IP3, an observation indicating that PIP2 is the physiological substrate for alpha 1-adrenergic receptors in this tissue. (d) Release of IP3 and liberation of arachidonate for PGE2 synthesis are dependent on the duration of stimulation and the intensity (voltage) of stimulus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The chemically synthesized sulfuric acid esters of 1'-hydroxysafrole and 3'-hydroxyisosafrole, 1'-sulfooxysafrole and 3'-sulfooxyisosafrole, respectively, are both strong electrophiles. Each ester reacted with deoxyguanosine (dGuo) in aqueous solution to form both safrol-1'-yl- and isosafrol-3'-yl-deoxyguanosine adducts. Both 1'-hydroxysafrole and 3'-hydroxyisosafrole were also formed from each ester in the presence of water. When either 1'-[3H]hydroxysafrole or 3'-[3H]hydroxyisosafrole was incubated with mouse liver cytosols fortified with 3'-phosphoadenosine-5'-phosphosulfate (PAPS) and RNA, similar levels of RNA- and protein-bound adducts were formed; thus, the hepatic sulfotransferase activities for these two substrates appear to be similar. In contrast, the levels of hepatic nucleic acid and protein adducts formed after administration of 3'-[3H]hydroxyisosafrole to mice were only 2-4% and 8-14%, respectively, of those obtained after an equimolar dose of 1'-[3H]hydroxysafrole. Likewise, when 3'-hydroxyisosafrole was injected into 12-day-old male B6C3F1 mice at a level of 0.1 or 2.5 mumol/g body wt., the average numbers of hepatomas per mouse (0.2 and 0.4, respectively) were not significantly increased over the average number for mice treated only with the solvent (0.2). By contrast, mice that received 0.1 mumol of 1'-hydroxysafrole/g body wt. developed about 2 hepatomas per mouse. The metabolism of 3'-hydroxyisosafrole in the rat and mouse differed markedly from that of 1'-hydroxysafrole. 3'-Hydroxyisosafrole rapidly underwent side-chain oxidation to yield 3,4-methylenedioxycinnamic acid and 3,4-methylenedioxybenzoic acid. In the first 4 h, 3,4-methylenedioxybenzoyl glycine and 3,4-methylenedioxycinnamoyl glycine, the major urinary metabolites, together accounted for 39% and 63% of the dose administered to rats and mice, respectively. The glucuronide of 3'-hydroxyisosafrole was not detected in the urine, whereas urinary excretion of the glucuronide of 1'-hydroxysafrole at 2 h accounted for approx. 40% of a dose of 1'-hydroxysafrole.  相似文献   

17.
1. Cholinephosphosphotransferase catalyzes the conversion of diacylglycerol and CDPcholine into phosphatidylcholine and CMP. Incubation of rat lung microsomes containing phosphatidyl[Me-14C]choline with CMP resulted in an increase in water-soluble radioactivity, suggesting that also in rat lung microsomes the cholinephosphotransferase reaction is reversible. 2. Microsomes containing 14C-labeled disaturated and 3H-labeled monoenoic phosphatidylcholine were prepared by incubation of these organelles with [1-14C]palmitate and [9,10-3H2]oleate in the presence of 1-palmitoyl-sn-glycero-3-phosphocholine, ATP, coenzyme A and MgCl2. Incubation of these microsomes with CMP resulted in an equal formation of 14C- and 3H-labeled diacylglycerols, indicating that disaturated and monoenoic phosphatidylcholines were used without preference by the backward reaction of the cholinephosphotransferase. When in a similar experiment the phosphatidylcholine was labeled with [9,10-3H2]palmitate and [1-14C]linoleate, somewhat more 14C- than 3H-labeled diacylglycerol was formed. 3. The backward reaction was used to generate membrane-bound mixtures of [1-14C]palmitate- and [9,10-3H2]oleate- or of [9,10-3H2]palmitate- and [1-14C]linoleate-labeled diacylglycerols. When the microsomes containing diacylglycerols were incubated with CDPcholine, both 3H- and 14C-labeled diacylglycerols were used for the formation of phosphatidylcholine, indicating that there is no absolute discrimination against disaturated diacylglycerols. This observation is in line with our previous findings and indicates that also the CDPcholine pathway may contribute to dipalmitoylphosphatidylcholine synthesis in lung.  相似文献   

18.
19.
A series of platinum(II) and (IV) monoadducts of the type [Pt(II)(DACH)LCl]NO3 and [Pt(IV)(DACH)trans-(X)2LCl]NO3 (where DACH=trans-1R,2R-diaminocyclohexane, L=adenine, guanine, hypoxanthine, cytosine, adenosine, guanosine, inosine, cytidine, 9-ethylguanine (9-EtGua), or 1-methylcytosine and X=hydroxo or acetato ligand) have been synthesized and characterized by elemental analysis and by 1H and 195Pt nuclear magnetic resonance (NMR) spectroscopy. The crystal structure of the model nucleobase complex [Pt(IV)(trans-1R,2R-diaminocyclohexane)trans-(acetate)2(9-EtGua)Cl]NO3.H2O was determined using a single crystal X-ray diffraction method. The compound crystallized in the monoclinic space group P2(1), with a=10.446(2) A, b=22.906(5) A, c=10.978(2) A, Z=4, and R=0.0718, based upon the total of 11,724 collected reflections. In this complex, platinum had a slightly distorted octahedron geometry owing to the presence of a geometrically strained five-member ring. The two adjacent corners of the platinum plane were occupied by the two amino nitrogen of DACH, whereas, the other two equatorial positions occupied by chloride ion and 9-ethylguanine. The remaining two axial positions were occupied by the oxygen atoms of acetato ligands. The DACH ring was in a chair configuration. An intricate network of intermolecular hydrogen bonds held the crystal lattice together. Some of these synthesized models of DACH-Pt-DNA adducts have good in vitro cytotoxic activity against the cisplatin-sensitive human cancer ovarian A2780 cell line (IC50=1-8 microM). Interestingly, a substituted nucleobase (9-ethylguanine) adduct was over 6-fold more potent than regular adducts. The cross-resistance factor against the 44-fold cisplatin-resistant 2780CP/clone 16 cells was about 3-9; thus, the cytotoxicity of adducts was indicative of low potency, but the resistance factors were also substantially low. These results suggest that DNA adducts of DACH-Pt are cytotoxic with low cross-resistance.  相似文献   

20.
We have analyzed the structure of rubella virus proteins labeled metabolically with [35S]methionine, [3H]mannose, and [3H]glucosamine or externally with [3H]borohydride after galactose oxidase treatment. Four structural proteins, with MrS of about 58,000 (E1), 47,000 (E2a), 42,000 (E2b), and 33,000 (C), were resolved on sodium dodecyl sulfate-polyacrylamide gels. Tryptic peptide maps obtained from [35S]methionine-labeled proteins indicated that E1 and C were unrelated to each other and to E2a and E2b, whereas the latter two gave similar, if not identical, maps. E1, E2a, and E2b were associated with the envelope and were located externally on the virus particle, whereas the C protein was associated with the RNA in the nucleocapsid. Solubilization of the virus with Triton X-100, followed by removal of the nucleocapsid and the detergent, resulted in the formation of soluble envelope protein complexes (rosettes) containing E1, E2a, and E2b. Although external labeling with [3H]borohydride and metabolic labeling with [3H]glucosamine suggested that all three proteins were glycosylated, only E1 and E2b were efficiently labeled with [3H]mannose. It is thus possible that the difference in migration between E2a and E2b is due to differences in glycosylation. Analysis by immunoprecipitation and sodium dodecyl sulfate-gel electrophoresis of intracellular [35S]methionine-labeled structural proteins synthesized in the presence and absence of tunicamycin supported the conclusion that E1 and E2 are glycoproteins. Unglycosylated E1 and E2 had an Mr of about 53,000 and 30,000, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号