首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific isomers of conjugated linoleic acid (CLA), a fatty acid with potentially beneficial physiological and anticarcinogenic effects, were efficiently produced from linoleic acid by washed cells of Lactobacillus acidophilus AKU 1137 under microaerobic conditions, and the metabolic pathway of CLA production from linoleic acid is explained for the first time. The CLA isomers produced were identified as cis-9, trans-11- or trans-9, cis-11-octadecadienoic acid and trans-9, trans-11-octadecadienoic acid. Preceding the production of CLA, hydroxy fatty acids identified as 10-hydroxy-cis-12-octadecaenoic acid and 10-hydroxy-trans-12-octadecaenoic acid had accumulated. The isolated 10-hydroxy-cis-12-octadecaenoic acid was transformed into CLA during incubation with washed cells of L. acidophilus, suggesting that this hydroxy fatty acid is one of the intermediates of CLA production from linoleic acid. The washed cells of L. acidophilus producing high levels of CLA were obtained by cultivation in a medium containing linoleic acid, indicating that the enzyme system for CLA production is induced by linoleic acid. After 4 days of reaction with these washed cells, more than 95% of the added linoleic acid (5 mg/ml) was transformed into CLA, and the CLA content in total fatty acids recovered exceeded 80% (wt/wt). Almost all of the CLA produced was in the cells or was associated with the cells as free fatty acid.  相似文献   

2.
Ricinoleic acid (12-hydroxy-cis-9-octadecaenoic acid) was an effective substrate for conjugated linoleic acid (CLA) production by washed cells of Lactobacillus plantarum AKU 1009a. The CLA produced was a mixture of cis-9,trans-11- and trans-9,trans-11-octadecadienoic acids. Addition of alpha-linolenic acid to the culture medium increased the CLA productivity of the washed cells. In the presence of lipase, castor oil, in which the main fatty acid component is ricinoleic acid, also was a substrate for CLA.  相似文献   

3.

Background

Trans fatty acids are produced either by industrial hydrogenation or by biohydrogenation in the rumens of cows and sheep. Industrial trans fatty acids lower high-density lipoprotein (HDL) cholesterol, raise low-density lipoprotein (LDL) cholesterol, and increase the risk of coronary heart disease. The effects of trans fatty acids from ruminants are less clear. We investigated the effect on blood lipids of cis-9, trans-11 conjugated linoleic acid (CLA), a trans fatty acid largely restricted to ruminant fats.

Methodology/Principal Findings

Sixty-one healthy women and men were sequentially fed each of three diets for three weeks, in random order, for a total of nine weeks. Diets were identical except for 7% of energy (approximately 20 g/day), which was provided either by oleic acid, by industrial trans fatty acids, or by a mixture of 80% cis-9, trans-11 and 20% trans-10, cis-12 CLA. After the oleic acid diet, mean (± SD) serum LDL cholesterol was 2.68±0.62 mmol/L compared to 3.00±0.66 mmol/L after industrial trans fatty acids (p<0.001), and 2.92±0.70 mmol/L after CLA (p<0.001). Compared to oleic acid, HDL-cholesterol was 0.05±0.12 mmol/L lower after industrial trans fatty acids (p = 0.001) and 0.06±0.10 mmol/L lower after CLA (p<0.001). The total-to–HDL cholesterol ratio was 11.6% higher after industrial trans fatty acids (p<0.001) and 10.0% higher after CLA (p<0.001) relative to the oleic acid diet.

Conclusions/Significance

High intakes of an 80∶20 mixture of cis-9, trans-11 and trans-10, cis-12 CLA raise the total to HDL cholesterol ratio in healthy volunteers. The effect of CLA may be somewhat less than that of industrial trans fatty acids.

Trial Registration

ClinicalTrials.gov NCT00529828  相似文献   

4.
Conjugated linoleic acid (CLA) has anti-carcinogenic and anti-atherosclerosis activity, and modulatory effects on the immune system and lipid metabolism. To produce a transgenic rice plant that can accumulate CLA, a linoleate isomerase gene that can convert linoleic acid to trans-10, cis-12 CLA was introduced and expressed under the control of seed-specific promoters from the oleosin and globulin genes. The fatty acid composition of the transgenic rice grain was analyzed by gas chromatography. Although there was no clear difference in the fatty acid composition between seeds from transformed versus untransformed plants, a peak of trans-10, cis-12 CLA methyl ester, which was not present in seeds from untransformed plants, was found in transformed plants. The trans-10, cis-12 CLA comprised an average of 1.3% (w/w) of the total fatty acids in seeds carrying the oleosin promoter in comparison to 0.01% (w/w) in seeds carrying the globulin promoter. In addition, approximately 70 and 28% of the total amount of the CLA isomer were present in the triacylglycerol and free fatty acid fractions, respectively. These results demonstrate the ability to produce fatty acid components of vegetable oils with novel physiological activities in crops.  相似文献   

5.
Conjugated linoleic acid (CLA) has attracted as novel type of fatty acids having unusual health-promoting properties such as anticarcinogenic and antiobesitic effects. The present work employed castor oil as substrate for one-pot production of CLA using washed cells of Lactobacillus plantarum (L. plantarum) and lipases as catalysts. Among the screened lipases, the lipase Rhizopus oryzae (ROL) greatly assisted resting cells to produce CLA. Mass spectral analysis of the product showed that two major isomers of CLA were produced in the reaction mixture i.e. cis-9, trans-11 56.55% and trans-10, cis-12 43.45%. Optimum factors for CLA synthesis were found as substrate concentration (8 mg/mL), pH (6.5), washed cell concentration (12% w/v), and incubation time of 20 h. Hence, the combination of ROL with L. plantarum offers one pot production of CLA selectively using castor oil as a cost-effective substrate.  相似文献   

6.
Most studies of linoleic acid biohydrogenation propose that it converts to stearic acid through the production of cis-9 trans-11 CLA and trans-11 C18:1. However, several other CLA have been identified in ruminai contents, suggesting additional pathways may exist. To explore this possibility, this research investigated the linoleic acid biohydrogenation pathway to identify CLA isomers in cultures of ruminai microorganisms after dosing with a 13C stable isotope. The 13C enrichment was calculated as [(M+1/M)×100] in labeled minus unlabeled cultures. After 48 h incubation, significant 13C enrichment was observed in seven CLA isomers, indicating their formation from linoleic acid. All enriched CLA isomers had double bonds in either the 9,11 or 10,12 position except for trans-9 cis-11 CLA. The cis-9 trans-11 CLA exhibited the highest enrichment (30.65%), followed by enrichments from 21.06 to 23.08% for trans-10 cis-12, cis-10 trans-12, trans-9 trans-11, and trans-10 trans-12 CLA. The remaining two CLA (cis-9 cis-11 and cis-10 cis-12 CLA) exhibited enrichments of 18.38 and 19.29%, respectively. The results of this study verified the formation of cis-9 trans-11 and trans-10 cis-12 CLA isomers from linoleic acid biohydrogenation. An additional five CLA isomers also contained carbons originating from linoleic acid, indicating that pathways of linoleic acid biohydrogenation are more complex than previously described.  相似文献   

7.
Butyrivibrio fibrisolvens A38 inocula were inhibited by as little as 15 μM linoleic acid (LA), but growing cultures tolerated 10-fold more LA before growth was inhibited. Growing cultures did not produce significant amounts of cis-9, trans-11 conjugated linoleic acid (CLA) until the LA concentration was high enough to inhibit biohydrogenation, growth was inhibited, and lysis was enhanced. Washed-cell suspensions that were incubated anaerobically with 350 μM LA converted most of the LA to hydrogenated products, and little CLA was detected. When the washed-cell suspensions were incubated aerobically, biohydrogenation was inhibited, CLA production was at least twofold greater, and CLA persisted. The LA isomerase reaction was very rapid, but the LA isomerase did not recycle like a normal enzyme to catalyze more substrate. Cells that were preincubated with CLA lost their ability to produce more CLA from LA, and the CLA accumulation was directly proportional (r2 = 0.98) to the initial cell density. Growing cells were as sensitive to CLA as LA, the LA isomerase and reductases of biohydrogenation were linked, and free CLA was not released. Because growing cultures of B. fibrisolvens A38 did not produce significant amounts of CLA until the LA concentration was high, biohydrogenation was arrested, and the cell density had declined, the flow of CLA from the rumen may be due to LA-dependent bacterial inactivation, death, or lysis.  相似文献   

8.
植物乳杆菌ZS2058在磷酸盐缓冲液体系中生物转化共轭亚油酸   总被引:12,自引:0,他引:12  
植物乳杆菌ZS2058是从泡菜中筛选到一株具有转化共轭亚油酸能力的乳酸菌。该菌株在MRS培养基中经0.5mg/mL的亚油酸诱导培养后,所获得的菌体细胞具有较强的转化能力。文中就植物乳杆菌ZS2058水洗细胞在磷酸盐缓冲液体系中生物转化共轭亚油酸进行了深入研究。在非厌氧条件下,植物乳杆菌ZS2058在亚油酸浓度为1mg/mL,湿细胞质量浓度约为150mg/mL,120r/min、37℃的条件下反应24h后,能将亚油酸转化为共轭亚油酸和羟基脂肪酸,其中c9,t11-CLA占所产生的CLA总量的96.4%,产量可高达312.4μg/mL,说明该菌株有很强的专一性。随着反应进一步进行,反应至36h时,c9,t11-CLA含量逐渐减少,伴随着大量羟基脂肪酸的产生;并且,以CLA(c9,t11-CLA和t10,c12-CLA的混合样品)为底物进行反应时,c9,t11-CLA被转化为羟基脂肪酸。由此可知,c9,t11-CLA可能是该菌株生物转化LA过程中的一个中间产物。  相似文献   

9.
We conducted an in-depth investigation of the effects of conjugated linoleic acid (CLA) on the expression of key metabolic genes and genes of known importance in intestinal lipid metabolism using the Caco-2 cell model. Cells were treated with 80 μmol/L of linoleic acid (control), trans-10, cis-12 CLA or cis-9, trans-11 CLA. RNA was isolated from the cells, labelled and hybridized to the Affymetrix U133 2.0 Plus arrays (n = 3). Data and functional analysis were preformed using Bioconductor. Gene ontology analysis (GO) revealed a significant enrichment (P < 0.0001) for the GO term lipid metabolism with genes up-regulated by trans-10, cis-12 CLA. Trans-10, cis-12 CLA, but not cis-9, trans-11 CLA, altered the expression of a number of genes involved in lipid transport, fatty acid metabolism, lipolysis, β-oxidation, steroid metabolism, cholesterol biosynthesis, membrane lipid metabolism, gluconeogenesis and the citrate cycle. These observations warrant further investigation to understand their potential role in the metabolic syndrome.  相似文献   

10.

Background

Trans fatty acids are produced either by industrial hydrogenation or by biohydrogenation in the rumens of cows and sheep. Industrial trans fatty acids lower HDL cholesterol, raise LDL cholesterol, and increase the risk of coronary heart disease. The effects of conjugated linoleic acid and trans fatty acids from ruminant animals are less clear. We reviewed the literature, estimated the effects trans fatty acids from ruminant sources and of conjugated trans linoleic acid (CLA) on blood lipoproteins, and compared these with industrial trans fatty acids.

Methodology/Principal Findings

We searched Medline and scanned reference lists for intervention trials that reported effects of industrial trans fatty acids, ruminant trans fatty acids or conjugated linoleic acid on LDL and HDL cholesterol in humans. The 39 studies that met our criteria provided results of 29 treatments with industrial trans fatty acids, 6 with ruminant trans fatty acids and 17 with CLA. Control treatments differed between studies; to enable comparison between studies we recalculated for each study what the effect of trans fatty acids on lipoprotein would be if they isocalorically replaced cis mono unsaturated fatty acids. In linear regression analysis the plasma LDL to HDL cholesterol ratio increased by 0.055 (95%CI 0.044–0.066) for each % of dietary energy from industrial trans fatty acids replacing cis monounsaturated fatty acids The increase in the LDL to HDL ratio for each % of energy was 0.038 (95%CI 0.012–0.065) for ruminant trans fatty acids, and 0.043 (95% CI 0.012–0.074) for conjugated linoleic acid (p = 0.99 for difference between CLA and industrial trans fatty acids; p = 0.37 for ruminant versus industrial trans fatty acids).

Conclusions/Significance

Published data suggest that all fatty acids with a double bond in the trans configuration raise the ratio of plasma LDL to HDL cholesterol.  相似文献   

11.
Conjugated linoleic acid (CLA) has been shown to reduce body fat mass in various experimental animals. It is valuable to identify its influence on enzymes involved in energy expenditure, apoptosis, fatty acid oxidation and lipolysis. We investigated isomer-specific effects of high dose, long treatment of CLA (75.4 μmol/L, 8 days) on protein and gene expression of these enzymes in cultured 3T3-L1 cells. Proteomics identified significant up- or down-regulation of 52 proteins by either CLA isomer. Protein and gene expression of uncoupling protein (UCP) 1, UCP3, perilipin and peroxisome proliferator-activated receptor (PPAR) α increased whereas UCP2 reduced for both CLA isomers. And eight-day treatment of trans-10,cis-12 CLA, but not cis-9,trans-11 CLA, significantly up-regulated protein and mRNA levels of PKA (P<.05), CPT-1 and TNF-α (P<.01). Compared to protein expression, both isomers did not significantly influence the mRNA expression of HSL, ATGL, ACO and leptin. In conclusion, high-dose, long treatment of cis-9,trans-11 CLA did not promote apoptosis, fatty acid oxidation and lipolysis in adipocytes, but may induce an increase in energy expenditure. trans-10,cis-12 CLA exhibited greater influence on lipid metabolism, stimulated adipocyte energy expenditure, apoptosis and fatty acid oxidation, but its effect on lipolysis was not obvious.  相似文献   

12.
The objective of this study was to examine the mechanism by which conjugated linoleic acid (CLA) reduces body fat. Young male mice were fed three combinations of fatty acids at three doses (0.06%, 0.2%, and 0.6%, w/w) incorporated into AIN76 diets for 7 weeks. The types of fatty acids were linoleic acid (control), an equal mixture of trans-10, cis-12 (10,12) CLA plus linoleic acid, and an equal isomer mixture of 10,12 plus cis-9, trans-11 (9,11) CLA. Mice receiving the 0.2% and 0.6% dose of 10,12 CLA plus linoleic acid or the CLA isomer mixture had decreased white adipose tissue (WAT) and brown adipose tissue (BAT) mass and increased incorporation of CLA isomers in epididymal WAT and liver. Notably, in mice receiving 0.2% of both CLA treatments, the mRNA levels of genes associated with browning, including uncoupling protein 1 (UCP1), UCP1 protein levels, and cytochrome c oxidase activity, were increased in epididymal WAT. CLA-induced browning in WAT was accompanied by increases in mRNA levels of markers of inflammation. Muscle cytochrome c oxidase activity and BAT UCP1 protein levels were not affected by CLA treatment. These data suggest a linkage between decreased adiposity, browning in WAT, and low-grade inflammation due to consumption of 10,12 CLA.  相似文献   

13.
Metabolism of Fatty Acid Hydroperoxides by Chlorella pyrenoidosa   总被引:3,自引:2,他引:1       下载免费PDF全文
The green alga Chlorella pyrenoidosa was examined for its ability to metabolize 13-hydroperoxylinoleic and 13-hydroperoxylinolenic acids. The study showed that Chlorella extracts possessed hydroperoxide dehydrase and other enzymes of the jasmonic acid pathway. However, under normal laboratory conditions for culture growth, neither jasmonic acid nor metabolites of the jasmonic acid pathway were present in Chlorella. In vitro enzyme studies also revealed the presence of hydroperoxide lyase activity that cleaved 13-hydroperoxylinoleic or 13-hydroperoxylinolenic acid into two products, 13-oxo-cis-9,trans-11-tridecadienoic acid and pentane (from linoleic acid) or pentene (from linolenic acid). The lyase was heat-labile, insensitive to 50 millimolar KCN, and had an approximate molecular weight of 48,000 as estimated by gel filtration. Two other products, 13-hydroxy-cis-9,trans-11,cis-15-octadecatrienoic acid and 12, 13-trans-epoxy-9-oxo-trans-10,cis-15-octadecadienoic acid, were also observed. Because these compounds are also products of nonenzymic, Fe(II)-catalyzed hydroperoxide decomposition reactions, their presence suggested that the observed lyase activity may occur via a homolytic decomposition mechanism.  相似文献   

14.
This study was designed to isolate different strains of the genus Bifidobacterium from the fecal material of neonates and to assess their ability to produce the cis-9, trans-11 conjugated linoleic acid (CLA) isomer from free linoleic acid. Fecal material was collected from 24 neonates aged between 3 days and 2 months in a neonatal unit (Erinville Hospital, Cork, Ireland). A total of 46 isolates from six neonates were confirmed to be Bifidobacterium species based on a combination of the fructose-6-phosphate phosphoketolase assay, RAPD [random(ly) amplified polymorphic DNA] PCR, pulsed-field gel electrophoresis (PFGE), and partial 16S ribosomal DNA sequencing. Interestingly, only 1 of the 11 neonates that had received antibiotic treatment produced bifidobacteria. PFGE after genomic digestion with the restriction enzyme XbaI demonstrated that the bifidobacteria population displayed considerable genomic diversity among the neonates, with each containing between one and five dominant strains, whereas 11 different macro restriction patterns were obtained. In only one case did a single strain appear in two neonates. All genetically distinct strains were then screened for CLA production after 72 h of incubation with 0.5 mg of free linoleic acid ml−1 by using gas-liquid chromatography. The most efficient producers belonged to the species Bifidobacterium breve, of which two different strains converted 29 and 27% of the free linoleic acid to the cis-9, trans-11 isomer per microgram of dry cells, respectively. In addition, a strain of Bifidobacterium bifidum showed a conversion rate of 18%/μg dry cells. The ability of some Bifidobacterium strains to produce CLA could be another human health-promoting property linked to members of the genus, given that this metabolite has demonstrated anticarcinogenic activity in vitro and in vivo.  相似文献   

15.
The substrate selectivity of several microbial lipases has been examined in the esterification of the conjugated linoleic acid (CLA) isomers cis-9,trans-11-, cis-9,cis-11-, trans-9,trans-11- and trans-10,cis-12-octadecadienoic acid with n-butanol in n-hexane. Lipases from Candida cylindracea and Mucor miehei had a preference for the cis-9,trans-11-octadecadienoic acid, while Chirazyme L-5, a Candida antarctica lipase A, accepted the trans-9,trans-11-fatty acid with a high selectivity. Moreover, lipase from Candida cylindracea and Chirazyme L-5 catalysed the esterification of the cis-9,trans-11-octadecadienoic acid with n-butanol faster than the corresponding reaction of the trans-10,cis-12-fatty acid.  相似文献   

16.
Production of conjugated linoleic acid (CLA) by the potential probiotic bacterium Lactobacillus plantarum WU-P19 was investigated with the aim of enhancing production. CLA produced using this bacterium may be used to supplement dietary intake. Cultures were fed linoleic acid for conversion to CLA and the CLA produced was measured. In some cases, chitosan was added to cultures to improve cellular uptake of linoleic acid. Under static conditions at 37 °C, the bacterium grew and produced CLA in the pH range of 5.5–6.5. At pH 6.0, a 36-h incubation period maximized the concentration of the dry biomass (0.82 g/L), the CLA content in the biomass (4.1 mg/g), and linoleic acid in the biomass (1.2 mg/g). In comparison with cultures grown without linoleic acid in the medium, supplementing the medium with linoleic acid at 600 μg/mL slowed the production of CLA, but the CLA content in the dry biomass increased to 12–14 mg/g and the linoleic acid content increased to 8–11 mg/g. Supplementing the culture medium with chitosan and linoleic acid enhanced production of CLA in the dry biomass to 21 mg/g within 36 h. Nearly 50% of the CLA was cis-9, trans-11-CLA, and the remainder was trans-10, cis-12-CLA. Linoleic acid content of the dry biomass was increased to 37 mg/g. Accumulation of CLA in the cells was enhanced by feeding linoleic acid. Supplementing the culture with linoleic acid and chitosan further increased accumulation of CLA.  相似文献   

17.
Hydroxy FAs, one of the gut microbial metabolites of PUFAs, have attracted much attention because of their various bioactivities. The purpose of this study was to identify lactic acid bacteria with the ability to convert linoleic acid (LA) to hydroxy FAs. A screening process revealed that a gut bacterium, Lactobacillus acidophilus NTV001, converts LA mainly into 13-hydroxy-cis-9-octadecenoic acid and resulted in the identification of the hydratase responsible, fatty acid hydratase 1 (FA-HY1). Recombinant FA-HY1 was purified, and its enzymatic characteristics were investigated. FA-HY1 could convert not only C18 PUFAs but also C20 and C22 PUFAs. C18 PUFAs with a cis carbon-carbon double bond at the Δ12 position were converted into the corresponding 13-hydroxy FAs. Arachidonic acid and DHA were converted into the corresponding 15-hydroxy FA and 14-hydroxy FA, respectively. To the best of our knowledge, this is the first report of a bacterial FA hydratase that can convert C20 and C22 PUFAs into the corresponding hydroxy FAs. These novel hydroxy FAs produced by using FA-HY1 should contribute to elucidating the bioactivities of hydroxy FAs.  相似文献   

18.
On the basis of the potential benefits to human health there is an increased interest in producing milk containing lower-saturated fatty acid (SFA) and higher unsaturated fatty acid (FA) concentrations, including cis-9 18:1 and cis-9, trans-11-conjugated linoleic acid (CLA). Twenty-four multiparous Holstein cows were used in two experiments according to a completely randomized block design, with 21-day periods to examine the effects of incremental replacement of prilled palm fat (PALM) with sunflower oil (SFO) in high-concentrate diets containing 30 g/kg dry matter (DM) of supplemental fat (Experiment 1) or increases in the forage-to-concentrate (F : C) ratio from 39 : 61 to 48 : 52 of diets containing 30 g/kg DM of SFO (Experiment 2) on milk production, digestibility and milk FA composition. Replacing PALM with SFO had no effect on DM intake, but tended to increase organic matter digestibility, yields of milk, protein and lactose, and decreased linearly milk fat content. Substituting SFO for PALM decreased linearly milk fat 8:0 to 16:0 and cis-9 16:1, and increased linearly 18:0, cis-9 18:1, trans-18:1 (Δ4 to 16), 18:2 and CLA concentrations. Increases in the F : C ratio of diets containing SFO had no effect on intake, yields of milk, milk protein or milk lactose, lowered milk protein content in a quadratic manner, and increased linearly NDF digestion and milk fat secretion. Replacing concentrates with forages in diets containing SFO increased milk fat 4:0 to 10:0 concentrations in a linear or quadratic manner, decreased linearly cis-9 16:1, trans-6 to -10 18:1, 18:2n-6, trans-7, cis-9 CLA, trans-9, cis-11 CLA and trans-10, cis-12 CLA, without altering milk fat 14:0 to 16:0, trans-11 18:1, cis-9, trans-11 CLA or 18:3n-3 concentrations. In conclusion, replacing prilled palm fat on with SFO in high-concentrate diets had no adverse effects on intake or milk production, other than decreasing milk fat content, but lowered milk fat medium-chain SFA and increased trans FA and polyunsaturated FA concentrations. Increases in the proportion of forage in diets containing SFO increased milk fat synthesis, elevated short-chain SFA and lowered trans FA concentrations, without altering milk polyunsaturated FA content. Changes in fat yield on high-concentrate diets containing SFO varied between experiments and individual animals, with decreases in milk fat secretion being associated with increases in milk fat trans-10 18:1, trans-10, cis-12 CLA and trans-9, cis-11 CLA concentrations.  相似文献   

19.
The isomer-specific effects of conjugated linoleic acid (CLA) on hepatic steatosis were assessed in fa/fa Zucker rats, a model for insulin resistance and the metabolic syndrome. Eight weeks of feeding trans-10,cis-12 CLA significantly improved glucose tolerance without changing body weight or visceral adipose mass. The trans-10,cis-12 isomer was also associated with reduced liver lipid content, improved liver function and reduced inflammation; these effects were not observed in rats fed the cis-9,trans-11 CLA isomer. Reduced liver lipid content did not correlate with activation of AMP-activated protein kinase or suppressed activation of sterol-regulatory element binding protein-1, two key regulators of hepatic lipid metabolism. Interestingly, rats fed cis-9,trans-11 CLA had fewer cytoplasmic lipid droplets in hepatocytes compared to rats fed control diet, but these droplets were larger in size. Conversely, fa/fa rats fed the trans-10,cis-12 CLA isomer had greater numbers of hepatic lipid droplets that were smaller in size, resulting in overall lower total lipid within these droplets. Changes in lipid droplets were associated with lower hepatic levels of PERILIPIN-2 (formerly known as adipophilin) in rats fed trans-10,cis-12 CLA, whereas amounts of other members of the PERILIPIN family of lipid droplet proteins were unaffected by dietary CLA. However, CLA isomers differentially affected the subcellular localization of these proteins. Treatment of H4IIE rat hepatoma cells with CLA isomers neither prevented nor reversed, but rather induced cytoplasmic lipid droplet formation, suggesting that the anti-steatotic effects of trans-10,cis-12 CLA are likely indirect and potentially mediated via increased lipid utilization by peripheral tissues.  相似文献   

20.
Conjugated linoleic acids (CLAs) were reported to have anti-atherogenic properties in animal feeding experiments. In an attempt to elucidate the molecular mechanisms of these anti-atherogenic effects, the modulatory potential of CLA on cytokine-induced eicosanoid production from smooth muscle cells (SMCs), which contributes to the chronic inflammatory response associated with atherosclerosis, has been investigated in the present study. cis-9, trans-11 CLA and trans-10, cis-12 CLA were shown to reduce proportions of the eicosanoid precursor arachidonic acid in SMC total lipids and to inhibit cytokine-induced NF-κB DNA-binding activity, mRNA levels of inducible enzymes involved in eicosanoid formation (cPLA2, COX-2, mPGES), and the production of the prostaglandins PGE2 and PGI2 by TNFα-stimulated SMCs in a dose-dependent manner. The effect of 50 μmol/L of either CLA isomer was as effective as 10 μmol/L of the PPARγ agonist troglitazone in terms of inhibiting the TNFα-stimulated eicosanoid production by SMCs. PPARγ DNA-binding activity was increased by both CLA isomers compared to control cells. Moreover, it was shown that the PPARγ antagonist T0070907 partially abrogated the inhibitory action of CLA isomers on cytokine-induced eicosanoid production and NF-κB DNA-binding activity by vascular SMCs suggesting that PPARγ signalling is at least partially involved in the action of CLA in human vascular SMCs. With respect to the effects of CLA on experimental atherosclerosis, our findings suggest that the anti-inflammatory effect of CLA is at least partially responsible for the anti-atherogenic effects of CLA observed in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号