首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
压力探针(pressure probe)技术最初设计时用于测定巨型藻类细胞的膨压,后来转到对高等植物细胞的膨压及其他水分关系参数的测定,现在已发展成为植物生理学和生态学研究中的一种多用途技术。它可以在细胞原位测定水分及溶质跨膜运输及分布情况。能够在不离体的植物中测定水通道的活性。新近发展的木质部压力探针是惟一可以直接测定导管或管胞中负压的技术。文章介绍该技术基本原理及其在植物水分生理学研究中的应用。  相似文献   

2.
万贤崇  叶清 《植物学报》2008,25(4):497-506
压力探针技术是一种用来测定微系统中压力大小和变化的新技术。其最初被设计用于直接测定巨型藻类的细胞膨压。随着操作装置的进一步微型化和精密化, 后来被应用于测定普通高等植物细胞膨压及其它水分关系参数。该技术的发展建立在一系列相应的流体物理学理论基础上。通过这些物理学公式的计算, 该技术能测定跨细胞膜或器官的水分运输速度以及它们的水力学导度; 测定溶液中水分和溶质的相对运输速度以及它们之间的相互影响; 还可以测定细胞壁的刚性等。目前压力探针技术已成为植物生理学和生态学领域研究中的多用途技术。它可以在细胞水平上原位测定水分及溶质跨膜运输及分布情况, 这对于阐明水通道功能具有极其重要的意义。此外, 木质部压力探针技术是目前唯一可以直接测定导管或管胞中负压的工具。该技术还可以用于单细胞汁液的样品采集, 结合微电极技术测定导管或其它细胞中的pH值、离子浓度以及细胞膜电位。本文重点介绍该技术使用的基本原理和相应的理论基础, 并详细地描述了操作过程中的技术和技巧。  相似文献   

3.
植物生理学研究中的压力探针技术   总被引:1,自引:0,他引:1  
压力探针技术是一种用来测定微系统中压力大小和变化的新技术。其最初被设计用于直接测定巨型藻类的细胞膨压。随着操作装置的进一步微型化和精密化,后来被应用于测定普通高等植物细胞膨压及其它水分关系参数。该技术的发展建立在一系列相应的流体物理学理论基础上。通过这些物理学公式的计算,该技术能测定跨细胞膜或器官的水分运输速度以及它们的水力学导度;测定溶液中水分和溶质的相对运输速度以及它们之间的相互影响;还可以测定细胞壁的刚性等。目前压力探针技术已成为植物生理学和生态学领域研究中的多用途技术。它可以在细胞水平上原位测定水分及溶质跨膜运输及分布情况,这对于阐明水通道功能具有极其重要的意义。此外,木质部压力探针技术是目前唯一可以直接测定导管或管胞中负压的工具。该技术还可以用于单细胞汁液的样品采集,结合微电极技术测定导管或其它细胞中的pH值、离子浓度以及细胞膜电位。本文重点介绍该技术使用的基本原理和相应的理论基础,并详细地描述了操作过程中的技术和技巧。  相似文献   

4.
Granier热消散探针法是目前研究树木生理生态和森林水文最常用的测定整树水分利用的方法之一。然而,已有的相关综述文献中,还没有专门介绍利用Granier热消散探针研究木质部液流的综述文章。本文重点介绍了Granier热消散探针测定系统的理论基础,对有关该探针的校准和改进的最新研究进展进行了综述,并还深入探讨了零液流信号值的确定、自然热梯度、损伤效应、液流的逆格型和将木质部液流密度外推至整树蒸腾耗水量等重要的实际问题。  相似文献   

5.
Granier热消散探针法是目前研究树木生理生态和森林水文最常用的测定整树水分利用的方法之一.然而,已有的相关综述文献中,还没有专门介绍利用Granier热消散探针研究木质部液流的综述文章.本文重点介绍了Granier热消散探针测定系统的理论基础,对有关该探针的校准和改进的最新研究进展进行了综述,并还深入探讨了零液流信号值的确定、自然热梯度、损伤效应、液流的逆格型和将木质部液流密度外推至整树蒸腾耗水量等重要的实际问题.  相似文献   

6.
盐胁迫对大豆根系木质部压力和Na+吸收的影响   总被引:1,自引:0,他引:1  
取栽培大豆的水培幼苗为材料,用木质部压力探针和原子吸收分光光度计测定了盐胁迫条件下其根木质部压力和伤流液中Na~+含量的变化,以分析大豆抗盐吸水的机制.结果表明:在25~150 mmol/L NaCl的浓度范围内,随着盐胁迫强度的增加,大豆根木质部负压力的绝对值逐渐增大,但相对负压力和根的径向反射系数则逐渐减小;木质部伤流液中Na~+含量逐渐增加,但Na~+的相对含量则逐渐降低.同时,虽然根系吸水所需的木质部负压力(压力势)及根木质部伤流液的渗透势随着盐胁迫强度的增加都有所下降,但两者共同作用使木质部水势下降的幅度远远小于根外溶液水势(渗透势)下降的幅度,即随着根外溶液盐浓度的升高,根木质部溶液的总水势逐渐高出根外溶液的水势.上述结果说明,在盐胁迫下大豆可以利用相对小的木质部负压力逆水势梯度吸水,且通过避免对Na~+的过量吸收来适应盐胁迫环境.  相似文献   

7.
盐胁迫下大麦根系木质部压力的自调节现象   总被引:9,自引:0,他引:9  
用植物木质部压力探针测定的结果表明,水培大麦幼苗根的木质部压力在环境条件恒定不变时始终保持波动,并且在受到轻度的盐胁迫和当盐胁迫解除时表现出高度的自调节现象.这种波动和自调节现象将对植物水势的测定和根的径向反射系数的测定产生很大的影响,并可能与植物的抗盐性有关.小麦根在同样条件下未表现出上述现象.  相似文献   

8.
木质部导管空穴化研究中的几个热点问题   总被引:11,自引:1,他引:10       下载免费PDF全文
 导管的空穴化和栓塞化现象是目前国际上水分生理生态研究的一个热点。该文对导管空穴化和栓塞化研究中出现的几个热点问题进行了概括和总结。1)在研究导管空穴化的实验手段上,超声波传感器探测法具有一定的局限性;目前至少存在4种可能的原因来解释木质部压力探针法(XPP)和压力室法所测得的导管水柱张力不一致的现象;近来出现的核磁共振成像法可以进行导管空穴化的无损伤检测。2)导管解剖学特征与形成空穴的可能性之间的关系可能与树种相关。3)导管空穴化引起气孔关闭的作用机制目前还不太清楚。4)植物防止空穴化产生的能力与适应干旱能力之间的关系还没有定论。5)单独用根压来解释空穴化导管的重新注水机制是不全面的,还存在其它重新注水机制。  相似文献   

9.
树木树液上升机理研究进展   总被引:8,自引:0,他引:8  
何春霞  李吉跃  郭明 《生态学报》2007,27(1):329-337
水分在植物体内的运输一直是很多植物生理生态学家所关注的一个重要问题。介绍了内聚力学说的基本假设和其存在争议,总结了近年来这一研究领域的几个热点问题,主要包括:(1)木质部栓塞及其恢复机理;(2)木质部压力探针和压力室法测定的木质部张力值不一致的现象及其可能原因;(3)补偿压学说;(4)不同界面层张力以及输水管道的毛细作用力、薄壁细胞膨压和木质部渗透压、逆向蒸腾等在树木汁液上升中的贡献;(5)最近发现的存在于木质部导管伴胞和韧皮部薄壁细胞等质膜中的水孔蛋白在植物水分运输中的调控作用等。这些方面在解释树木的树液上升中都起着重要的作用。  相似文献   

10.
维管植物木质部输导特性以及仿生应用的研究   总被引:3,自引:0,他引:3  
本文从细胞壁、导管(管胞)、木质部三个不同的层次分别论述了维管植物木质部的耐压性和韧性机理,并对木质部强有力的输导性机理进行了阐述。从仿生学角度出发,分别提出了仿生耐压管道和一次性超强榆导毛细管束的仿生结构模型。其中仿生耐压管道自内向外分别由内管、纤维层、增厚层、均压层和保护层组成,具有很好的耐压性和一定的保温性;一次性超强输导毛细管束采用许多根微细的毛细管加以穿孔板组成,能最大限度地维持水的内聚张力。  相似文献   

11.
The essentials of direct xylem pressure measurement   总被引:5,自引:0,他引:5  
This paper discusses the essentials of the oil‐filled pressure probe technique in the measurement of negative xylem pressures, focusing in particular on the technique and physics underlying our recent, successful experiment which has rekindled the debate on the validity of the Cohesion–Tension theory. We illustrate a number of general problems associated with the cell pressure probe and xylem pressure probe techniques, and propose appropriate criteria for micropipette construction. We enumerate factors dealing with the cavitation problem and suggest methods for eliminating air seeds in the system. We introduce reliable criteria for the successful measurement of xylem pressure, and emphasize the importance of the probe pressure relaxation test. Several problems regarding the controversy over the Cohesion–Tension theory are also discussed. We discuss the correlation between xylem pressure and the transpiration rate, the existence of absolute negative xylem pressure in intact plants, the most negative values of xylem pressure measured by the pressure probe, the agreement between the pressure probe and pressure bomb techniques, and the vulnerability to cavitation (tensile strength) of pressure probes.  相似文献   

12.
Determination of the pressure in the water-conducting vessels of intactNicotiana rustica L. plants showed that the pressure probe technique gave less-negative values than the Scholander-bomb method. Even though absolute values of the order of −0.1 MPa could be directly recorded in the xylem by means of the pressure probe, pressures between zero and atmospheric were also frequently found. The data obtained by the pressure probe for excised leaves showed that the Scholander bomb apparently did not read the actual tension in the xylem vessles ofNicotiana plants. The possibility that the pressure probe gave false readings was excluded by several experimental controls. In addition, cavitation and leaks either during the insertion of the microcapillary of the pressure probe, or else during the measurements were easily recognized when they occurred because of the sudden increase of the absolute xylem tension to that of water vapour or to atmospheric, respectively. Tension values of the same order could also be measured by means of the pressure probe in the xylem vessels of pieces of stem cut from leaves and roots under water and clamped at both ends. The magnitude of the absolute tension depended on the osmolarity of the bathing solution which was adjusted by addition of appropriate concentrations of polyethylene glycol. Partial and uniform pressurisation of plant tissues or organs, or of entire plants (by means of the Scholander bomb or of a hyperbaric chamber, respectively) and simultaneous recording of the xylem tension using the pressure probe showed that a 1∶1 response in xylem pressure only occurred under a few circumstances. A 1∶1 response required that the xylem vessels were in direct contact with an external water reservoir and/or that the tissue was (pre-)infiltrated with water. Corresponding pressure-probe measurements in isolated vascular bundles ofPlantago major L. orP. lanceolata L. plants attached to a Hepp-type osmometer indicated that the magnitude of the tension in the xylem vessels was determined by the external osmotic pressure of the reservoir. These and other experiments, as well as analysis of the data using classical thermodynamics, indicated that the turgor and the internal osmotic pressure of the accessory cells along the xylem vessels play an important role in the maintenance of a constant xylem tension. This conclusion is consistent with the cohesion theory. In agreement with the literature (P.E. Weatherley, 1976, Philos. Trans. R. Soc. London Ser. B23, 435–444; 1982, Encyclopedia of plant physiology, vol. 12B, 79-109), it was found that the tension in the xylem of intact plants under normal and elevated ambient pressure (as measured with the pressure probe) under quasi-stationary conditions was independent of the transpiration rate over a large range, indicating that the conductance of the flow path must be flow-dependent.  相似文献   

13.
In higher plants the xylem is the main pathway for anti-gravitational, long-distance transport of nutrients and water from the root through the shoot to the upper leaves. In the xylem conduit water is in a metastable state if tension larger than 0.1 MPa (i.e. negative pressure) is developed. While diurnal changes in negative pressure of individual xylem vessels can quite accurately be recorded by the minimal-invasive xylem pressure probe technique and water flow by non-invasive NMR techniques, the problem of continuous monitoring of solute flow remains a hitherto unresolved challenge. As shown here, integration of a K+ selective and a potential measuring microelectrode into the xylem pressure probe allowed on-line measurements of the K+ activity in individual xylem vessels of maize roots together with pressure and trans-root potential, the potential difference between the xylem and the external medium (i.e. the overall driving force of ions through the root tissue). When light irradiation was increased from 10 micro mol m(-2) s(-1) to 300 micro mol m(-2) s(-1) and negative pressure developed in the vessel, xylem K+ activity dropped from 3.6 +/- 2.6 mm to 0.9 +/- 0.7 mm (n = 16), whereas the trans-root potential depolarized from -2 +/- 11 mV to + 12 +/- 11 mV (n = 11), i.e. by + 14 +/- 7 mV. The effect of light on all three parameters was reversible. Exposure of the root to various K+ activities in the bath ranging from 0.1 to 43 mm revealed that the K+ activity of the xylem sap was shielded against short-term fluctuations in K+ supply to a large extent. In contrast, control experiments in which the root was cut 1 cm below the probe insertion point, allowing direct entry of external K+ into the xylem vessels, demonstrated that the xylem equilibrated rapidly with external K+. This was taken simultaneously as a proof for the correct reading of the probe.  相似文献   

14.
Karlheinz Hahn 《Protoplasma》2000,211(3-4):245-246
Summary The calculation of absolute-pressure values on the basis of measurements with differential-gauge pressure sensors, as described by Thürmer et al. (Protoplasma 206: 152–162, 1999), leads to discrepancies with the definition of absolute pressure when negative values are reached. From previous experiments with the xylem pressure probe we can conclude that the recorded pressure signal belongs not only to the xylem pressure, as stated by the authors, but also to the capillary pressure.  相似文献   

15.
The rise of sap in mangroves has puzzled plant physiologists for many decades. The current consensus is that negative pressures in the xylem exist which are sufficiently high to exceed the osmotic pressure of seawater (2.5 MPa). This implies that the radial reflection coefficients of the mangrove roots are equal to unity. However, direct pressure probe measurements in xylem vessels of the roots and stems of mangrove (Rhizophora mangle) grown in the laboratory or in the field yielded below-atmospheric, positive (absolute) pressure values. Slightly negative pressure values were recorded only occasionally. Xylem pressure did not change significantly when the plants were transferred from tap water to solutions containing up to 1700 mOsmol kg?1 NaCl. This indicates that the radial reflection coefficient of the roots for salt, and therefore the effective osmotic pressure of the external solution, was essentially zero as already reported for other halophytes. The low values of xylem tension measured with the xylem pressure probe were consistent with previously published data obtained using the vacuum/leafy twig technique. Values of xylem tension determined with these two methods were nearly two orders of magnitude smaller than those estimated for mangrove using the pressure chamber technique (?3 to ?6MPa). Xylem pressure probe measurements and staining experiments with alcian blue and other dyes gave strong evidence that the xylem vessels contained viscous, mucilage- and/or protein-related compounds. Production of these compounds resulting from wound or other artifactual reactions was excluded. The very low sap flow rates of about 20–50 cm h?1 measured in these mangrove plants were consistent with the presence of high molecular weight polymeric substances in the xylem sap. The presence of viscous substances in the xylem sap of mangroves has the following implications for traditional xylem pressure measurement techniques, development of xylem tension, and longdistance water transport: (1) high external balancing pressures in the pressure chamber are needed to force xylem sap to the cut surface of the twig; (2) stable tensions much larger than 0.1 MPa can be developed only occasionally because viscous solutions provide nucleation sites for gas bubble formation; (3) the frequent presence of small gas bubbles in viscous solutions allows water transport by interfacial, gravity-independent streaming at gas/water interfaces and (4) the increased density of viscous solutions creates (gravity-dependent) convectional flows. Density-driven convectional flows and interfacial streaming, but also the very low radial reflection coefficient of the roots to NaCl are apparently the means by which R. mangle maintains water transport to its leaves despite the high salinity of the environment.  相似文献   

16.
Abstract: Flow-sensitive NMR imaging and pressure probe techniques were used for measuring xylem water flow and its driving forces (i.e., xylem pressure as well as cell turgor and osmotic pressure gradients) in a tropical liana, Epipremnum aureum. Selection of tall specimens allowed continuous and simultaneous measurements of all parameters at various distances from the root under diurnally changing environmental conditions. Well hydrated plants exhibited exactly linearly correlated dynamic changes in xylem tension and flow velocity. Concomitant multiple-probe insertions along the plant shoot revealed xylem and turgor pressure gradients with changing magnitudes due to environmental changes and plant orientation (upright, apex-down, or horizontal). The data suggest that in upright and - to a lesser extent - in horizontal plants the transpirational water loss by the cells towards the apex during the day is not fully compensated by water uptake through the night. Thus, longitudinal cellular osmotic pressure gradients exist. Due to the tight hydraulic coupling of the xylem and the tissue cells these gradients represent (besides the transpiration-induced tension in the xylem) an additional tension component for anti-gravitational water movement from the roots through the vessels to the apex.  相似文献   

17.
The absolute pressure in conducting xylem vessels of roots of 2-week-old, slowly transpiring intact maize plants (bathed in nutrition medium) was determined to be +0·024 ± 0·044 MPa using the xylem pressure probe. When the roots were subjected to osmotic stress (NaCI, KCI or sucrose), the xylem pressure decreased immediately and became more negative. However, the response of xylem pressure to osmotic stress was considerably attenuated, indicating that the radial reflection coefficients, σ13 of the maize root for these solutes were rather low (between 0·2 and 0·4 depending on the concentration of the osmoticum). The low values of a, may be caused (partly) by unstirred layer effects. In repeated osmoticum/nutrition regimes a complex pattern of changes in xylem pressure was observed which was apparently linked to the interplay between transpiration and (passive and/or active) solute loading of the xylem. These processes were not observed when the roots were subjected to osmotic stress after excision. In this case, a biphasic response was observed comparable to that found for excised roots using the root pressure probe.  相似文献   

18.
Pressure probe measurements have been interpreted as showing that xylem pressures below c. –0.4 MPa do not exist and that pressure chamber measurements of lower negative pressures are invalid. We present new evidence supporting the pressure chamber technique and the existence of xylem pressures well below –0.4 MPa. We deduced xylem pressures in water-stressed stem xylem from the following experiment: (1) loss of hydraulic conductivity in hydrated stem xylem (xylem pressure = atmospheric pressure) was induced by forcing compressed air into intact xylem conduits; (2) loss of hydraulic conductivity from cavitation and embolism in dehydrating stems was measured, and (3) the xylem pressure in dehydrated stems was deduced as being equal and opposite to the air pressure causing the same loss of hydraulic conductivity in hydrated stems. Pressures determined in this way are only valid if cavitation was caused by air entering the xylem conduits (air-seeding). Deduced xylem pressure showed a one-to-one correspondence with pressure chamber measurements for 12 species (woody angiosperms and gymnosperms); data extended to c. –10 MPa. The same correspondence was obtained under field conditions in Betula occidentalis Hook., where pressure differences between air- and water-filled conduits were induced by a combination of in situ xylem water pressure and applied positive air pressure. It is difficult to explain these results if xylem pressures were above –0.4 MPa, if the pressure chamber was inaccurate, and if cavitation occurred by some mechanism other than air-seeding. A probable reason why the pressure probe does not register large negative pressures is that, just as cavitation within the probe limits its calibration to pressures above c. –0.5 MPa, cavitation limits its measurement range in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号