首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A convenient and rapid method for the simultaneous determination by HPLC of 3-hydroxyanthranilic acid and the dimer derived by its oxidation, cinnabarinic acid, is described. Buffers or biological samples containing these two Trp metabolites were acidified to pH 2.0 and extracted with ethyl acetate with recoveries of 96.5 +/- 0.5 and 93.4 +/- 3.7% for 3-hydroxyanthranilic and cinnabarinic acid, respectively. The two compounds were separated on a reversed-phase (C18) column combined with ion-pair chromatography and detected photometrically or electrochemically. The method was applied successfully to biological systems in which formation of either 3-hydroxyanthranilic or cinnabarinic acid had been described previously. Thus, interferon-gamma-treated human peripheral blood mononuclear cells formed and released significant amounts of 3-hydroxyanthranilic acid into the culture medium and mouse liver nuclear fraction possessed high "cinnabarinic acid synthase" activity. In contrast, addition of 3-hydroxyanthranilic acid to human erythrocytes resulted in only marginal formation of cinnabarinic acid. We conclude that the method described is specific, sensitive, and suitable for the detection of the two Trp metabolites in biological systems.  相似文献   

2.
The sigmoidal time course of haemoglobin oxidation by nitrite, involving an initial slow reaction accompanied by a subsequent rapid reaction, was extensively explored. The initial slow reaction was much prolonged by the addition of superoxide dismutase to the reaction mixture. On the other hand, in the presence of superoxide anion generated by xanthine oxidase systems, the slow phase disappeared and the reaction changed to first-order kinetics. The oxidation of intermediate haemoglobins [defined as haemoglobin tetramer in which different chains (alpha- or beta-) are in the ferric state and in the ferrous state] such as (alpha 2+ beta 3+)2 and (alpha 3+ beta 2+)2 also proceeded in a sigmoidal manner. Similar effects of superoxide anion on these reactions were observed. Since the intermediate haemoglobins such as (alpha 2+ beta 3+)2 and (alpha 3+ beta 2+)2 were found to be produced by the oxidation of haemoglobin by nitrite, the changes in oxyhaemoglobin, intermediate haemoglobins and methaemoglobin during the reaction were followed by isoelectric-focusing electrophoresis. The amounts of (alpha 2+ beta 3+)2 were larger than those of (alpha 3+ beta 2+)2 at the initial stages of the reaction, suggesting that there is a functional difference between alpha- and beta-chains in the oxyhaemoglobin tetramer. On the basis of these results, a reaction model of the haemoglobin oxidation by nitrite was tentatively proposed. The changes in oxyhaemoglobin, intermediate haemoglobins and methaemoglobin were well fitted to the simulation curves generated from the reaction model. Details of the derivation of the equations used for kinetic analysis have been deposited as Supplement SUP 50112 (5 pages) with the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K. from whom copies may be obtained on the terms indicated in Biochem. J. (1978) 169, 5.  相似文献   

3.
Mechanism of reaction of 3-hydroxyanthranilic acid with molecular oxygen   总被引:1,自引:0,他引:1  
The autoxidation of the tryptophan metabolite, 3-hydroxyanthranilic acid, at pH 7 gives rise to a p-quinone dimer and cinnabarinic acid. A novel dimer formed by radical-radical coupling of 3-hydroxyanthranilic acid is also produced. Labelling studies have shown that the C-2 oxygen in the p-quinone dimer is derived from molecular oxygen. A product versus time study of this reaction has revealed that, in the absence of catalase, cinnabarinic acid is formed but undergoes decomposition by hydrogen peroxide. At pH 7, in the presence of catalase, both the p-quinone dimer and cinnabarinic acid are formed at approximately the same rate and this rate of formation increases with increasing pH. Inclusion of superoxide dismutase was found to increase the rate of formation of cinnabarinic acid, suggesting that superoxide ions may also cause decomposition of cinnabarinic acid. This was confirmed by treating cinnabarinic acid with superoxide. A mechanism involving a common anthranilyl radical intermediate is proposed to account for the formation of the different oxidation products.  相似文献   

4.
Utilization of free fatty acids by starved and pregnant sheep   总被引:2,自引:2,他引:0       下载免费PDF全文
Rat-liver cinnabarinate synthase (3-hydroxyanthranilic acid-oxygen oxido-reductase) was partially purified. Stoicheiometric studies indicated the consumption of 3 atoms of oxygen/molecule of cinnabarinic acid formed. There was an initial lag in enzyme activity. The reaction had an optimum pH about 7.2 and an optimum temperature of 37 degrees . The enzyme was highly specific for 3-hydroxyanthranilic acid. The system showed an absolute requirement for Mn(2+) ions. Several bivalent metal ions and metal-chelating agents inhibited the reaction. Thiol inhibitors had no effect on enzyme activity, but reducing agents such as ascorbic acid were potent inhibitors. There was no requirement for any cofactor other than Mn(2+) ions. The probable significance of the reaction in mammals is discussed.  相似文献   

5.
When glucose is the carbon source, the white rot fungus Pycnoporus cinnabarinus produces a characteristic red pigment, cinnabarinic acid, which is formed by laccase-catalyzed oxidation of the precursor 3-hydroxyanthranilic acid. When P. cinnabarinus was grown on media containing cellobiose or cellulose as the carbon source, the amount of cinnabarinic acid that accumulated was reduced or, in the case of cellulose, no cinnabarinic acid accumulated. Cellobiose-dependent quinone reducing enzymes, the cellobiose dehydrogenases (CDHs), inhibited the redox interaction between laccase and 3-hydroxyanthranilic acid. Two distinct proteins were purified from cellulose-grown cultures of P. cinnabarinus; these proteins were designated CDH I and CDH II. CDH I and CDH II were both monomeric proteins and had apparent molecular weights of about 81,000 and 101,000, respectively, as determined by both gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The pI values were approximately 5.9 for CDH I and 3.8 for CDH II. Both CDHs used several known CDH substrates as electron acceptors and specifically adsorbed to cellulose. Only CDH II could reduce cytochrome c. The optimum pH values for CDH I and CDH II were 5.5 and 4.5, respectively. In in vitro experiments, both enzymes inhibited laccase-mediated formation of cinnabarinic acid. Oxidation intermediates of 3-hydroxyanthranilic acid served as endogenous electron acceptors for the two CDHs from P. cinnabarinus. These results demonstrated that in the presence of a suitable cellulose-derived electron donor, CDHs can regenerate fungal metabolites oxidized by laccase, and they also supported the hypothesis that CDHs act as links between cellulolytic and ligninolytic pathways.  相似文献   

6.
We have developed a rapid and useful method for purification of valency hybrid hemoglobins (alpha 2+ beta 2 and alpha 2 beta 2+: + denotes ferric heme) from a hemoglobin solution oxidized partially with ferricyanide by preparative high-performance liquid chromatography. This method does not involve the separation of hemoglobin subunits and the reconstitution of ferric and partner ferrous subunits. Using the valency hybrid hemoglobins thus prepared, the effect of the ferric spin state on the alpha 1 beta 2 subunit boundary structure was investigated by measuring the ultraviolet difference absorption spectra between the deoxy and the oxy valency hybrids associated with various ferric ligands (fluoride, aquo, azide and cyanide). All derivatives of both alpha 2+ beta 2 and alpha 2 beta 2+ showed the difference spectra characteristic of R-T quaternary structural transition. However, the magnitude of the difference spectral peak observed near 288 nm was larger for high-spin derivatives than for low-spin ones. The magnitude of the peak for the valency hybrid hemoglobin was closely correlated with the difference in the free energy of oxygen binding between the R and T states. Since the R state of high-spin hybrids is considered to be identical to that of low-spin hybrids, we concluded from these results that the alpha 1 beta 2 subunit boundary structure plays an important role in regulating the oxygen affinity of deoxy T state.  相似文献   

7.
Cinnabarinic acid was formed from 3-hydroxyanthranilic acid during incubation with a soluble fraction from Malpighian tubules of the silkworm, Bombyx mori, in the presence of manganese ion. The enzyme having this activity was purified to homogeneity by ammonium sulfate fractionation, gel filtration and ion exchange chromatography. Enzyme activity was accompanied by parallel catalase activity at all steps of purification; the two activities could not be separated from each other. The purified protein was concluded to be catalase. Manganese was shown to be present in 0.1 mM concentration in Malpighian tubules of Bombyx mori. These findings suggest that in Malpighian tubules catalase participates in the formation of cinnabarinic acid. A possible mechanism for the formation of cinnabarinic acid from 3-hydroxyanthranilic acid by catalase in the presence of manganese ion is proposed.  相似文献   

8.
1. An enzyme solely localized in the nuclear fraction of rat liver was found to convert 3-hydroxyanthranilic acid into a red product that was isolated and crystallized from the reaction mixture. The product was identified as cinnabarinic acid (2-amino-3-oxo-3H-phenoxazine-1,9-dicarboxylic acid) by comparing its properties with synthetic cinnabarinic acid. 2. The enzyme had optimum pH at 7·2. Heavy-metal ions like Ag+, Hg2+, MoO42−, Fe2+ and Cu2+ were inhibitory; Mn2+ activated the reaction to a considerable extent. 3. The reaction was inhibited by mercaptoethanol, GSH and cysteine, and activated by p-hydroxymercuribenzoate and sodium arsenite, which may suggest the involvement of disulphide groups in the reaction.  相似文献   

9.
We found that 2-amino-5-methylphenol was converted to the dihydrophenoxazinone with a reddish brown color by purified human hemoglobin, lysates of human erythrocytes, and human erythrocytes. The reddish brown compound was identified as 2-amino-4,4 alpha-dihydro-4 alpha,7-dimethyl-3H-phenoxazin-3-one by the measurement of NMR spectra, IR spectra, EI mass spectra, and absorption spectra. The changes in this phenoxazinone were studied under various conditions after mixing 2-amino-5-methylphenol with purified oxy- or methemoglobin, or with human erythrocytes. The production of 2-amino-4,4 alpha-dihydro-4 alpha,7-dimethyl-3H-phenoxazine-3-one from 2-amino-5-methylphenol was found to be tightly coupled with the oxidation of ferrous hemoglobin and reduction of ferric hemoglobin under aerobic conditions. By studying the production rates of the dihydrophenoxazinone and the oxido-reduction rates of ferrous and ferric hemoglobins during the reactions of ferrous or ferric hemoglobin with 2-amino-5-methylphenol under aerobic and anaerobic conditions, the reaction mechanism was extensively proposed.  相似文献   

10.
The absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra of valency hybrid hemoglobins and their constituents (alpha + and beta chains for alpha 2+beta 2, alpha and beta + chains for alpha 2 beta 2+: + denotes ferric heme) were measured in the Soret region for F-, H2O, N3- and CN- derivatives. Absorption and MCD spectra of valency hybrid hemoglobins were very similar to the arithmetic mean of respective spectra of their corresponding component chains in all derivatives. The Soret MCD intensity around 408 nm for various complexes of valency hybrid hemoglobins seems to reflect the spin state of ferric chains. Upon ferric and deoxy ferrous subunit association to make the deoxy valency hybrid hemoglobins, only the high-spin forms bound with F- and H2O of alpha 2+beta 2 displayed a blue shift in the peak position around 430 nm and those of alpha 2 beta 2+ an increase in intensity around 430 nm. The blue shift and the increase in intensity were considered to be caused by the structural changes in deoxy beta chains of alpha 2+beta 2 and deoxy alpha chains of alpha beta 2+, respectively. These spectral changes were interpreted on the basis of their oxygen-equilibrium properties. In contrast to absorption and MCD spectra, the CD spectra of valency hybrid hemoglobins were markedly different from the simple addition of those of their component chains in all derivatives examined. The large part of CD spectral changes upon subunit association were interpreted as changes in the heme vicinity accompanied by formation of the alpha 1 beta 1 subunit contact.  相似文献   

11.
Cinnabarinic acid is a valuable phenoxazinone that has broad applications in the pharmaceutical, chemical, and dyeing industries. However, few studies have investigated the production of cinnabarinic acid or its derivatives using genetically engineered microorganisms. Herein, an efficient synthetic pathway of cinnabarinic acid was designed and constructed in Pseudomonas chlororaphis GP72 for the first tim, which was more straightforward and robust than the known eukaryotic biosynthetic pathways. First, we screened and identified trans-2,3-dihydro-3-hydroxyanthranilic acid (DHHA) dehydrogenases from Escherichia coli MG1655 (encoded by entA), Streptomyces sp. NRRL12068 (encoded by bomO) and Streptomyces chartreusis NRRL3882 (encoded by calB3) based on the structural similarity of the substrate and product, and the DHHA dehydrogenase encoded by calB3 was selected for the synthesis of cinnabarinic acid due to its high DHHA conversion rate. Subsequently, cinnabarinic acid was synthesized by the expression of the DHHA dehydrogenase CalB3 and the phenoxazinone synthase CotA in the DHHA-producing strain P. chlororaphis GP72, resulting in a cinnabarinic acid titer of 20.3 mg/L at 48 hr. Further fermentation optimization by the addition of Cu2+, H2O2, and with adding glycerol increased cinnabarinic acid titer to 136.2 mg/L in shake flasks. The results indicate that P. chlororaphis GP72 may be engineered as a microbial cell factory to produce cinnabarinic acid or its derivatives from renewable bioresources.  相似文献   

12.
The properties of the nonheme iron of bromoperoxidase from Corallina pilulifera were studied. The enzyme lost its activity when reduced with formamidine-sulfinic acid and recovered it when oxidized by air. Incubation of the enzyme with ferric or ferrous ion-chelating agents indicated that its nonheme iron was ferric. Analyses of circular dichroism and proton NMR spectra suggested that the ferric ion tightly bound to cysteine, histidine, or tyrosine residues of the enzyme. The enzyme catalyzed Br--dependent catalase reactions to yield 1 mol of O2 from 2 mol of H2O2. No O2 evolution was observed when bromination reaction of monochlorodimedone occurred. From these results, together with previous knowledge of this enzyme, it was concluded that it activated bromide anion (Br-) to bromonium cation (Br+) using one molecule of H2O2, and this Br+OH- formed at the active site then decomposed another H2O2 to yield O2 in the absence of halogen acceptors (substrate). When substrate was present in the reaction mixture, it and H2O2 competitively reacted with the reaction intermediate (Br+OH-) to give brominated products.  相似文献   

13.
A major process of iron homeostasis in whole-body iron metabolism is the release of iron from the macrophages of the reticuloendothelial system. Macrophages recognize and phagocytose senescent or damaged erythrocytes. Then, they process the heme iron, which is returned to the circulation for reutilization by red blood cell precursors during erythropoiesis. The amount of iron released, compared to the amount shunted for storage as ferritin, is greater during iron deficiency. A currently accepted model of iron release assumes a passive-gradient with free diffusion of intracellular labile iron (Fe2+) through ferroportin (FPN), the transporter on the plasma membrane. Outside the cell, a multi-copper ferroxidase, ceruloplasmin (Cp), oxidizes ferrous to ferric ion. Apo-transferrin (Tf), the primary carrier of soluble iron in the plasma, binds ferric ion to form mono-ferric and di-ferric transferrin. According to the passive-gradient model, the removal of ferrous ion from the site of release sustains the gradient that maintains the iron release. Subcellular localization of FPN, however, indicates that the role of FPN may be more complex. By experiments and mathematical modeling, we have investigated the detailed mechanism of iron release from macrophages focusing on the roles of the Cp, FPN and apo-Tf. The passive-gradient model is quantitatively analyzed using a mathematical model for the first time. A comparison of experimental data with model simulations shows that the passive-gradient model cannot explain macrophage iron release. However, a facilitated-transport model associated with FPN can explain the iron release mechanism. According to the facilitated-transport model, intracellular FPN carries labile iron to the macrophage membrane. Extracellular Cp accelerates the oxidation of ferrous ion bound to FPN. Apo-Tf in the extracellular environment binds to the oxidized ferrous ion, completing the release process. Facilitated-transport model can correctly predict cellular iron efflux and is essential for physiologically relevant whole-body model of iron metabolism.  相似文献   

14.
Silymarin, a known standardized extract obtained from seeds of Silybum marianum is widely used in treatment of several diseases of varying origin. In the present paper, we clarified the antioxidant activity of silymarin by employing various in vitro antioxidant assay such as 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH(.)) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, total antioxidant activity determination by ferric thiocyanate, total reducing ability determination by Fe3+ - Fe2+ transformation method and Cuprac assay, superoxide anion radical scavenging by riboflavin/methionine/illuminate system, hydrogen peroxide scavenging and ferrous ions (Fe2+) chelating activities. Silymarin inhibited 82.7% lipid peroxidation of linoleic acid emulsion at 30 microg/mL concentration; butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), alpha-tocopherol and trolox indicated inhibition of 83.3, 82.1, 68.1 and 81.3% on peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, silymarin had an effective DPPH(.) scavenging, ABTS(.)+ scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power by Fe3+-Fe2+ transformation, cupric ions (Cu2+) reducing ability by Cuprac method, and ferrous ions (Fe2+) chelating activities. Also, BHA, BHT, alpha-tocopherol and trolox, were used as the reference antioxidant and radical scavenger compounds. Moreover, this study, which clarifies antioxidant mechanism of silymarin, brings new information on the antioxidant properties of silymarin. According to the present study, silymarin had effective in vitro antioxidant and radical scavenging activity. It could be used in the pharmacological and food industry because of its antioxidant properties.  相似文献   

15.
K Hantke 《Journal of bacteriology》1997,179(19):6201-6204
At low magnesium concentrations, Escherichia coli and Salmonella typhimurium LT2 accumulate ferrous iron independent of the ferrous iron transport system feo. Mutant strains with mutations in the magnesium transport gene corA accumulated less ferrous iron than the parent strains. corA+ and corA strains also differed in their sensitivity to ferrous iron under oxic conditions. corA mutants were more resistant to ferrous iron than their parent corA+ strains. Part of the ferrous iron accumulated can be chased by the addition of magnesium. Much less iron was chased when ferric iron was taken up by the siderophore ferrichrome. These results may indicate that the intracellular metabolism of the iron taken up by these systems differs and that it depends on the uptake route of the iron.  相似文献   

16.
Different chemical treatments for mouse erythrocyte modification has been used. Oxidation treatments with Ascorbate/Fe(3+), a system able to react with intracellular proteins, produced a displacement of the O(2) binding equilibrium curve to a higher affinity behaviour with loss of the haemoglobin cooperativity for oxygen binding. Incubation of mouse erythrocytes with diamide showed that at low reagent concentration (0.8 mM) no modification on oxygen binding equilibrium curves was observed. At higher reagent concentration (2.0 mM), an increased affinity and a disappearance of the cooperative behaviour can be observed. Additionally, crosslinking reactions on mouse erythrocytes with band 3 crosslinkers seemed to affect oxygen binding properties when used at a crosslinker concentration of 5 mM. Oxyhaemoglobin levels in crosslinked and diamide-treated erythrocytes are similar to those found in control cells. In contrast, ascorbate/Fe(3+) treatments produced an increment in the proportion of methaemoglobin, decreasing the oxyhaemoglobin levels in these oxidized erythrocytes.  相似文献   

17.
The anion influx was measured in order to study the interaction among organic phosphates, magnesium, haemoglobin and the N-terminal of the cytoplasmic domain of band 3 protein in human, chicken and trout erythrocytes. The rate constant for SO(4)(2-) influx in human and trout erythrocytes increased significantly when it was measured with an increased concentration of intracellular Mg(2+). The SO(4)(2-) influx was also measured in human erythrocyte ghosts in the presence and absence of Mg(2+). The smaller activation provoked by Mg(2+) in ghosts could be caused by the presence of a small quantity of haemoglobin which remained inside. The SO(4)(2-) uptake in chicken erythrocytes in the presence and in absence of Mg(2+) was characterized by very similar rate constants. The results suggest that the small increase in intracellular Mg(2+) in the erythrocytes involves an increase in the formation of Mg(2+)-ATP and Mg(2+)-2,3 BPG complexes reducing the affinity of the organic phosphates for Hb. This new situation may influence the functions of the anion transporter with consequent variations of SO(4)(2-) influx throughout the erythrocyte membrane in human and in trout erythrocytes, whereas in chicken RBCs this function cannot occur and, in fact, no increase in sulphate influx was noticeable. The measurement of Hb/O(2) affinity by the use of alternating fixed and variable concentrations of organic phosphates and Mg(2+), confirms the interactions between these elements and their effect on the mechanism of the affinity. When we measured the sulphate influx in the presence of DIDS we found some differences in the three types of cells.  相似文献   

18.
Haemoglobin-based oxygen carriers can undergo oxidation of ferrous haemoglobin into a non-functional ferric form with enhanced rates of haem loss. A recently developed human haemoglobin conjugated to maleimide-activated poly(ethylene glycol), termed MP4, has unique physicochemical properties (increased molecular radius, high oxygen affinity and low cooperativity) and lacks the typical hypertensive response observed with most cell-free haemoglobin solutions. The rate of in vitro MP4 autoxidation is higher compared with the rate for unmodified SFHb (stroma-free haemoglobin), both at room temperature (20-22 degrees C) and at 37 degrees C (P<0.001). This appears to be attributable to residual catalase activity in SFHb but not MP4. In contrast, MP4 and SFHb showed the same susceptibility to oxidation by reactive oxygen species generated by a xanthine-xanthine oxidase system. Once fully oxidized to methaemoglobin, the rate of in vitro haem loss was five times higher in MP4 compared with SFHb in the fast phase, which we assign to the beta subunits, whereas the slow phase (i.e. haem loss from alpha chains) showed similar rates for the two haemoglobins. Formation of MP4 methaemoglobin in vivo following transfusion in rats and humans was slower than predicted by its first-order in vitro autoxidation rate, and there was no appreciable accumulation of MP4 methaemoglobin in plasma before disappearing from the circulation. These results show that MP4 oxidation and haem loss characteristics observed in vitro provide information regarding the effect of poly(ethylene glycol) conjugation on the stability of the haemoglobin molecule, but do not correspond to the oxidation behaviour of MP4 in vivo.  相似文献   

19.
Hemoglobin A, cross-linked between Lys 99 alpha 1 and Lys 99 alpha 2, was used to obtain a partially oxidized tetramer in which only one of the four hemes remains reduced. Because of the absence of dimerization, asymmetric, partially oxidized derivatives are stable. This is evidenced by the fact that eight of the ten possible oxidation states could be resolved by analytical isoelectric focusing. A triply oxidized hemoglobin population HbXL+3 was isolated whose predominant component was (alpha + alpha +, beta + beta 0). This triferric preparation was examined as a possible model for the triliganded state of ferrous HbA. The aquomet and cyanomet derivatives were characterized by their CD spectra and their kinetic reactions with carbon monoxide. CD spectra in the region of 287 nm showed no apparent change in quaternary structure upon binding ligand to the fourth, ferrous heme. The spectra of the oxy and deoxy forms of the cyanomet and aquomet derivatives of HbXL+3 differed insignificantly and were characteristic of the normal liganded state. Upon addition of inositol hexaphosphate (IHP), both the oxy and deoxy derivatives of the high-spin triaquomet species converted to the native deoxy conformation. In contrast, IHP had no such effect on the conformation of the low-spin cyanomet derivatives of HbXL+3. The kinetics of CO combination as measured by stopped-flow and flash photolysis techniques present a more complex picture. In the presence of IHP the triaquomet derivative does bind CO with rate constants indicative of the T state whether these are measured by the stopped-flow technique or by flash photolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In the marine teleost intestine the secretion of bicarbonate increases pH of the lumen (pH 8.4 -9.0) and importantly reduces Ca2+ and Mg2+ concentrations by the formation of insoluble divalent ion carbonates. The alkaline intestinal environment could potentially also cause essential metal carbonate formation reducing bioavailability. Iron accumulation was assessed in the Gulf toadfish (Opsanus beta) gut by mounting intestine segments in modified Ussing chambers fitted to a pH-stat titration system. This system titrates to maintain lumen pH constant and in the process prevents bicarbonate accumulation. The luminal saline pH was clamped to pH 5.5 or 7.0 to investigate the effect of proton concentrations on iron uptake. In addition, redox state was altered (gassing with N2, addition of dithiothreitol (DTT) and ascorbate) to evaluate Fe3+ versus Fe2+ uptake, enabling us to compare a marine teleost intestine model for iron uptake to the mammalian system for non-haem bound iron uptake that occurs via a ferrous/proton (Fe2+/H+) symporter called Divalent Metal Transporter 1 (DMT1). None of the redox altering strategies affected iron (Fe3+ or Fe2+) binding to mucus, but the addition of ascorbate resulted in a 4.6-fold increase in epithelium iron accumulation. This indicates that mucus iron binding is irrespective of valency and suggests that ferrous iron is preferentially transported across the apical surface. Altering luminal saline pH from 7.0 to 5.5 did not affect ferric or ferrous iron uptake, suggesting that if iron is entering via DMT1 in marine fish intestine this transporter works efficiently under circumneutral conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号