首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron incorporation into diatom biosilica was investigated for the species Stephanopyxis turris. It is known that several “foreign” elements (e.g., germanium, titanium, aluminum, zinc, iron) can be incorporated into the siliceous cell walls of diatoms in addition to silicon dioxide (SiO2). In order to examine the amount and form of iron incorporation, the iron content in the growth medium was varied during cultivation. Fe:Si ratios of isolated cell walls were measured by ICP-OES. SEM studies were performed to examine of a possible influence of excess iron during diatom growth upon cell wall formation. The chemical state of biosilica-attached iron was characterized by a combination of infrared, 29Si MAS NMR, and EPR spectroscopy. For comparison, synthetic silicagels of variable iron content were studied. Our investigations show that iron incorporation in biosilica is limited. More than 95% of biosilica-attached iron is found in the form of iron clusters/nanoparticles. In contrast, iron is preferentially dispersedly incorporated within the silica framework in synthetic silicagels leading to Si–O–Fe bond formation.  相似文献   

2.
The eukaryotic diatoms are unicellular algae. They are well known for their filigree micro- and nanostructured cell walls which mainly consist of amorphous silica as well as various organic compounds. However, diatoms are also known to incorporate certain amounts of aluminium into their cell walls. Unexpectedly, enhanced Al concentrations in the Southern Yellow Sea were found to be correlated with a diatom spring bloom. Therefore, we have analyzed the influence of strongly enhanced Al concentrations in the culture medium upon the growth behaviour of the diatom Stephanopyxis turris (S. turris). The uptake and incorporation of Al into the cell walls was monitored. It turned out that S. turris survives aluminium concentrations up to 105.5 μM (2.85 mg/l) in the culture medium. Under the applied conditions, this corresponds to an Al/Si ratio of 1:1. These large amounts of Al had to be offered in the form of bis–tris-chelates in order to prevent uncontrolled precipitation. Under these conditions, the Al/Si ratio in the cell walls could be increased up to about 1:15 as determined by ICP-OES, the highest amount of aluminium found in diatom cell walls yet. Structural characterization of the biosilica by ATR-FTIR and solid-state 27Al NMR spectroscopy revealed that an amorphous aluminosilicate phase is formed where the aluminium exists as four- and sixfold-coordinated species.  相似文献   

3.
The silicic acid uptake kinetics of diatoms were studied to provide a mechanistic explanation for previous work demonstrating both nonsaturable and Michaelis-Menten-type saturable uptake. Using (68)Ge(OH)(4) as a radiotracer for Si(OH)(4), we showed a time-dependent transition from nonsaturable to saturable uptake kinetics in multiple diatom species. In cells grown under silicon (Si)-replete conditions, Si(OH)(4) uptake was initially nonsaturable but became saturable over time. Cells prestarved for Si for 24 h exhibited immediate saturable kinetics. Data suggest nonsaturability was due to surge uptake when intracellular Si pool capacity was high, and saturability occurred when equilibrium was achieved between pool capacity and cell wall silica incorporation. In Thalassiosira pseudonana at low Si(OH)(4) concentrations, uptake followed sigmoidal kinetics, indicating regulation by an allosteric mechanism. Competition of Si(OH)(4) uptake with Ge(OH)(4) suggested uptake at low Si(OH)(4) concentrations was mediated by Si transporters. At high Si(OH)(4), competition experiments and nonsaturability indicated uptake was not carrier mediated and occurred by diffusion. Zinc did not appear to be directly involved in Si(OH)(4) uptake, in contrast to a previous suggestion. A model for Si(OH)(4) uptake in diatoms is presented that proposes two control mechanisms: active transport by Si transporters at low Si(OH)(4) and diffusional transport controlled by the capacity of intracellular pools in relation to cell wall silica incorporation at high Si(OH)(4). The model integrates kinetic and equilibrium components of diatom Si(OH)(4) uptake and consistently explains results in this and previous investigations.  相似文献   

4.
SILICON METABOLISM IN DIATOMS: IMPLICATIONS FOR GROWTH    总被引:1,自引:0,他引:1  
Diatoms are the world's largest contributors to biosilicification and are one of the predominant contributors to global carbon fixation. Silicon is a major limiting nutrient for diatom growth and hence is a controlling factor in primary productivity. Because our understanding of the cellular metabolism of silicon is limited, we are not fully knowledgeable about intracellular factors that may affect diatom productivity in the oceans. The goal of this review is to present an overview of silicon metabolism in diatoms and to identify areas for future research. Numerous studies have characterized parameters of silicic acid uptake by diatoms, and molecular characterization of transport has begun with the isolation of genes encoding the transporter proteins. Multiple types of silicic acid transporter gene have been identified in a single diatom species, and multiple types appear to be present in all diatom species. The controlled expression and perhaps localization of the transporters in the cell may be factors in the overall regulation of silicic acid uptake. Transport can also be regulated by the rate of silica incorporation into the cell wall, suggesting that an intracellular sensing and control mechanism couples transport with incorporation. Sizable intracellular pools of soluble silicon have been identified in diatoms, at levels well above saturation for silica solubility, yet the mechanism for maintenance of supersaturated levels has not been determined. The mechanism of intracellular transport of silicon is also unknown, but this must be an important part of the silicification process because of the close coupling between silica incorporation and uptake. Although detailed ultrastructural analyses of silica deposition have been reported, we know little about the molecular details of this process. However, proteins occluded within silica that promote silicification in vitro have recently been characterized, and the application of molecular techniques holds the promise of great advances in this area. Cellular energy for silicification and transport comes from aerobic respiration without any direct involvement of photosynthetic energy. As such, diatom silicon metabolism differs from that of other major limiting nutrients such as nitrogen and phosphorous, which are closely linked to photosynthetic metabolism. Cell wall silicification and silicic acid transport are tightly coupled to the cell cycle, which results in a dependency in the extent of silicification on growth rate. Silica dissolution is an important part of diatom cellular silicon metabolism, because dissolution must be prevented in the living cell, and because much of the raw material for mineralization in natural assemblages is supplied by dissolution of dead cells. Perhaps part of the reason for the ecological success of diatoms is due to their use of a silicified cell wall, which has been calculated to impart a substantial energy savings to organisms that have them. However, the growth of diatoms and other siliceous organisms has depleted the oceans of silicon, such that silicon availability is now a major factor in the control of primary productivity. Much new progress in understanding silicon metabolism in diatoms is expected because of the application of molecular approaches and sophisticated analytical techniques. Such insight is likely to lead to a greater understanding of the role of silicon in controlling diatom growth, and hence primary productivity, and of the mechanisms involved in the formation of the intricate silicified structures of the diatom cell wall.  相似文献   

5.
Diatom algae realize highly intriguing processes of biosynthesis of siliceous structures in living cells under moderate conditions. Investigation of diatom physiology is complicated by frustule (siliceous exoskeleton). Frustules consist of valves and girdle bands which are adhered to each other by means of organic substances. Removal of the frustule from the lipid membrane of diatom cells would open new possibilities for study of silicon metabolism in diatoms. We found that submillimeter laser irradiation produced by a free-electron laser causes splitting of diatom frustules without destruction of cell content. This finding opens the way to direct study of diatom cell membrane and to isolation of cell organelles, including silica deposition vesicles. We suppose that the dissection action of the submillimeter irradiation results from unusual ultrasonic waves produced by the short (30–100 ps) but high-power (1 MW) terahertz laser impulses at 5.6 MHz frequency.  相似文献   

6.
Diatoms are a major group of phytoplankton that account for approximately 40% of the ocean carbon fixation and the vast majority of biogenic silica production through the construction of their cell walls (termed frustules). These frustules accumulate and are partially preserved in the ocean sediments. Diatom growth and nutrient utilization in high‐nitrate, low‐chlorophyll regions of the world’s oceans are mostly regulated by iron availability. Diatoms acclimate to iron limitation by decreasing cell size. The associated increase in surface area‐to‐volume ratio and decrease in diffusive boundary layer thickness may improve nutrient uptake kinetics. In parallel, cellular silicon (Si) contents are elevated in iron‐limited diatoms relative to nitrogen (N) and carbon (C). Variations in degree of silicification and nutritional requirements of iron‐limited diatoms have been hypothesized to account for higher cellular Si and/or lower cellular N and C, respectively. However, in some diatoms, frustule silicification does not significantly change when cells are iron‐limited. Instead, changes in the Si‐containing valve surface area relative to volume within these diatoms is hypothesized to be responsible for the variations in the cellular Si : N and Si : C ratios. In particular, some examined iron‐limited pennate diatoms have reduced widths relative to their lengths (i.e. lower length‐normalized widths, LNW) compared to iron‐replete cells. In the pennate diatom Fragilariopsis kerguelensis, the mean LNWs of valves preserved in sediments throughout the Southern Ocean (a well‐characterized iron‐limited region) is positively correlated with satellite‐derived, climatological net primary productivity in the overlying waters. Because of the specific morphological changes in pennate diatom frustules in response to iron availability, the valve morphometerics (e.g. LNWs) can potentially be used as a diagnostic tool for iron‐limited diatom growth and relative changes in the Si : N (and Si : C) ratios in extant diatom assemblages as well as those preserved in the sediments.  相似文献   

7.
The phytoplankton succession during the summer in the mesotrophic reservoir Saidenbach since 1975 may well be explained by the resource ratio hypothesis. Until 1980, only phosphorus controlled the phytoplankton growth, and diatoms prevailed, because an excesses of silicon existed. From 1981 to 1986, the ratio Si:P often was smaller than 90, a value, critical for the development of the diatom Fragilaria crotonensis. Its reduced growth caused an increased occurrence of blue-greens (mostly Aphanothece clathrata) immediately after the diatom mass development. During these years at first silicon limited phytoplankton growth in summer, later on the growth again was limited by phosphorus. Because of increased Si and P load since 1987 a simultaneous limitation of both nutrients occurs. This leads now to parallel mass developments of diatoms and blue-greens. In order to maintain the positive effect of diatoms (phosphorus transport into the sediment), it is to guarantee a sufficiently high Si:P ratio. If a reduction of P load isn't possible, Si remobilization from the sediment could be increased by artificial changes of the water level.  相似文献   

8.
Using a high-brilliance synchrotron X-ray source, combined small- and wide-angle X-ray scattering (SAXS and WAXS) was applied to study nanoscale characteristics, in particular pore size in the range of 3 to 65 nm, of a variety of unialgal cultures of centric and pennate diatoms, and of mixed diatom populations sampled in the field. Results of scattering analysis were compared with details of pore size, structure and orientation visible at the electron microscopic level. WAXS patterns did not reveal any crystalline phase or features of microcrystallinity (resolution 0.07 to 0.51 nm), which implies a totally amorphous character of the SiO2 matrix of the frustule material. SAXS data (resolution 3 to 65 nm) provided information on geometry, size, and distribution of pores in the silica. Overall, two pore regions were recognized that were common to the silica of all samples: the smallest (d less than 10 nm) regularly spaced and shaped spherically, the larger (up to 65 nm) being cylinders or slits. Apparently, at a nanoscale level diatomaceous silica is quite homologous among species, in agreement with the chemical principles of silica polymerization under the conditions of pH and precursor concentrations inside the silicon deposition vesicle. The final frustule "macro"-morphology is of course species-specific, being determined genetically. Synthetically-derived MCM-type silicas have a similarly organized pore distribution in an amorphous silica matrix as we found in all diatom species studied. We therefore suggest that organic molecules of a kind used as structure-directing agents to produce these artificial silicas play a role in the nucleation of the silica polymerization reaction and the shaping of pore morphology inside the silicon deposition vesicle of diatoms. Structure-directing molecules now await isolation from the SDV, followed by identification and characterisation by molecular techniques.  相似文献   

9.
Freshwater diatom frustules show special optical properties. In this paper we observed luminescence properties of the freshwater diatom Cyclotella meneghiniana. To confirm the morphological properties we present scanning electron microscopy (SEM) images. X‐ray diffraction (XRD) studies were carried out to visualize the structural properties of the frustules, confirming that silica present in diatom frustules crystallizes in an α‐quartz structure. Study of the optical properties of the silica frustules of diatoms using ultra‐violet‐visible (UV‐vis) spectroscopy and photoluminescence spectroscopy confirmed that the diatom C. meneghiniana shows luminescence in the blue region of the electromagnetic spectrum when irradiated with UV light. This property of diatoms can be exploited to obtain many applications in day‐to‐day life. Also, using time‐resolved photoluminescence spectroscopy (TRPL) it was confirmed that this species of diatom shows bi‐exponential decay. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The chemical speciation of silicon in xylem exudate from wheat (Triticum aestivum L.) was examined by 29Si NMR spectroscopy. Wheat plants were grown to maturity in silicon‐free nutrient medium, and then transferred to a solution containing 0.02 mm 29Si‐enriched silicic acid. After 30 min the shoots were excised and xylem exudate was collected. Within 10 min the Si concentration of the xylem exudate reached values greatly in excess of that of the starting nutrient solution, eventually reaching levels as high as 8 mm . Silicon‐29 nuclear magnetic resonance spectra indicated the existence of only two Si‐containing species in the xylem exudate, mono and disilicic acid (H4SiO4o and (HO)3Si(µ‐O)Si(OH)3o) in a ratio of approximately 7 : 1. Significantly, there was no evidence of organosilicate complexes. Nevertheless, the efficiency by which the plant concentrates aqueous silicon indicates active mechanisms of silicon transport across root cell membranes.  相似文献   

11.
Reaction of tetramethoxysilane with 1,3-diphenylpropane-1,3-dione and benzilic acid (molar ratio 1:2:1) in tetrahydrofuran/n-pentane yielded the neutral heteroleptic hexacoordinate silicon(IV) complex [benzilato(2−)-O1,O2]bis[1,3-diphenylpropane-1,3-dionato(1−)-O,O]silicon(IV) (5). Compound 5 was structurally characterized by single-crystal X-ray diffraction, solid-state VACP/MAS NMR spectroscopy (29Si), and solution NMR spectroscopy (1H, 13C, 29Si). The chiral silicon(IV) complex, with its octahedral SiO6 coordination polyhedron, is configurationally stable in solution on the NMR time scale (solvent: CDCl3; maximum temperature studied: 58 °C).  相似文献   

12.
SUMMARY. Changes in silicon concentration were used to investigate the seasonal cycle of diatoms in chalk-streams. Bore-hole water shows no significant variation in silicon concentration. Five kilometres downstream there is a significant reduction between March and May. Further downstream the cumulative effect of biological silicon removal shows more complex patterns. There is a considerable variation in the seasonal pattern from year to year but an analysis of the seasonal pattern averaged over thirteen years on the River Frome confirms a later summer silicon reduction in August-September, in addition to a much larger reduction in the spring.
The negative correlation between suspended chlorophyll-α and silicon concentrations confirms that suspended chlorophyll-α concentrations respond more closely to changes in the loosely attached diatom flora than to other sources of chlorophyll-α. However, neither variable is always suitable for monitoring changes in benthic diatoms. In headwaters, for example, transitory changes in diatoms do not have a significant impact on silicon concentration, while further downstream the suspended solids are affected by many other factors.
Estimates of diatom production, based on changes in silicon concentration, gave rates of 1–2 g Si m-2 day-1 in a small headwater chalkstream during the spring.  相似文献   

13.
Many organisms including unicellular (diatoms, radiolaria, and chrysophytes), higher plants (rice and horsetail) and animals (sponges) use silica as a main part of skeletons. The bioavailable form of silicon is silicic acid and the mechanism of silicic acid penetration into living cells is still an enigma. Macropinocytosis was assumed as a key stage of the silicon capture by diatoms but assimilation of monomeric silicic acid by this way requires enormous amounts of water to be passed through the cell. We hypothesized that silicon can be captured by diatoms via endocytosis in the form of partially condensed silicic acid (oligosilicates) whose formation on the diatom surface was supposed. Oligosilicates are negatively charged nanoparticles and similar to coils of poly(acrylic acid) (PAA). We have synthesized fluorescent tagged PAA as well as several neutral and positively charged polymers. Cultivation of the diatom Ulnaria ferefusiformis in the presence of these polymers showed that only PAA is able to penetrate into siliceous frustules. The presence of PAA in the frustules was confirmed with chromatography and PAA causes various aberrations of the valve morphology. Growth of U. ferefusiformis and two other diatoms in the presence of tri- and tetracarbonic fluorescent tagged acids points to the ability of diatoms to recognize substances that bear four acidic groups and to include them into siliceous frustules. Thus, partial condensation of silicic acid is a plausible first stage of silicon assimilation.  相似文献   

14.
Biogenic silica concentration (BSi) in sediment cores from the Great Lakes is evaluated as an estimate of siliceous microfossil abundance. A significant linear relationship was found between measured BSi and diatom valve abundance for sediment cores from the Bay of Quinte, Lake Ontario, Lake Erie, Lake Michigan and Lake Superior and between measured BSi and diatom biovolume for Lake Erie, Lake Michigan, and Lake Superior but not for Lake Ontario. Diatom silica predicted from diatom species abundance and an estimated silica content per cell in the Lake Erie cores accounted for 117% and 103% of measured BSi, respectively. By contrast, predicted diatom silica could only account for 28% of measured BSi in the Lake Michigan core and only 25% in the Lake Superior core. A few large diatoms with a large silica content per cell comprised a major portion of predicted diatom silica in all cores. The discrepancy between chemically measured BSi and the silica predicted from diatoms in the Lake Michigan and Lake Superior cores was partially due to the inability of the regression model, used to estimate diatom silica content, to account for different degrees of silicification in the diatom asemblages from the more dissolved silica rich Lake Michigan and Lake Superior.  相似文献   

15.
At weekly intervals from July to October 2006, we measured silica deposition in the summer diatom assemblage at various depths in the eutrophic ?ímov Reservoir (Czech Republic) using PDMPO, the 2‐(4‐pyridyl)‐5{[4‐(2‐dimethylaminoethyl‐aminocarbamoyl)‐methoxy]phenyl}oxazole labeling technique. Fluorescence microscopy coupled with image analysis allows quantifying silicon (Si) deposition over time and a simple distinction between cells that are actively depositing Si and those that are not. Diatom assemblage was exclusively dominated by Fragilaria crotonensis Kitton, which formed pronounced subsurface maxima (2–6.5 m). Concentrations of the main nutrients (Si and phosphorus, P) were low over the whole season; however, at depth, the nutrient availability was higher than at the surface. Fragilaria silica deposition rates were eight times higher at the surface than at depth. Half the population was involved in silica deposition at the surface, while only 20% active cells were doing so at depth. At the surface, silica deposition was limited by P deficiency; the effect of dissolved Si (DSi) was not statistically significant. Silica deposition at depth was significantly constrained by low light availability despite the 1% average light attenuation at depth, which is supposed sufficient for photosynthesis. This study represents the first attempt to employ the PDMPO technique coupled with quantitative image analysis of PDMPO fluorescence in freshwater ecology. On the basis of our results, PDMPO probe appears to be an appropriate proxy for the study of resource limitation in natural diatom populations.  相似文献   

16.
Biogeochemical silica mass balances in Lake Michigan and Lake Superior   总被引:4,自引:3,他引:1  
Silica budgets for Lake Michigan and Lake Superior differ in several respects. Mass balance calculations for both lakes agree with previous studies in that permanent burial of biogenic silica in sediments may be only about 5% of the biogenic silica produced by diatoms. Because dissolution rates are large, good estimates of permanent burial of diatoms can not be obtained indirectly from the internal cycle of silica (silica uptake by diatoms and subsequent dissolution) but must be obtained from the sediment stratigraphy. The annual net production of biogenic silica in Lake Michigan requires 71% of the winter maximum silica reservoir which must be maintained primarily by internal cycling in this large lake whereas the comparable silica demand in Lake Superior is only 8.3%. The greater silica demand in Lake Michigan is the result of phosphorus enrichment which has increased diatom production. It is hypothesized that steady-state silica dynamics in Lake Michigan were disrupted by increased diatom production between 1955 and 1970 and that a new steady state based on silica-limited diatom production developed after 1970. Mass balance calculations for Lake Michigan show in contrast with previous work that the hypothesized water column silica depletion of 3.0 g · m–3 could have occurred even though 90% or more of the biogenic silica production is recycled.  相似文献   

17.
A 32Si autoradiographic technique using a liquid photographic emulsion was developed for the study of diatom silica deposition in culture or in natural water samples. The method was used in the Central North Pacific to study silica deposition by diatoms of the genus Rhizosolenia. The species examined form centimeter-sized aggregates commonly referred to as mats. The Rhizosolenia mats examined were composed of a matrix of R. fallax Sundström chains, embedded with chains of larger cells, either R. debyana H. Peragallo or R. acuminata H. Peragallo. The autoradiographs revealed distinct rings of labeled intercalary bands and/or labeled valves. A greater proportion of the frustule of the larger species was labeled during the incubations with 32Si, implying higher rates of silicification by R. debyana and R. accuminata compared to R. fallax. A quantitative consideration of these differences in species-specific Si production combined with abundance and surface area estimates for each species indicates that cells of the larger species carry out the majority of silica production in Rhizosolenia mats. The large cell size (pervalvar axis 240 to 3000 μm) and elongate frustule morphology of Rhizosolenia cells enabled us to localize the deposition of silica along the pervalvar axis. Positions of labeled bands along this axis indicate progress through the Si deposition cycle, and the results suggest that cell division is phased, with either a bimodal or unimodal age distribution of cells within the cell cycle for all species in a mat. Species-specific doubling times from 25 to 60 h were implied by the mean fractions of frustule that were labeled. 32Si autoradiography revealed unique species-specific differences in diel patterns of cell division and silica deposition and has potential for studies of Si deposition by other diatom species and assemblages.  相似文献   

18.
The synthesis and manipulation of silicon materials on the nanoscale are core themes in nanotechnology research. Inspiration is increasingly being taken from the natural world because the biological mineralization of silicon results in precisely controlled, complex silica structures with dimensions from the millimeter to the nanometer. One fascinating example of silicon biomineralization occurs in the diatoms, unicellular algae that sheath themselves in an ornate silica-based cell wall. To harvest silicon from the environment, diatoms have developed a unique family of integral membrane proteins that bind to a soluble form of silica, silicic acid, and transport it across the cell membrane to the cell interior. These are the first proteins shown to directly interact with silicon, but the current understanding of these specific silicon transport proteins is limited by the lack of in vitro studies of structure and function. We report here the recombinant expression, purification, and reconstitution of a silicon transporter from the model diatom Thalassiosira pseudonana. After using GFP fusions to optimize expression and purification protocols, a His(10)-tagged construct was expressed in Saccharomyces cerevisiae, solubilized in the detergent Fos-choline-12, and purified by affinity chromatography. Size-exclusion chromatography and particle sizing by dynamic light scattering showed that the protein was purified as a homotetramer, although nonspecific oligomerization occurred at high protein concentrations. Circular dichroism measurements confirmed sequence-based predictions that silicon transporters are α-helical membrane proteins. Silicic acid transport could be established in reconstituted proteoliposomes, and silicon uptake was found to be dependent upon an applied sodium gradient. Transport data across different substrate concentrations were best fit to the sigmoidal Hill equation, with a K(0.5) of 19.4 ± 1.3 μM and a cooperativity coefficient of 1.6. Sodium binding was noncooperative with a K(m)(app) of 1.7 ± 1.0 mM, suggesting a transport silicic acid:Na(+) stoichiometry of 2:1. These results provide the basis for a full understanding of both silicon transport in the diatom and protein-silicon interactions in general.  相似文献   

19.
Identification of the silicon form in xylem sap of rice (Oryza sativa L.)   总被引:3,自引:0,他引:3  
Rice (Oryza sativa L.) is a typical silicon (Si)-accumulating plant, but the mechanism responsible for the translocation from the root to the shoot is poorly understood. In this study, the form of Si in xylem sap was identified by (29)Si-nuclear magnetic resonance (NMR) spectroscopy. In rice (cv. Oochikara) cultured in a monosilicic acid solution containing 0.5 mM Si, the Si concentration in the xylem reached 6 mM within 30 min. In the (29)Si-NMR spectra of the xylem sap, only one signal was observed at a chemical shift of -72.6 ppm, which is consistent with that of monosilicic acid. A (1)H-NMR study of xylem sap did not show any significant difference between the wild-type rice and mutant rice defective in Si uptake, and the components of the xylem sap were not affected by the Si supply. The Si concentration in the xylem sap in vitro decreased from an initial 18 mM to 2.6 mM with time. Addition of xylem sap to a solution containing 8 mM Si did not prevent the polymerization of silicic acid. All these results indicate that Si is translocated in the form of monosilicic acid through the xylem and that the concentration of monosilicic acid is high in the xylem only transiently.  相似文献   

20.
Grazing-induced changes in cell wall silicification in a marine diatom   总被引:1,自引:0,他引:1  
In aquatic environments, diatoms (Bacillariophyceae) constitute a central group of microalgae which contribute to about 40% of the oceanic primary production. Diatoms have an absolute requirement for silicon to build-up their silicified cell wall in the form of two shells (the frustule). To date, changes in diatom cell wall silicification have been only studied in response to changes in the growth environment, with consistent increase in diatom silica content when specific growth rates decrease under nutrient or light limitations. Here, we report the first evidence for grazing-induced changes in cell wall silicification in a marine diatom. Cells grown in preconditioned media that had contained both diatoms and herbivores are significantly more silicified than diatoms grown in media that have contained diatoms alone or starved herbivores. These observations suggest that grazing-induced increase in cell wall silicification can be viewed as an adaptive reaction in habitats with variable grazing pressure, and demonstrate that silicification in diatoms is not only a constitutive mechanical protection for the cell, but also a phenotypically plastic trait modulated by grazing. In turn, our results corroborate the idea that plant-herbivore interactions, beyond grazing sensu stricto, contribute to drive ecosystem structure and biogeochemical cycles in the ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号