首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
K Goldman  J L Suit  C Kayalar 《FEBS letters》1985,190(2):319-323
A set of plasmids containing portions of the Col El plasmid were transformed into recA cells. These cells, after UV irradiation, only incorporate labelled amino acids into plasmid-encoded proteins. UV-irradiated cells label a 14.5 kDa band if they are phenotypically immune to colicin E1, and do not contain this band if they are sensitive to colicin E1. We conclude that the 14.5 kDa protein is the colicin E1 immunity protein. When the inner and outer membranes of these cells are fractionated, the labelled band appears in the inner membrane. The immunity protein must be an intrinsic inner membrane protein, confirming the predictions made by hydrophobicity calculations from primary sequence data.

Maxicell Col El plasmid Immunity protein Hydrophobicity calculation  相似文献   


2.
The 61-kDa colicin E9 protein toxin enters the cytoplasm of susceptible cells by interacting with outer membrane and periplasmic helper proteins and kills them by hydrolyzing their DNA. The membrane translocation function is located in the N-terminal domain of the colicin, with a key signal sequence being a pentapeptide region that governs the interaction with the helper protein TolB (the TolB box). Previous NMR studies [Collins et al. (2002) J. Mol. Biol. 318, 787-904; MacDonald et al. (2004), J. Biomol. NMR 30, 81-96] have shown that the N-terminal 83 residues of colicin E9, which includes the TolB box, is intrinsically disordered and contains clusters of interacting side chains. To further define the properties of this region of colicin E9, we have investigated the effects on the dynamical and TolB-binding properties of three mutations of colicin E9 that inactivate it as a toxin. The mutations were contained in a fusion protein consisting of residues 1-61 of colicin E9 connected to the N terminus of the E9 DNase by an eight-residue linking sequence. The NMR data reveals that the mutations cause major alterations to the properties of some of the clusters, consistent with some form of association between them and other more distant parts of the amino acid sequence, particularly toward the N terminus of the protein. However, (15)N T(2) measurements indicates that residues 5-13 of the fusion protein bound to the 43-kDa TolB remain as flexible as they are in the free protein. The NMR data point to considerable dynamic ordering within the intrinsically disordered translocation domain of the colicin that is important for creating the TolB-binding site. Furthermore, amino acid sequence considerations suggest that the clusters of amino acids occur because of the size and polarities of the side chains forming them influenced by the propensities of the residues within the clusters and those immediately surrounding them in sequence space to form beta turns.  相似文献   

3.
The mechanism by which E colicins recognize and then bind to BtuB receptors in the outer membrane of Escherichia coli cells is a poorly understood first step in the process that results in cell killing. Using N- and C-terminal deletions of the N-terminal 448 residues of colicin E9, we demonstrated that the smallest polypeptide encoded by one of these constructs that retained receptor-binding activity consisted of residues 343-418. The results of the in vivo receptor-binding assay were supported by an alternative competition assay that we developed using a fusion protein consisting of residues 1-497 of colicin E9 fused to the green fluorescent protein as a fluorescent probe of binding to BtuB in E. coli cells. Using this improved assay, we demonstrated competitive inhibition of the binding of the fluorescent fusion protein by the minimal receptor-binding domain of colicin E9 and by vitamin B12. Mutations located in the minimum R domain that abolished or reduced the biological activity of colicin E9 similarly affected the competitive binding of the mutant colicin protein to BtuB. The sequence of the 76-residue R domain in colicin E9 is identical to that found in colicin E3, an RNase type E colicin. Comparative sequence analysis of colicin E3 and cloacin DF13, which is also an RNase-type colicin but uses the IutA receptor to bind to E. coli cells, revealed significant sequence homology throughout the two proteins, with the exception of a region of 92 residues that included the minimum R domain. We constructed two chimeras between cloacin DF13 and colicin E9 in which (i) the DNase domain of colicin E9 was fused onto the T+R domains of cloacin DF13; and (ii) the R domain and DNase domain of colicin E9 were fused onto the T domain of cloacin DF13. The killing activities of these two chimeric colicins against indicator strains expressing BtuB or IutA receptors support the conclusion that the 76 residues of colicin E9 confer receptor specificity. The minimum receptor-binding domain polypeptide inhibited the growth of the vitamin B12-dependent E. coli 113/3 mutant cells, demonstrating that vitamin B12 and colicin E9 binding is mutually exclusive.  相似文献   

4.
The 61 kDa colicin E9 protein toxin enters the cytoplasm of susceptible cells by interacting with outer membrane and periplasmic helper proteins, and kills them by hydrolysing their DNA. The membrane translocation function is located in the N-terminal domain of the colicin, with a key signal sequence being a pentapeptide region that governs the interaction with the helper protein TolB (the TolB box). Previous NMR studies (Collins et al., 2002 J. Mol. Biol. 318, 787-804) have shown that the N-terminal 83 residues of colicin E9, which includes the TolB box, is largely unstructured and highly flexible. In order to further define the properties of this region we have studied a fusion protein containing residues 1-61 of colicin E9 connected to the N-terminus of the E9 DNase by an eight-residue linking sequence. 53 of the expected 58 backbone NH resonances for the first 61 residues and all of the expected 7 backbone NH resonances of the linking sequence were assigned with 3D (1)H-(13)C-(15)N NMR experiments, and the backbone dynamics of these regions investigated through measurement of (1)H-(15)N relaxation properties. Reduced spectral density mapping, extended Lipari-Szabo modelling, and fitting backbone R(2) relaxation rates to a polymer dynamics model identifies three clusters of interacting residues, each containing a tryptophan. Each of these clusters is perturbed by TolB binding to the intact colicin, showing that the significant region for TolB binding extends beyond the recognized five amino acids of the TolB box and demonstrating that the binding epitope for TolB involves a considerable degree of order within an otherwise disordered and flexible domain. Abbreviations : Im9, the immunity protein for colicin E9; E9 DNase, the endonuclease domain of colicin E9; HSQC, heteronuclear single quantum coherence; ppm, parts per million; DSS, 2,2-(dimethylsilyl)propanesulfonic acid; TSP, sodium 3-trimethylsilypropionate; T(1 - 61)-DNase fusion protein, residues 1-61 of colicin E9 connected to the N-terminus of the E9 DNase by an eight residue thrombin cleavage sequence.  相似文献   

5.
The lysis protein of the colicinogenic operon is essential for colicin release and its main function is to activate the outer membrane phospholipase A (OMPLA) for the traverse of colicin across the cell envelope. However, little is known about the involvement of the lysis protein in the translocation of colicin across the inner membrane into the periplasm. The introduction of specific point mutations into the lipobox or sorting signal sequence of the lysE7 gene resulted in the production of various forms of lysis proteins. Our experimental results indicated that cells with wild-type mature LysE7 protein exhibited higher efficiency of colicin E7 translocation across the inner membrane into the periplasm than those with premature LysE7 protein. Moreover, the degree of permeability of the inner membrane induced by the mature LysE7 protein was significantly increased as compared to the unmodified LysE7 precursor. These results suggest that the efficiency of colicin movement into the periplasm is correlated with the increase in inner membrane permeability induced by the LysE7 protein. Thus, we propose that mature LysE7 protein has two critical roles: firstly mediating the translocation of colicin E7 across the inner membrane into the periplasm, and secondly activating the OMPLA to allow colicin release.  相似文献   

6.
Translocation of colicin across the membrane of sensitive cells has been studied extensively. However, processing of the toxicity domain of colicin during translocation has been the subject of much controversy. To investigate the final translocation product of colicin across the membrane of Escherichia coli, an endogenously expressed His-tagged Im7 protein was constructed to detect any translocation product containing the DNase domain traversed the inner membrane into cytoplasm of the E. coli cells. As a result, a final processed DNase domain of ColE7 was identified in the intracellular space of the cells treated with Col-Im complex. In the presence of periplasmic extracts, in vitro processing of DNase domain of ColE7 was also observed. These results suggest that the processing of ColE7 has occurred for translocation of the DNase-type colicin across the membrane and the process is probably taking place in the periplasmic space of the membrane.  相似文献   

7.
Factors necessary for the export process of colicin E1 across the cytoplasmic membrane of Escherichia coli were investigated. beta-Galactosidase activities from gene fusions between the colicin E1 and lacZ genes were recovered in the inner membrane fraction of E. coli when the region containing the internal signal-like sequence of colicin E1 [M. Yamada et al. (1982) Proc. Natl Acad. Sci. USA 79, 2827-2831] was present, but were found in the soluble fraction when the region was eliminated. The colicin E1 export was reduced upon insertion mutation in a gene that is located downstream from the colicin E1 gene in the same operon and responsible for mitomycin-C-induced killing of the host cell. A frame shift mutation of the colicin E1 plasmid was constructed to direct the protein which had lost the COOH-terminal 13 residues of original colicin E1 and was altered in 6 residues of the new COOH-terminal portion. The aberrant colicin E1 that was inducibly synthesized remained inside the cells. These results indicate that colicin E1 is exported with the aid of a product of the downstream gene and that the COOH-terminal portion is necessary for the export. The binding of colicin E1 to the cytoplasmic membrane through the internal signal-like sequence may be a step in the protein export process.  相似文献   

8.
In order for the 61 kDa colicin E9 protein toxin to enter the cytoplasm of susceptible cells and kill them by hydrolysing their DNA, the colicin must interact with the outer membrane BtuB receptor and Tol translocation pathway of target cells. The translocation function is located in the N-terminal domain of the colicin molecule. (1)H, (1)H-(1)H-(15)N and (1)H-(13)C-(15)N NMR studies of intact colicin E9, its DNase domain, minimal receptor-binding domain and two N-terminal constructs containing the translocation domain showed that the region of the translocation domain that governs the interaction of colicin E9 with TolB is largely unstructured and highly flexible. Of the expected 80 backbone NH resonances of the first 83 residues of intact colicin E9, 61 were identified, with 43 of them being assigned specifically. The absence of secondary structure for these was shown through chemical shift analyses and the lack of long-range NOEs in (1)H-(1)H-(15)N NOESY spectra (tau(m)=200 ms). The enhanced flexibility of the region of the translocation domain containing the TolB box compared to the overall tumbling rate of the protein was identified from the relatively large values of backbone and tryptophan indole (15)N spin-spin relaxation times, and from the negative (1)H-(15)N NOEs of the backbone NH resonances. Variable flexibility of the N-terminal region was revealed by the (15)N T(1)/T(2) ratios, which showed that the C-terminal end of the TolB box and the region immediately following it was motionally constrained compared to other parts of the N terminus. This, together with the observation of inter-residue NOEs involving Ile54, indicated that there was some structural ordering, resulting most probably from the interactions of side-chains. Conformational heterogeneity of parts of the translocation domain was evident from a multiplicity of signals for some of the residues. Im9 binding to colicin E9 had no effect on the chemical shifts or other NMR characteristics of the region of colicin E9 containing the TolB recognition sequence, though the interaction of TolB with intact colicin E9 bound to Im9 did affect resonances from this region. The flexibility of the translocation domain of colicin E9 may be connected with its need to recognise protein partners that assist it in crossing the outer membrane and in the translocation event itself.  相似文献   

9.
Colicins A, E1, E2 and E3 belong to the BtuB group of colicins. The NH2-terminal region of colicin A is required for translocation, and defects in this region cannot be overcome by osmotic shock of sensitive cells. In addition to BtuB, colicin A requires OmpF for efficient uptake by sensitive cells. The roles of BtuB and OmpF in translocation and binding to the receptor of the colicins A, E1, E2 and E3 were compared. The results suggest that for colicin A OmpF is used both as a receptor and for translocation across the outer membrane. In contrast, for colicin E1, OmpF is used neither as a receptor nor for translocation. For colicins E2 and E3, the situation is intermediate: only BtuB is used as a receptor but both BtuB and OmpF are involved in the translocation step.  相似文献   

10.
11.
Colicin Ia, a channel‐forming bactericidal protein, uses the outer membrane protein, Cir, as its primary receptor. To kill Escherichia coli, it must cross this membrane. The crystal structure of Ia receptor‐binding domain bound to Cir, a 22‐stranded plugged β‐barrel protein, suggests that the plug does not move. Therefore, another pathway is needed for the colicin to cross the outer membrane, but no ‘second receptor’ has ever been identified for TonB‐dependent colicins, such as Ia. We show that if the receptor‐binding domain of colicin Ia is replaced by that of colicin E3, this chimera effectively kills cells, provided they have the E3 receptor (BtuB), Cir, and TonB. This is consistent with wild‐type Ia using one Cir as its primary receptor (BtuB in the chimera) and a second Cir as the translocation pathway for its N‐terminal translocation (T) domain and its channel‐forming C‐terminal domain. Deletion of colicin Ia's receptor‐binding domain results in a protein that kills E. coli, albeit less effectively, provided they have Cir and TonB. We show that purified T domain competes with Ia and protects E. coli from being killed by it. Thus, in addition to binding to colicin Ia's receptor‐binding domain, Cir also binds weakly to its translocation domain.  相似文献   

12.
Mutations in tolQ, previously designated fii, render cells tolerant to high concentrations of colicin A. In addition, a short deletion in the amino-terminal region of colicin A (amino acid residues 16 to 29) prevents its lethal action, although this protein can still bind the receptor and forms channels in planar lipid bilayers in vitro. These defects in translocation across the outer membrane in the tolQ cells or the colicin A mutant cannot be bypassed by osmotic shock. The TolQ protein, which is constitutively expressed at a low level, was studied in recombinant plasmid constructs allowing the expression of various TolQ fusion proteins under the control of the inducible caa promoter. The TolQ protein was thus "tagged" with an epitope from the colicin A protein for which a monoclonal antibody is available. A fusion protein containing the entire TolQ protein plus the 30 N-terminal residues of colicin A was shown to complement the tolQ mutation. Pulse-chase labeling followed by gradient fractionation indicated that the bulk of the overproduced fusion protein was rapidly incorporated into the inner membrane, with small amounts localized to regions corresponding to the attachment sites between inner and outer membranes and to the outer membrane itself. However, most of the protein was rapidly degraded, leaving only that localized to the attachment sites and the outer membrane remaining at very late times of chase.  相似文献   

13.
Structure and dynamics of the colicin E1 channel   总被引:13,自引:0,他引:13  
The toxin-like and bactericidal colicin E1 molecule is of interest for problems of toxin action, polypeptide translocation across membranes, voltage-gated channels, and receptor function. Colicin E1 binds to a receptor in the outer membrane and is translocated across the cell envelope to the inner membrane. Import of the colicin channel-forming domain into the inner membrane involves a translocation-competent intermediate state and a membrane potential-dependent movement of one third to one half of the channel peptide into the membrane bilayer. The voltage-gated channel has a conductance sufficiently large to depolarize the Escherichia coli cytoplasmic membrane. Amino acid residues that affect the channel ion selectivity have been identified by site-directed mutagenesis. The colicin E1 channel is one of a few membrane proteins whose secondary structures in the membrane, predominantly alpha-helix, have been determined by physico-chemical techniques. Hypothesis for the identity of the trans-membrane helices, and the mechanism of binding to the membrane, are influenced by the solved crystal structure of the soluble colicin A channel peptide. The protective action of immunity protein is a unique aspect of the colicin problem, and information has been obtained, by genetic techniques, about the probable membrane topography of the imm gene product.  相似文献   

14.
Summary The DNA sequence of the entire colicin E2 operon was determined. The operon comprises the colicin activity gene, ceaB, the colicin immunity gene, ceiB, and the lysis gene, celB, which is essential for colicin release from producing cells. A potential LexA binding site is located immediately upstream from ceaB, and a rho-independent terminator structure is located immediately downstream from celB. A comparison of the predicted amino acid sequences of colicin E2 and cloacin DF13 revealed extensive stretches of homology. These colicins have different modes of action and recognise different cell surface receptors; the two major regions of heterology at the carboxy terminus, and in the carboxy-terminal end of the central region probably correspond to the catalytic and receptor-recognition domains, respectively. Sequence homologies between colicins E2, A and E1 were less striking, and the colicin E2 immunity protein was not found to share extensive homology with the colicin E3 or cloacin DF13 immunity proteins. The lysis proteins of the ColE2, ColE1 and CloDF13 plasmids are almost identical except in the aminoterminal regions, which themselves have overall similarity with lipoprotein signal peptides. Processing of the ColE2 prolysis protein to the mature form was prevented by globomycin, a specific inhibitor of the lipoprotein signal peptidase. The mature ColE2 lysis protein was located in the cell envelope. The results are discussed in terms of the functional organisation of the colicin operons and the colicin proteins, and the way in which colicins are released from producing cells.  相似文献   

15.
Colicins translocate across the Escherichia coli outer membrane and periplasm by interacting with several receptors. After first binding to the outer membrane surface receptors via their central region, they interact with TolA or TonB proteins via their N-terminal region. Colicin N residues critical to TolA binding have been discovered, but the full extent of any colicin TolA site is unknown. We present, for the first time, a fully mapped TolA binding site for a colicin. It was determined through the use of alanine-scanning mutants, glutathione S-transferase fusion peptides and Biacore/fluorescence binding studies. The minimal TolA binding region is 27 residues and of similar size to the TolA binding region of bacteriophage g3p-D1 protein. Stopped-flow kinetic studies show that the binding to TolA follows slow association kinetics. The role of other E. coli Tol proteins in colicin translocation was also investigated. Isothermal titration microcalorimetry (ITC) and in vivo studies conclusively show that colicin N translocation does not require the presence of TolB. ITC also demonstrated colicin A interaction with TolB, and that colicin A in its native state does not interact with TolAII-III. Colicin N does not bind TolR-II. The TolA protein is shown to be unsuitable for direct immobilisation in Biacore analysis.  相似文献   

16.
Colicin M is only released in very low amounts by cells harbouring this plasmid encoded colicin, due to the lack of a release (lysis) protein. A fusion gene (lpp'cma) was constructed which determined two proteins: Lpp'-Cma composed of the signal sequence of the murein lipoprotein (Lpp) and colicin M (Cma), and unaltered colicin M. Cells expressing the fusion gene released 50% of the total colicin M into the culture medium, compared to 1% found in the medium of cells synthesizing only colicin M. The release resulted from partial cell lysis caused by colicin M since a colicin M tolerant strain remained unaffected. Lpp'-Cma thus mimics phenotypically the action of colicin release proteins but displays a different lysis mechanism. In strains defective in components of the colicin M uptake system, Lpp'-Cma caused lysis as effectively as in uptake proficient strains. Apparently, Lpp'-Cma renders the colicin M target site accessible from inside the cell which stands in contrast to the action of colicin M which is only bactericidal when provided from outside.Abbreviation bp base pairs  相似文献   

17.
A set of plasmids containing portions of the Col El plasmid were transformed into recA cells. These cells, after UV irradiation, only incorporate labelled amino acids into plasmid-encoded proteins. UV-irradiated cells label a 14.5 kDa band if they are phenotypically immune to colicin E1, and do not contain this band if they are sensitive to colicin E1. We conclude that the 14.5 kDa protein is the colicin E1 immunity protein. When the inner and outer membranes of these cells are fractionated, the labelled band appears in the inner membrane. The immunity protein must be an intrinsic inner membrane protein, confirming the predictions made by hydrophobicity calculations from primary sequence data.MaxicellCol El plasmidImmunity proteinHydrophobicity calculation  相似文献   

18.
The bacterial toxin colicin E1 is known to induce voltage-gated currents across a planar bilayer lipid membrane. In the present study, it is shown that the colicin-induced current decreased substantially upon illumination of the membrane in the presence of the photosensitizer, aluminum phthalocyanine. This effect was almost completely abolished by the singlet oxygen quencher, sodium azide. Using single tryptophan mutants of colicin E1, Trp495 was identified as the amino acid residue responsible for the sensitized photodamage of the colicin channel activity. Thus, the distinct participation of a specific amino acid residue in the sensitized photoinactivation of a defined protein function was demonstrated. It is suggested that Trp495 is critical for the translocation and/or anchoring of the colicin channel domain in the membrane.  相似文献   

19.
L Gilson  H K Mahanty    R Kolter 《The EMBO journal》1990,9(12):3875-3884
The extracellular secretion of the antibacterial toxin colicin V is mediated via a signal sequence independent process which requires the products of two linked genes: cvaA and cvaB. The nucleotide sequence of cvaB reveals that its product is a member of a subfamily of proteins, involved in the export of diverse molecules, found in both eukaryotes and prokaryotes. This group of proteins, here referred to as the 'MDR-like' subfamily, is characterized by the presence of a hydrophobic region followed by a highly conserved ATP binding fold. By constructing fusions between the structural gene for colicin V, cvaC, and a gene for alkaline phosphatase, phoA, lacking its signal sequence, it was determined that 39 codons in the N-terminus of cvaC contained the structural information to allow CvaC-PhoA fusion proteins to be efficiently translocated across the plasma membrane of Escherichia coli in a CvaA/CvaB dependent fashion. This result is consistent with the location of point mutations in the cvaC gene which yielded export deficient colicin V. The presence of the export signal at the N-terminus of CvaC contrasts with the observed C-terminal location of the export signal for hemolysin, which also utilizes an MDR-like protein for its secretion. It was also found that the CvaA component of the colicin V export system shows amino acid sequence similarities with another component involved in hemolysin export, HlyD. The role of the second component in these systems and the possibility that other members of the MDR-like subfamily will also have corresponding second components are discussed. A third component used in both colicin V and hemolysin extracellular secretion is the E. coli host outer membrane protein, TolC.  相似文献   

20.
Bacterial toxins commonly translocate cytotoxic enzymes into cells using channel-forming subunits or domains as conduits. Here we demonstrate that the small cytotoxic endonuclease domain from the bacterial toxin colicin E9 (E9 DNase) shows nonvoltage-gated, channel-forming activity in planar lipid bilayers that is linked to toxin translocation into cells. A disulfide bond engineered into the DNase abolished channel activity and colicin toxicity but left endonuclease activity unaffected; NMR experiments suggest decreased conformational flexibility as the likely reason for these alterations. Concomitant with the reduction of the disulfide bond is the restoration of conformational flexibility, DNase channel activity and colicin toxicity. Our data suggest that endonuclease domains of colicins may mediate their own translocation across the bacterial inner membrane through an intrinsic channel activity that is dependent on structural plasticity in the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号