首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reddy VS  Goud KV  Sharma R  Reddy AR 《Plant physiology》1994,105(4):1059-1066
Seedlings of 17 rice (Oryza sativa L.) cultivars were classified on the basis of anthocyanin pigmentation into three groups: an acyanic group with 9 cultivars, a moderately cyanic group with 5 cultivars, and a cyanic group with 3 cultivars. Seedlings of the cyanic group were deep purple in color, possessing copious amounts of anthocyanin in shoots. Sunlight (SL)-mediated anthocyanin and phenylalanine ammonia lyase (PAL) induction in a cyanic cultivar, purple puttu, was compared with an acyanic cultivar, black puttu. A brief exposure of dark-grown purple puttu seedlings to SL induced anthocyanin formation during a subsequent dark period with a peak at 24 h. The magnitude of SL-mediated anthocyanin induction is age dependent, the 4-d-old seedlings being the most responsive to SL. The anthocyanin induction in purple puttu seedlings is mediated exclusively by the ultraviolet-B (UV-B) component of SL. The SL-triggered anthocyanin induction was reduced by about 30% by a terminal far-red light pulse and was restored by a red light pulse, indicating the role of phytochrome in modulation of anthocyanin level. The SL-mediated induction of PAL showed two peaks, one at 4 h and the other at 12 h. Whereas the first PAL peak (4 h) was induced by phytochrome and was seen in both cultivars, the second PAL peak (12 h) was inducible by UV-B only in the cyanic purple puttu cultivar.  相似文献   

2.
Anthocyanin synthesis in the broom sorghum, Sorghum bicolor Moench cvs. Acme Broomcorn and Sekishokuzairai-Fukuyama, is mediated separately or synergistically by an ultraviolet light-B (UV-B) photoreceptor and phytochrome. When seedlings were exposed to moderate low temperatures ranging from 12 to 20° C before irradiation, only the phytochrome-mediated anthocyanin synthesis was markedly enhanced compared with the control, which was kept throughout at 24° C; synthesis mediated by the UV-B photoreceptor was unaffected. The effectiveness of an exposure to 20° C increased as the duration of exposure increased up to 24 h and as the time of exposure became closer to the time of irradiation. However, when seedlings were exposed to 20° C from after irradiation until harvest, anthocyanin syntheses induced by both UV-B and red light were equally suppressed, probably due to the general reduction of metabolism involved in anthocyanin synthesis that is a consequence of lower temperature. The results support the view that the signal transduction of the pyhtochrome system is different from that of the UV-B photoreceptor, and indicate that the phytochrome system may involve a step or steps which are amplified by a previous exposure to the moderate low temperature.Abbreviations FR far-red light - LT low temperature - MLT moderate low temperature - Pfr far-red-light-absorbing form of phytochrome - R red light - UV ultraviolet light - UV-B ultraviolet light-B We thank Drs. Y. Takeuchi (Shionogi Pharmaceutical Company, Aburahi, Shiga) and K. Hosaka (the Experimental Farm, Kobe University, Kasai) for seeds; Dr. M. Watanabe and Mr. M. Kubota (the National Institute for Basic Biology, Okazaki) for operation of the spectrograph. This work was supported by grants from the Yamada Science Foundation, Ministry of Education (No. 63480015 and 03454048), and the National Institute for Basic Biology (Large Spectrograph grant No. 91-523).  相似文献   

3.
The involvement of photomorphogenic photoreceptors in anthocyaninsynthesis was investigated in apple fruits under UV light from280 to 320 nm (UV-B) and red light (R). Short-term R treatmentwas ineffective in the induction of anthocyanin synthesis butthe involvement of phytochrome was indicated by the resultsof long-term irradiation (18 h) with R. The inductive effectof 18 h UV-B on anthocyanin synthesis was stimulated synergisticallyby subsequent irradiation with R for 15 min, and the R, far-redlight (FR) photorevesibility of this effect indicated the involvementof phytochrome in this synergism. The effect of UV-B on anthocyaninsynthesis was not influenced by subsequent irradiation withFR, suggesting that the effect of UV-B was independent of phytochrome,and that a specific photoreceptor for UV-B was involved. WhenR was given simultaneously with UV-B (18 h), anthocyanin wassynthesized at a much higher rate than it was after sequentialirradiation with UV-B and R. Photosynthesis was shown to beinvolved inthis synergistic increase in the synthesis of anthocyanin,although the involvement of phytochrome in the expression ofthis response, at least in part, was suggested by a reductionin the rate of anthocyanin synthesis by FR. (Received March 14, 1988; Accepted September 28, 1988)  相似文献   

4.
Photoregulation of phenylalanine ammonia lyase (PAL)(EC 4.3.1.5 [EC] )was analyzed in wild type (WT) and mutants: phytochrome dencient-awrea(au), high pigment exhibiting exaggerated phytochrome response(hp) and the double mutant (au.hp) of tomato (Lycopersicon esculentum(Mill.) cv. Ailsa Craig). Red light, acting via phytochrome,stimulates PAL activity in cotyledons and hypocotyls of tomatoseedlings. The time course of photoinduction of PAL in cotyledonsof the mutants (au and au.hp) and WT seedlings has a peak ofactivity at 4 h, after which the activity falls sharply, exceptin hp seedlings where activity is maintained at a high level.In hypocotyls, photoinduction of PAL also shows an initial rise,reaching a maximum at 3 h, followed by a sharp decline in themutants (au and au.hp) and WT seedlings. However in hp seedlingsphotoinduction of PAL is about 3 fold that in WT. The photoinductionof PAL appears to be dependent on de novo synthesis of proteinand nucleic acids. The use of a PAL specific inhibitor a-aminooxyß-phenylpropionic acid indicated that PAL is an essentialcomponent of the anthocyanin biosyn-thetic pathway in the tomatoseedlings. However, a comparison of anthocyanin biosynthesis[Adamse et al. (1989) Photochem. Photobiol. 50: 107] and PALphotoinduction data revealed that phytochrome mediated inductionof PAL and anthocyanin in the tomato seedlings are not correlated.While au and au.hp mutant seedlings show a similar increasein PAL level as in the WT, there is little formation of anthocyaninin these mutant seedlings. The results indicate that, in contrastto the photoregulation of anthocyanin synthesis which is dependenton the presence of the labile phytochrome (IP) pool in tomatoseedlings, the photoinduction of PAL is mediated via a smallpool of phytochrome in au mutant: stable phytochrome (sP) ora residual /P pool. (Received August 6, 1991; Accepted September 27, 1991)  相似文献   

5.
Light Control of Anthocyanin Biosynthesis in Zea Seedlings   总被引:2,自引:0,他引:2  
Evidence for involvement of two non-photosynthetic pigments in photoinduction of anthocyanin biosynthesis in the roots and mesocotyls of Zea mays L. seedlings is presented. Short (5 min), low energy (4.5 × 103 J m?2) fluences of red light neither induced anthocyanin synthesis nor enhanced phenylalanine ammonia-lyase activity in dark-grown maize seedlings. Little anthocyanin synthesis and no enhancement of phenylalanine ammonia-lyase activity was induced by continuous far-red light. Continuous white or blue light induced both anthocyanin synthesis and enhanced phenylalanine ammonia-lyase activity. These results show that phytochrome alone cannot induce anthocyanin synthesis in maize seedlings. However, a strong phytochrome mediation of white light induced pigment synthesis was demonstrated. This effect was not demonstrable with white light enhanced phenylalanine ammonia-lyase activity, indicating that phytochrome controls another step in anthocyanin biosynthesis.  相似文献   

6.
H. Mohr  H. Drumm  R. Schmidt  B. Steinitz 《Planta》1979,146(3):369-376
Induction by light of phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) and of anthocyanin in cotyledons of the mustard (Sinapis alba L.) seedling is strongly affected by a light pretreatment which operates through phytochrome. If PAL or anthocyanin is induced by a light pulse, the effectiveness of phytochrome (Pfr) is strongly increased by a light pretreatment; however, if the increase of the PAL level or synthesis of anthocyanin is elicited by continuous far-red light (operating via phytochrome in the High Irradiance Response), effectiveness of light is strongly reduced by the same light pretreatment. This reduction of effectiveness is correlated with a decrease of total phytochrome (Ptot) caused by the light pretreatment. It is argued that the observations are compatible only with the open phytochrome-receptor model as suggested by Schäfer (J. Mathem. Biol. 2, 41–56, 1975). The peaks of the time courses of the PAL levels under continous far-red light are located at 48 h after sowing and do not depend on the original level of phytochrome. The decrease of the PAL levels beyond 48 h after sowing takes place independently of phytochrome and of the actual level of PAL.Abbreviations Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome - Ptot total phytochrome (Pr+Pfr) - {ie369-1} [Pfr] /[Ptot], photoequilibrium of phytochrome at wavelength - HIR High Irradiance Response - PAL phenylalanine ammonialyase (EC 4.3.1.5)  相似文献   

7.
Ultraviolet A (UV-A)-mediated regulation of anthocyanin biosynthesis was investigated in swollen hypocotyls of the red turnip 'Tsuda'. The shaded swollen hypocotyls which contained negligible anthocyanin were exposed to artificial light sources including low fluence UV-B, UV-A, blue, red, far-red, red plus UV-A, far-red plus UV-A, and blue plus red. Among these lights, only UV-A induced anthocyanin biosynthesis and co-irradiation of red or far-red with UV-A did not affect the extent of UV-A-induced anthocyanin accumulation. The expression of phenylalanine ammonia lyase (PAL; EC 4.3.1.5), chalcone synthase (CHS; EC 2.3.1.74), flavanone 3-hydroxylase (F3H; EC 1.14.11.9), dihydroflavonol 4-reductase (DFR; EC 1.1.1.219), and anthocyanidin synthase (ANS; EC 1.14.11.19) genes was increased with time during a 24 h exposure to UV-A. In contrast, irradiation with red, blue, UV-B, and a combination of blue with red failed to induce CHS expression. Microarray analysis showed that only a few genes, including CHS and F3H, were induced significantly by UV-A, while a separate set of many genes was induced by low fluence UV-B. The UV-A-specific induction of anthocyanin biosynthesis and the unique gene expression profile upon UV-A irradiation as compared with blue and UV-B demonstrated that the observed induction of anthocyanin biosynthesis in red turnips was mediated by a distinct UV-A-specific photoreceptor, but not by phytochromes, UV-A/blue photoreceptors, or UV-B photoreceptors.  相似文献   

8.
Three general classes of photomorphogenic photoreceptors have been characterized in higher plants: phytochrome, a blue light/ultraviolet (UV)-A photoreceptor(s), and a UV-B sensory system(s). Although a great deal is known about phytochrome and the blue light/UV-A photoreceptor(s), little is known about UV-B detection processes. One reason for this is the lack of readily quantifiable morphogenic responses that are specifically induced by UV-B radiation. We have discovered a response to UV-B, upward curling of Brassica napus L. cotyledons, that may be useful for probing the mechanism of UV-B photoreception. The process was initially observed when B. napus seeds were germinated under visible light plus UV-B radiation, but did not occur under visible light alone or visible light plus UV-A. When 5-d-old seedlings grown in visible light were given relatively short exposures of UV-B (100 min of 5.5 [mu]mol m-2 s-1), the curling response was also observed. Development of curling was separated from the application of this UV-B pulse by a 14-h latent period. Pulses of red light, blue light, farred light, and UV-A (100 min of 5.5 [mu]mol m-2 s-1) did not induce curling, indicating UV-B specificity Additionally, these other spectral regions did not reverse or enhance the UV-B-triggered response. The degree of curling showed a log-linear dependence on UV-B fluence (6-40 mmol m-2) and reciprocity with respect to length of exposure and fluence rate. The data indicate that curling is photomorphogenic in nature and may be triggered by a single photoreceptor species.  相似文献   

9.
The regulation of endogenous levels of ascorbic acid in soybean by far-red absorbing form of phytochrome (Pfr) and by cryptic red light signal (CRS) was studied. Cryptic red light signal is produced by red light pre-irradiation of a photoreceptor other than far-red absorbing form of phytochrome (Pfr) and CRS amplifies the action of phytochrome. The endogenous level of ascorbic acid levels enhanced by phytochrome was amplified by CRS. The lifetime of CRS was from 0 to 2 h and the peak of enhancement of ascorbic acid due to CRS was between 16 to 24 h of dark incubation after the end of the treatment. CRS was found to be ineffective on UV-B enhanced endogenous levels of ascorbic acid.Key words: ascorbic acid, cryptic red light signal, glycine max, phytochrome, ultraviolet-BThe phytochrome mediated morphogenesis involves the conversion of Pr [red absorbing form] to Pfr [far-red absorbing form] and the magnitude of the response is dependent on Pfr/P tot ratio established at the end of the irradiation.1 In broom Sorghum anthocyanin synthesis induced by red light [R1] is reversible with far-red light. But a second red pulse [R2] given after the reversal resulted in increased anthocyanin production compared to the first pulse [R1]. When the red pulse was repeatedly given after every reversal with far-red, the anthocyanin production increased proportionately to the number of previously given pulses.2 Thus red pre-treatment induced a change in the cellular physiological state or change in content of a relevant substance[s] which is designated as Cryptic Red Light Signal [CRS] associated with red signal transduction.2 CRS was first characterized in detail in Broom Sorghum as Pfr amplifying signal produced by red pre-irradiation. CRS is inactive in the absence of Pfr but enhances the action of Pfr. CRS escapes reversal when the plants are exposed to far-red and is probably produced by a different species of phytochrome, distinct from the conventional reversible phytochrome.3We have investigated whether CRS influences other phytochrome regulated processes in plants in addition to anthocyanin synthesis. We chose another process, the synthesis of endogenous ascorbic acid, which is also regulated by conventional phytochrome.4 In soybean, the endogenous level of ascorbic acid is enhanced by conventional far-red reversible form of phytochrome. In addition, an independent UV-B photoreceptor [non reversible with far-red light] also enhances the endogenous synthesis of ascorbic acid in soybean. By using repeated pulses of red light, we have demonstrated that the Cryptic Red Signal is operative in soybean also and it amplifies the red light induced enhancement in the level of ascorbic acid. That CRS is active only in the presence of Pfr is demonstrated by the fact that pre-irradiation with red light is ineffective in amplifying UV-B induced enhancement of ascorbic acid levels. A similar observation on UV-B induced anthocyanin synthesis has been made in Broom Sorghum.2 A separate UV-B photoreceptor independent of phytochrome operates in the plants.5 Although CRS is presumably produced by pre-irradiation with red light, it does not enhance UV-B induced anthocyanin synthesis or ascorbic acid synthesis in the absence of formation of Pfr by the second red pulse.The life-time of CRS was determined as 6 h in 20°C and 3 h in 24°C grown seedlings of Broom Sorghum with reference to anthocyanin synthesis.2 The life-time of CRS determined in soybean seedlings grown at 25°C was upto 1 h.6 Since growing seedlings at a low temperature enhanced the effectiveness of CRS in Broom Sorghum, it was concluded that low temperature may either extend the lifetime of CRS or generate higher amount of CRS.2 Although the exact nature of CRS is yet to be analyzed, work in our laboratory has established the universal nature of this signal and evidences have been obtained for CRS effect in promoting red light induced hypocotyls inhibition in Cucumber seedlings and also red light induced synthesis of betacyanins in Amaranthus seedlings (submitted for publication).  相似文献   

10.
Ultraviolet B radiation (UV-B, 290-315 nm) can cause damage and induce photomorphogenic responses in plants. The mechanisms that mediate the photomorphogenic effects of UV-B are unclear. In etiolated Arabidopsis seedlings, a daily exposure to 2.5 h of UV-B enhanced the cotyledon opening response induced by a subsequent red light (R) pulse. An R pulse alone, 2.5 h of UV-B terminated with a far-red pulse, or 2.5 h of continuous R caused very little cotyledon opening. The enhancing effect of UV-B increased with fluence rate up to approximately 7.58 micromol m(-2) s(-1); at higher fluence rates the response to UV-B was greatly reduced. The phyA, phyA cry1, and cry1 cry2 mutants behaved like the wild type when exposed to UV-B followed by an R pulse. In contrast, phyB, phyB cry1, and phyB phyA mutants failed to open the cotyledons. Thus, phytochrome B was required for the cotyledon opening response to UV-B --> R treatments, whereas phytochrome A and cryptochromes 1 and 2 were not necessary under the conditions of our experiments. The enhancing effect of low doses of UV-B on cotyledon opening in uvr1 uvr2 and uvr1 uvr3 mutants, deficient in DNA repair, was similar to that found in the wild type, suggesting that this effect of UV-B was not elicited by signals derived from UV-B-induced DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts). We conclude that low doses of UV-B, perceived by a receptor system different from phytochromes, cryptochromes, or DNA, enhance a de-etiolation response that is induced by active phytochrome B.  相似文献   

11.
12.
Red light, acting via phytochrome, stimulates phenylalanine ammonia lyase (PAL) activity in cotyledons and hypocotyls of tomato seedlings. The time course of photoinduction of PAL activity has a peak level at 4 h after which activity declines significantly. In tomato seedlings PAL activity comprised of three isoforms and light stimulated activity of all three isoforms. A polyclonal antibody raised against PAL purified from tomato leaves recognized PAL protein belonging to PAL-II and PAL-III isoforms. The mode of increase in PAL activity was investigated by immunochemical techniques. The photostimulated increase in PAL activity appeared to be dependent on de novo synthesis of protein and nucleic acid. However, inhibition of protein phosphatase activity blocked increase in PAL activity without affecting the increase in PAL protein levels. The results indicate that in addition to de novo synthesis, the photostimulation of PAL activity likely requires dephosphorylation by a type 2C protein phosphatase.  相似文献   

13.
The Arabidopsis gene encoding the key flavonoid biosynthesis enzyme chalcone synthase (CHS) is regulated by several environmental and endogenous stimuli. Here we dissect the network of light signalling pathways that control CHS expression in mature leaves using cryptochrome (cry) and phytochrome (phy) deficient mutants. The UV-A/blue light induction of CHS is mediated principally by cry1, but neither cry1 nor cry2 is involved in UV-B induction or in the UV-A and blue light signalling pathways that interact synergistically with the UV-B pathway to enhance CHS expression. Moreover, these synergistic responses do not require phyA or phyB. Phytochrome is a positive regulator of the cry1 inductive pathway, mediating distinct potentiation and coaction effects. A red light pretreatment enhances subsequent cry1-mediated CHS induction. This potentiation is unaltered in phyA and phyB mutants but much reduced in a phyA phyB double mutant, indicating that it requires principally phyA or phyB. In contrast, the cry1-mediated induction of CHS, without pretreatment, is much reduced in phyB but not phyA mutants, indicating coaction between cry1 and phyB. Further experiments with phy-deficient mutants demonstrate that phyB is a negative regulator of the UV-B inductive pathway. We further show that phyB acts upstream of the points of interaction of the UV-A and blue synergism pathways with the UV-B pathway. We propose that phyB functions to balance flux through the cry1 and UV-B signalling pathways.  相似文献   

14.
R. Schmidt  H. Mohr 《Planta》1981,151(6):541-543
Mustard (Sinapis alba L.) seedlings were irradiated with continuous far-red light either with or without a pretreatment with 3 or 6 h of the same far-red light, separated by a 15 h dark period. The pretreatment increases the initial rate of anthocyanin accumulation — as caused by the 2nd light treatment — at least 6-fold but leads to an earlier cessation of anthocyanin accumulation. Moreover, the pretreatment seems to shorten the apparent lag-phase of anthocyanin accumulation considerably but it does not eliminate the lag. If the pretreatment with far-red light is terminated before the seedling reaches competence (with regard to phytochrome and anthocyanin synthesis) the pretreatment has no effect on the apparent lag-phase even though the future capacity of anthocyanin biogenesis is considerably stimulated by the pretreatment. The time course of induction of anthocyanin and that of phenylalanine ammonia-lyase (PAL) (Acton et al. 1980, Fig. 1) is in line with the concept that induction of PAL by light is a prerequisite for the onset of light-mediated anthocyanin synthesis.Abbreviation PAL phenylalanine ammonia-lyase  相似文献   

15.
The synthesis of anthocyanin, the xanthophyll cycle, the antioxidant system and the production of active oxygen species (AOS) were compared between red and non‐red apple cultivars, in response to either long‐term sunlight exposure (high light intensity) during fruit development, or to exposure of bagged fruits to lower light intensity late in fruit development. During fruit development of red and non‐red apples, the xanthophyll cycle pool size decreased much more in red apple peel late in development. With accumulation of AOS induced by long‐term sunlight exposure, enhancement of the antioxidant system was found. However, this change became significantly lower in red apple than non‐red apple as fruit developed, which might serve to accelerate the anthocyanin synthesis in red apple peel. When, late in fruit development, bagged fruits were exposed to sunlight, the accumulation of AOS was lower in red apple peel than in non‐red peel. This could be due to the higher anthocyanin concentration in the red peels. Meanwhile, compared with that in non‐red cultivar, the xanthophyll cycle and the antioxidant system in red apple peel were protected first but then down‐regulated by its higher anthocyanin concentration during sunlight exposure. In conclusions, red and non‐red apples peel possess different photoprotective mechanisms under high light conditions. The relationship between anthocyanin synthesis and the xanthophyll cycle, and the antioxidant system, depends on the light conditions that fruit undergoes.  相似文献   

16.
Photolyases and blue light receptors belong to a superfamily of flavoproteins that make use of blue and UVA light either to catalyze DNA repair or to control development. We have isolated a DNA photolyase gene (phr1) from Trichoderma harzianum, a common soil fungus that is of interest as a biocontrol agent against soil-borne plant pathogens and as a model for the study of light-dependent development. The sequence of phr1 is similar to other Class I Type I eukaryotic photolyase genes. Low fluences of blue light rapidly induced phr1 expression both in vegetative mycelia, which lack photoprotective pigments, and, to a greater extent, in conidiophores. Thus, visible light induces the development of pigmented, resistant spores as well as the expression of phr1, perhaps announcing in this way the imminent exposure to the more damaging short wavelengths of sunlight. Light induction of phr1 in non-sporulating mutants shows that a complete sporulation pathway is not required for photoregulation. The light requirements for photoinduction of phr1 were not altered in dimY photoperception mutants. This suggests that photoinduction of sporulation and of photolyase expression is distinct in their photoreceptor system or in the transduction of the blue light signal.  相似文献   

17.
Hypocotyl elongation responses to ultraviolet-B (UV-B) radiation were investigated in glasshouse studies of de-etiolated seedlings of a long-hypocotyl mutant ( lh ) of cucumber ( Cucumis sativus L.) deficient in stable phytochrome, its near isogenic wild type (WT), and a commercial cucumber hybrid (cv. Burpless). A single 6- or 8-h exposure to UV-B applied against a background of white light inhibited hypocotyl elongation rate by ca 50% in lh and WT seedlings. This effect was not accompanied by a reduction in cotyledon area expansion or dry matter accumulation. Plants recovered rapidly from inhibition and it was possible to stimulate hypocotyl elongation in plants exposed to UV-B by application of gibberellic acid. In all genotypes inhibition of elongation was mainly a consequence of UV-B perceived by the cotyledons; covering the apex and hypocotyl with a filter that excluded UV-B failed to prevent inhibition. These results indicate that reduced elongation does not result from assimilate limitation or direct damage to the apical meristem or elongating cells, and strongly suggest that it is a true photomorphogenic response to UV-B. The fact that UV-B fluences used were very low in relation to total visible light, and the similarity in the responses of lh and wild-type plants, are consistent with the hypothesis that UV-B acts through a specific photoreceptor. It is argued that, given the weak correlation between UV-B and visible-light levels in most natural conditions, the UV-B receptor may play an important sensory function providing information to the plant that cannot be derived from light signals perceived by phytochrome or blue/UV-A sensors.  相似文献   

18.
The biosynthesis of anthocyanins in plant tissues either requires light or is enhanced by it. Light-dependent anthocyanin synthesis has been extensively used as a model system for studies of the mechanism of photoregulation of plant development. Two components can be distinguished in the action of light on anthocyanin production. The first component is the red-far red reversible, phytochrome-mediated response induced by short irradiations; the amount of anthocyanin formed in response to a single, short irradiation is small. The second component is the response to prolonged exposures; the formation of large amounts of anthocyanin requires prolonged exposures to high fluence rates of visible and near-visible radiation (290 to 750 nm) and shows the typical properties of the “High Irradiance Reaction” (HIR) of plant photomorphogenesis. Phytochrome is involved in the photoregulation of the HIR response and is the only photoreceptor mediating the action of prolonged red and far red irradiations. The response to prolonged ultraviolet and blue radiation is probably mediated, at least in some systems, by two photoreceptors: phytochrome and cryptochrome, the latter being a specific ultraviolet-blue-light photoreceptor. The nature of the interaction between phytochrome and cryptochrome in the regulation of plant photomorphogenic responses is still unclear.  相似文献   

19.
The occurrence of phytochrome-mediated highirradiance responses (HIR), previously characterised largely in dicotyledonous plants, was investigated in Triticum aestivum L., Zea mays L., Lolium multiflorum Lam. and in both wild-type Oryza sativa L. and in transgenic plants overexpressing oat phytochrome A under the control of a 35S promoter. Coleoptile growth was promoted (maize, ryegrass) or inhibited (wild-type rice) by continuous far-red light (FRc). However, at equal fluences, hourly pulses of far-red light (FRp) were equally effective, indicating that the growth responses to FRc were not true HIR. In contrast, in maize and rice, FRc increased anthocyanin content in the coleoptile in a fluence-rate dependent manner. This response was a true HIR as FRp had reduced effects. In maize, anthocyanin levels were significantly higher under FRc than under continuous red light. In rice, overexpression of phytochrome A increased the inhibition of coleoptile growth and the levels of anthocyanin under FRc but not under FRp or under continuous red light. The effect of FRc was fluence-rate dependent. In light-grown rice, overexpression of phytochrome A reduced leaf-sheath length, impaired the response to supplementary far-red light, but did not affect the response to canopy shade-light. In grasses, typical HIR, i.e. fluence-rate dependent responses showing reciprocity failure, can be induced by FRc. Under FRc, overexpressed phytochrome A operates through this action mode in transgenic rice.Abbreviations FR far-red light - FRc continuous far-red light - FRp pulses of far-red light - HIR high-irradiance responses - LFR low-fluence responses - OPHYA transgenic rice overexpressing oat phytochrome A - Pfr far-red light-absorbing form of phytochrome - phyA phytochrome A - R red light - Rc continuous red light - VLFR very low-fluence responses - WT wildtype We thank Marcelo J. Yanovsky for his help with the photographs and Professor Rodolfo A. Sanchez for providing a reprint of the paper by P.J.A.L. de Lint. This work was supported by grants from UBA (AG041) and Fundacion Antorchas (A-13218/1-15) to J.J.C.  相似文献   

20.
Blue-light responses in higher plants are mediated by specific photoreceptors, which are thought to be flavoproteins; one such flavin-type blue-light receptor, CRY1 (for cryptochrome), which mediates inhibition of hypocotyl elongation and anthocyanin biosynthesis, has recently been characterized. Prompted by classical photobiological studies suggesting possible co-action of the red/far-red absorbing photoreceptor phytochrome with blue-light photoreceptors in certain plant species, the role of phytochrome in CRY1 action in Arabidopsis was investigated. The activity of the CRY1 photoreceptor can be substantially altered by manipulating the levels of active phytochrome (Pfr) with red or far-red light pulses subsequent to blue-light treatments. Furthermore, analysis of severely phytochrome-deficient mutants showed that CRY1-mediated blue-light responses were considerably reduced, even though Western blots confirmed that levels of CRY1 photoreceptor are unaffected in these phytochrome-deficient mutant backgrounds. It was concluded that CRY1-mediated inhibition of hypocotyl elongation and anthocyanin production requires active phytochrome for full expression, and that this requirement can be supplied by low levels of either phyA or phyB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号