首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Directed evolution of proteins by exon shuffling   总被引:18,自引:0,他引:18  
Evolution of eukaryotes is mediated by sexual recombination of parental genomes. Crossovers occur in random, but homologous, positions at a frequency that depends on DNA length. As exons occupy only 1% of the human genome and introns about 24%, by far most of the crossovers occur between exons, rather than inside. The natural process of creating new combinations of exons by intronic recombination is called exon shuffling. Our group is developing in vitro formats for exon shuffling and applying these to the directed evolution of proteins. Based on the splice frame junctions, nine classes of exons and three classes of introns can be distinguished. Splice frame diagrams of natural genes show how the splice frame rules govern exon shuffling. Here, we review various approaches to constructing libraries of exon-shuffled genes. For example, exon shuffling of human pharmaceutical proteins can generate libraries in which all of the sequences are fully human, without the point mutations that raise concerns about immunogenicity.  相似文献   

2.
TWINSCAN is a new gene-structure prediction system that directly extends the probability model of GENSCAN, allowing it to exploit homology between two related genomes. Separate probability models are used for conservation in exons, introns, splice sites, and UTRs, reflecting the differences among their patterns of evolutionary conservation. TWINSCAN is specifically designed for the analysis of high-throughput genomic sequences containing an unknown number of genes. In experiments on high-throughput mouse sequences, using homologous sequences from the human genome, TWINSCAN shows notable improvement over GENSCAN in exon sensitivity and specificity and dramatic improvement in exact gene sensitivity and specificity. This improvement can be attributed entirely to modeling the patterns of evolutionary conservation in genomic sequence.  相似文献   

3.
Association of alternative splicing (AS) with accelerated rates of exon evolution in some organisms has recently aroused widespread interest in its role in evolution of eukaryotic gene structure. Previous studies were limited to analysis of exon creation or lost events in mouse and/or human only. Our multigenome approach provides a way for (1) distinguishing creation and loss events on the large scale; (2) uncovering details of the evolutionary mechanisms involved; (3) estimating the corresponding rates over a wide range of evolutionary times and organisms; and (4) assessing the impact of AS on those evolutionary rates. We use previously unpublished independent analyses of alternative splicing in five species (human, mouse, dog, cow, and zebrafish) from the ASAP database combined with genomewide multiple alignment of 17 genomes to analyze exon creation and loss of both constitutively and alternatively spliced exons in mammals, fish, and birds. Our analysis provides a comprehensive database of exon creation and loss events over 360 million years of vertebrate evolution, including tens of thousands of alternative and constitutive exons. We find that exon inclusion level is inversely related to the rate of exon creation. In addition, we provide a detailed in-depth analysis of mechanisms of exon creation and loss, which suggests that a large fraction of nonrepetitive created exons are results of ab initio creation from purely intronic sequences. Our data indicate an important role for alternative splicing in creation of new exons and provide a useful novel database resource for future genome evolution research.  相似文献   

4.
5.
Recent studies indicate that many introns, as well as the complex spliceosomal mechanism to remove them, were present early in eukaryotic evolution. This study examines intron and exon characteristics from annotations of whole genomes to investigate the intron recognition mechanism. Exon definition uses the exon as the unit of recognition, placing length constraints on the exon but not on the intron (allowing it a greater range of lengths). In contrast, intron definition uses the intron itself as the unit of recognition and thus removes constraints on internal exon length forced by the use of an exon definition mechanism. Thus, intron and exon lengths within a genome can reflect the constraints imposed by its splicing. This study shows that it is possible firstly to recover valid intron and exon information from genome annotation. We then compare internal intron and exon information from a range of eukaryotic genomes and investigate possible evolutionary length constraints on introns and exons and how they can impact on the intron recognition mechanism. Results indicate that exon definition-based mechanisms may predominate in vertebrates although the exact system in fish is expected to show some differences with the better characterized system from mammals. We also raise the possibility that the last common ancestor of plants and animals contained some type of exon definition and that this mechanism was replaced in some genes and lineages by intron definition, possibly as a result of intron loss and/or intron shortening.  相似文献   

6.
The birth of new exons: mechanisms and evolutionary consequences   总被引:6,自引:1,他引:5  
Sorek R 《RNA (New York, N.Y.)》2007,13(10):1603-1608
A significant amount of literature was dedicated to hypotheses concerning the origin of ancient introns and exons, but accumulating evidence indicates that new exons are also constantly being added to evolving genomes. Several mechanisms contribute to the creation of novel exons in metazoan genomes, including whole gene and single exon duplications, but perhaps the most intriguing are events of exonization, where intronic sequences become exons de novo. Exonizations of intronic sequences, particularly those originating from repetitive elements, are now widely documented in many genomes including human, mouse, dog, and fish. Such de novo appearance of exons is very frequently associated with alternative splicing, with the new exon-containing variant typically being the rare one. This allows the new variant to be evolutionarily tested without compromising the original one, and provides an evolutionary strategy for generation of novel functions with minimum damage to the existing functional repertoire. This review discusses the molecular mechanisms leading to exonization, its extent in vertebrate genomes, and its evolutionary implications.  相似文献   

7.
8.
9.
10.
Vinogradov AE 《Gene》2001,276(1-2):143-151
Within-intron difference of correlation with base composition of the adjacent exons was studied in the genomes of 34 species. For this purpose, GC-percent was determined for segments of 50 bp in length taken at both intron margins and in the internal part of the intron. It was found that in certain genomes the coefficient of correlation with GC-percent of the adjacent exon was significantly higher for the intron margin than for the internal part of the intron (homeotherms, cereals). Only part of this difference can be explained by unequal probability of insertion of transposable elements. Those multicellular organisms which have a low or no within-intron difference in correlation with the adjacent exons (anamniotes, invertebrates, dicots) show a higher local compositional heterogeneity (a greater exon/intron contrast in the GC-content). These results are evidence against the mutational bias being a possible explanation for the compositional genome heterogeneity. Thus, in the genomes with a high global heterogeneity there seems to be a selective force for compliance of intron base composition with the adjacent exons. This force is stronger in those parts of the intron that are closer to exons. In addition, the previously found positive general correlation between the genome size and average intron length was confirmed with a much larger dataset. However, within separate phylogenetic groups this rule can be broken, as it occurs in the cereals (family Poaceae), where a negative correlation was found.  相似文献   

11.
Cichlid fishes (family Cichlidae) are models for evolutionary and ecological research. Massively parallel sequencing approaches have been successfully applied to study relatively recent diversification in groups of African and Neotropical cichlids, but such technologies have yet to be used for addressing larger‐scale phylogenetic questions of cichlid evolution. Here, we describe a process for identifying putative single‐copy exons from five African cichlid genomes and sequence the targeted exons for a range of divergent (>tens of millions of years) taxa with probes designed from a single reference species (Oreochromis niloticus, Nile tilapia). Targeted sequencing of 923 exons across 10 cichlid species that represent the family's major lineages and geographic distribution resulted in a complete taxon matrix of 564 exons (649 549 bp), representing 559 genes. Maximum likelihood and Bayesian analyses in both species tree and concatenation frameworks yielded the same fully resolved and highly supported topology, which matched the expected backbone phylogeny of the major cichlid lineages. This work adds to the body of evidence that it is possible to use a relatively divergent reference genome for exon target design and successful capture across a broad phylogenetic range of species. Furthermore, our results show that the use of a third‐party laboratory coupled with accessible bioinformatics tools makes such phylogenomics projects feasible for research groups that lack direct access to genomic facilities. We expect that these resources will be used in further cichlid evolution studies and hope the protocols and identified targets will also be useful for phylogenetic studies of a wider range of organisms.  相似文献   

12.
13.
14.
Efficient selection of 3'-terminal exons from vertebrate DNA.   总被引:5,自引:2,他引:3       下载免费PDF全文
Identification of expressed sequences within genomic DNA is a hurdle in the characterization of complex genomes. We developed an exon trapping scheme that provides a positive selection for vertebrate 3'-terminal exons. A copy of the trapped exon sequence is obtained by RT/PCR amplification. The technique detects valid terminal exons without interference from partial exons or non-specific sequences, including simple human repeated sequences. Application to random human cosmids yielded one unique trapped terminal exon per cosmid on average. Because vertebrate terminal exons average 600-700 nucleotides in length, the technique provides transcribed sequences of sufficient length to assist further mapping efforts.  相似文献   

15.
Synonymous codon usage bias (SCUB) is a common event that a non-uniform usage of codons often occurs in nearly all organisms. We previously found that SCUB is correlated with both intron number and exon position in the plant nuclear genome but not in the plastid genome; SCUB in both nuclear and plastid genome can mirror the evolutionary specialization. However, how about the rules in the mitochondrial genome has not been addressed. Here, we present an analysis of SCUB in the mitochondrial genome, based on 24 plant species ranging from algae to land plants. The frequencies of NNA and NNT (A- and T-ending codons) are higher than those of NNG and NNC, with the strongest preference in bryophytes and the weakest in land plants, suggesting an association between SCUB and plant evolution. The preference for NNA and NNT is more evident in genes harboring a greater number of introns in land plants, but the bias to NNA and NNT exhibits even among exons. The pattern of SCUB in the mitochondrial genome differs in some respects to that present in both the nuclear and plastid genomes.  相似文献   

16.
It has been hypothesized that the length of an exon tends to increase with the GC content because stop codons are AT-rich and should occur less frequently in GC-rich exons. This prediction assumes that mutation pressure plays a significant role in the occurrence and distribution of stop codons. However, the prediction is applicable not to all exons, but only to the last coding exon of a gene and to single-exon CDS sequences. We classified exons in multiexon genes in eight eukaryotic species into three groups-the first exon, the internal, and the last exon-and computed the Spearman correlation between the exon length and the percentage GC (%GC) for each of the three groups. In only five of the species studied is the correlation for the last coding exon greater than that for the first or internal exons. For the single-exon CDS sequences, the correlation between CDS length and %GC is mostly negative. Thus, eukaryotic genomes do not support the predicted relationship between exon length and %GC. In prokaryotic genomes, CDS length and %GC are positively correlated in each of the 68 completely sequenced prokaryotic genomes in GenBank with genomic GC contents varying from 25 to 68%, except for the wall-less Mycoplasma genitalium and the syphilis pathogen Treponema pallidum. Moreover, the average CDS length and the genomic GC content are also positively correlated. After correcting for genome size, the partial correlation between the average CDS length and the genomic GC content is 0.3217 ( p < 0.025).  相似文献   

17.
18.
The small genome size (740 Mb), short life cycle (3 months) and high economic importance as a food crop legume make chickpea (Cicer arietinum L.) an important system for genomics research. Although several genetic linkage maps using various markers and genomic tools have become available, sequencing efforts and their use are limited in chickpea genomic research. In this study, we explored the genome organization of chickpea by sequencing approximately 500 kb from 11 BAC clones (three representing ascochyta blight resistance QTL1 (ABR-QTL1) and eight randomly selected BAC clones). Our analysis revealed that these sequenced chickpea genomic regions have a gene density of one per 9.2 kb, an average gene length of 2,500 bp, an average of 4.7 exons per gene, with an average exon and intron size of 401 and 316 bp, respectively, and approximately 8.6% repetitive elements. Other features analyzed included exon and intron length, number of exons per gene, protein length and %GC content. Although there are reports on high synteny among legume genomes, the microsynteny between the 500 kb chickpea and available Medicago truncatula genomic sequences varied depending on the region analyzed. The GBrowse-based annotation of these BACs is available at http://www.genome.ou.edu/plants_totals.html . We believe that our work provides significant information that supports a chickpea genome sequencing effort in the future.  相似文献   

19.
20.
Archak S  Nagaraju J 《Fly》2007,1(5):279-281
Microsatellites show tremendous variation between genomes in terms of their occurrence and composition. Availability of whole genome sequences allows us to study microsatellite characteristics of fully sequenced insect genomes to understand the evolution and biological significance of microsatellites. InSatDb is an insect microsatellite database that provides an interactive interface to query information on microsatellites annotated with size (in base pairs and repeat units), genomic location (exon, intron, up-stream or transposon), nature (perfect or imperfect), and sequence composition (repeat motif and GC%). Here we present a snapshot of the distribution and composition of microsatellites in introns and exons of insect genomes. The data present interesting observations regarding the microsatellite life-cycle and genome flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号