首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
与PRRSV nsp11互作的宿主细胞蛋白鉴定及生物信息学分析   总被引:1,自引:0,他引:1  
靳换  李逸  姜楠  周磊  盖新娜  杨汉春  郭鑫 《微生物学通报》2017,44(12):2856-2870
【目的】研究猪繁殖与呼吸综合征病毒(Porcine reproductive and respiratory syndrome virus,PRRSV)nsp11与宿主细胞蛋白之间的相互作用,对于揭示nsp11在病毒复制过程中发挥的功能至关重要。【方法】在病毒感染细胞的基础上,利用nsp11的单克隆抗体,采用免疫沉淀结合串联质谱的方法,筛选与PRRSV nsp11相互作用的宿主细胞蛋白,并对所筛选出的宿主细胞蛋白进行了GO注释、COG注释和KEGG代谢通路注释;选取筛选出的宿主细胞蛋白IRAK1,利用免疫共沉淀技术和激光共聚焦技术鉴定其与nsp11之间的相互作用。【结果】与空白对照组相比,病毒感染组中出现3条差异带;经质谱分析共筛选得到了201个与nsp11相互作用的宿主细胞蛋白,分别与蛋白质代谢、细胞信号通路转导以及病原致病性等密切相关;在生物信息学分析的基础上,实验验证了nsp11确与宿主细胞蛋白IRAK1进行相互作用。【结论】鉴定出与PRRSV nsp11相互作用的宿主细胞蛋白,生物信息学分析显示它们在病毒的复制和致病过程中发挥重要作用。研究结果为探究nsp11的生物学功能指明了方向,也为研究宿主细胞蛋白与病毒蛋白间的相互作用及其调控病毒复制和致病性的分子机制奠定了基础。  相似文献   

2.
Viral structural proteins form the critical intermediary between viral infection cycles within and between hosts, function to initiate entry, participate in immediate early viral replication steps, and are major targets for the host adaptive immune response. We report the identification of nonstructural protein 2 (nsp2) as a novel structural component of the porcine reproductive and respiratory syndrome virus (PRRSV) particle. A set of custom α-nsp2 antibodies targeting conserved epitopes within four distinct regions of nsp2 (the PLP2 protease domain [OTU], the hypervariable domain [HV], the putative transmembrane domain [TM], and the C-terminal region [C]) were obtained commercially and validated in PRRSV-infected cells. Highly purified cell-free virions of several PRRSV strains were isolated through multiple rounds of differential density gradient centrifugation and analyzed by immunoelectron microscopy (IEM) and Western blot assays using the α-nsp2 antibodies. Purified viral preparations were found to contain pleomorphic, predominantly spherical virions of uniform size (57.9 nm ± 8.1 nm diameter; n = 50), consistent with the expected size of PRRSV particles. Analysis by IEM indicated the presence of nsp2 associated with the viral particle of diverse strains of PRRSV. Western blot analysis confirmed the presence of nsp2 in purified viral samples and revealed that multiple nsp2 isoforms were associated with the virion. Finally, a recombinant PRRSV genome containing a myc-tagged nsp2 was used to generate purified virus, and these particles were also shown to harbor myc-tagged nsp2 isoforms. Together, these data identify nsp2 as a virion-associated structural PRRSV protein and reveal that nsp2 exists in or on viral particles as multiple isoforms.  相似文献   

3.
4.
5.
Severe acute respiratory syndrome (SARS) coronavirus (SCoV) is an enveloped virus containing a single-stranded, positive-sense RNA genome. Nine mRNAs carrying a set of common 5' and 3' untranslated regions (UTR) are synthesized from the incoming viral genomic RNA in cells infected with SCoV. A nonstructural SCoV nsp1 protein causes a severe translational shutoff by binding to the 40S ribosomal subunits. The nsp1-40S ribosome complex further induces an endonucleolytic cleavage near the 5'UTR of host mRNA. However, the mechanism by which SCoV viral proteins are efficiently produced in infected cells in which host protein synthesis is impaired by nsp1 is unknown. In this study, we investigated the role of the viral UTRs in evasion of the nsp1-mediated shutoff. Luciferase activities were significantly suppressed in cells expressing nsp1 together with the mRNA carrying a luciferase gene, while nsp1 failed to suppress luciferase activities of the mRNA flanked by the 5'UTR of SCoV. An RNA-protein binding assay and RNA decay assay revealed that nsp1 bound to stem-loop 1 (SL1) in the 5'UTR of SCoV RNA and that the specific interaction with nsp1 stabilized the mRNA carrying SL1. Furthermore, experiments using an SCoV replicon system showed that the specific interaction enhanced the SCoV replication. The specific interaction of nsp1 with SL1 is an important strategy to facilitate efficient viral gene expression in infected cells, in which nsp1 suppresses host gene expression. Our data indicate a novel mechanism of viral gene expression control by nsp1 and give new insight into understanding the pathogenesis of SARS.  相似文献   

6.
Many DNA viruses replicate their genomes at nuclear foci in infected cells. Using indirect immunofluorescence in combination with fluorescence in situ hybridization, we colocalized the human papillomavirus (HPV) replicating proteins E1 and E2 and the replicating origin-containing plasmid to nuclear foci in transiently transfected cells. The host replication protein A (RP-A) was also colocalized to these foci. These nuclear structures were identified as active sites of viral DNA synthesis by bromodeoxyuridine (BrdU) pulse-labeling. Unexpectedly, the great majority of RP-A and BrdU incorporation was found in these HPV replication domains. Furthermore, E1, E2, and RP-A were also colocalized to nuclear foci in the absence of an origin-containing plasmid. These observations suggest a spatial reorganization of the host DNA replication machinery upon HPV DNA replication or E1 and E2 expression. Alternatively, viral DNA replication might be targeted to host nuclear domains that are active during the late S phase, when such domains are limited in number. In a fraction of cells expressing E1 and E2, the promyelocytic leukemia protein, a component of nuclear domain 10 (ND10), was either partially or completely colocalized with E1 and E2. Since ND10 structures were recently hypothesized to be sites of bovine papillomavirus virion assembly, our observation suggests that HPV DNA amplification might be partially coupled to virion assembly.  相似文献   

7.
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a serious threat to the swine industry worldwide. Exostosin glycosyltransferase 1 (EXT1), an enzyme involved in the biosynthesis of heparin sulfate, has also been reported to be a host factor essential for a wide variety of pathogens. However, the role of EXT1 in PRRSV infection remains uncharted. Here, we identified that PRRSV infection caused an increase of EXT1 expression. EXT1 knockdown promoted virus infection, whereas its overexpression inhibited virus infection, suggesting an inhibitory function of EXT1 to PRRSV infection. We found that EXT1 had no effects on the attachment, internalization, or release of PRRSV but did restrict viral RNA replication. EXT1 was determined to interact with viral nonstructural protein 3 (nsp3) and nsp5 via its N-terminal cytoplasmic tail and to enhance K48-linked polyubiquitination of these two nsps to promote their degradation. Furthermore, the C-terminal glycosyltransferase activity domain of EXT1 was necessary for nsp3 and nsp5 degradation. We also found that EXT2, a EXT1 homolog, interacted with EXT1 and inhibited PRRSV infection. Similarly, EXT1 effectively restricted porcine epidemic diarrhea virus and porcine enteric alphacoronavirus infection in Vero cells. Taken together, this study reveals that EXT1 may serve as a broad-spectrum host restriction factor and suggests a molecular basis for the potential development of therapeutics against PRRSV infection.  相似文献   

8.
During picornavirus infection, several cellular proteins are cleaved by virus-encoded proteinases. Such cleavage events are likely to be involved in the changing dynamics during the intracellular viral life cycle, from viral translation to host shutoff to RNA replication to virion assembly. For example, it has been proposed that there is an active switch from poliovirus translation to RNA replication mediated by changes in RNA-binding protein affinities. This switch could be a mechanism for controlling template selection for translation and negative-strand viral RNA synthesis, two processes that use the same positive-strand RNA as a template but proceed in opposing directions. The cellular protein poly(rC)-binding protein (PCBP) was identified as a primary candidate for regulating such a mechanism. Among the four different isoforms of PCBP in mammalian cells, PCBP2 is required for translation initiation on picornavirus genomes with type I internal ribosome entry site elements and also for RNA replication. Through its three K-homologous (KH) domains, PCPB2 forms functional protein-protein and RNA-protein complexes with components of the viral translation and replication machinery. We have found that the isoforms PCBP1 and -2 are cleaved during the mid-to-late phase of poliovirus infection. On the basis of in vitro cleavage assays, we determined that this cleavage event was mediated by the viral proteinases 3C/3CD. The primary cleavage occurs in the linker between the KH2 and KH3 domains, resulting in truncated PCBP2 lacking the KH3 domain. This cleaved protein, termed PCBP2-DeltaKH3, is unable to function in translation but maintains its activity in viral RNA replication. We propose that through the loss of the KH3 domain, and therefore loss of its ability to function in translation, PCBP2 can mediate the switch from viral translation to RNA replication.  相似文献   

9.
The severe acute respiratory syndrome coronavirus (SARS-CoV) nsp1 protein has unique biological functions that have not been described in the viral proteins of any RNA viruses; expressed SARS-CoV nsp1 protein has been found to suppress host gene expression by promoting host mRNA degradation and inhibiting translation. We generated an nsp1 mutant (nsp1-mt) that neither promoted host mRNA degradation nor suppressed host protein synthesis in expressing cells. Both a SARS-CoV mutant virus, encoding the nsp1-mt protein (SARS-CoV-mt), and a wild-type virus (SARS-CoV-WT) replicated efficiently and exhibited similar one-step growth kinetics in susceptible cells. Both viruses accumulated similar amounts of virus-specific mRNAs and nsp1 protein in infected cells, whereas the amounts of endogenous host mRNAs were clearly higher in SARS-CoV-mt-infected cells than in SARS-CoV-WT-infected cells, in both the presence and absence of actinomycin D. Further, SARS-CoV-WT replication strongly inhibited host protein synthesis, whereas host protein synthesis inhibition in SARS-CoV-mt-infected cells was not as efficient as in SARS-CoV-WT-infected cells. These data revealed that nsp1 indeed promoted host mRNA degradation and contributed to host protein translation inhibition in infected cells. Notably, SARS-CoV-mt infection, but not SARS-CoV-WT infection, induced high levels of beta interferon (IFN) mRNA accumulation and high titers of type I IFN production. These data demonstrated that SARS-CoV nsp1 suppressed host innate immune functions, including type I IFN expression, in infected cells and suggested that SARS-CoV nsp1 most probably plays a critical role in SARS-CoV virulence.  相似文献   

10.
Chen TW  Gan RR  Wu TH  Lin WC  Tang P 《Genomics》2012,100(3):149-156
During the viral infection and replication processes, viral proteins are highly regulated and may interact with host proteins. However, the functions and interaction partners of many viral proteins have yet to be explored. Here, we compiled a VIral Protein domain DataBase (VIP DB) to associate viral proteins with putative functions and interaction partners. We systematically assign domains and infer the functions of proteins and their protein interaction partners from their domain annotations. A total of 2,322 unique domains that were identified from 2,404 viruses are used as a starting point to correlate GO classification, KEGG metabolic pathway annotation and domain-domain interactions. Of the unique domains, 42.7% have GO records, 39.6% have at least one domain-domain interaction record and 26.3% can also be found in either mammals or plants. This database provides a resource to help virologists identify potential roles for viral protein. All of the information is available at http://vipdb.cgu.edu.tw.  相似文献   

11.
Protein III (pIII) of filamentous phage is required for both the beginning and the end of the phage life cycle. The infection starts by binding of the N-terminal N2 and N1 domains to the primary and secondary host receptors, F pilus and TolA protein, respectively, whereas the life cycle terminates by the C-terminal domain-mediated release of the membrane-anchored virion from the cell. It has been assumed that the role of the C-terminal domain of pIII in the infection is that of a tether for the receptor-binding domains N1N2 to the main body of the virion. In a poorly understood process that follows receptor binding, the virion disassembles as its protein(s) become integrated into the host inner membrane, resulting in the phage genome entry into the bacterial cytoplasm. To begin revealing the mechanism of this process, we showed that tethering the functional N1N2 receptor-binding domain to the virion via termination-incompetent C domain abolishes infection. This infection defect cannot be complemented by in trans supply of the functional C domain. Therefore, the C domain of pIII acts in concert with the receptor-binding domains to mediate the post receptor binding events in the infection. Based on these findings, we propose a model in which binding of the N1 domain to the periplasmic portion of TolA, the secondary receptor, triggers in cis a conformational change in the C domain, and that this change opens or unlocks the pIII end of the virion, allowing the entry phase of infection to proceed. To our knowledge, this is the first virus that uses the same protein domain both for the insertion into and release from the host membrane.  相似文献   

12.
The molecular mechanisms that drive the infection by the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2)—the causative agent of coronavirus disease 2019 (COVID‐19)—are under intense current scrutiny to understand how the virus operates and to uncover ways in which the disease can be prevented or alleviated. Recent proteomic screens of the interactions between viral and host proteins have identified the human proteins targeted by SARS‐CoV‐2. The DNA polymerase α (Pol α)–primase complex or primosome—responsible for initiating DNA synthesis during genomic duplication—was identified as a target of nonstructural protein 1 (nsp1), a major virulence factor in the SARS‐CoV‐2 infection. Here, we validate the published reports of the interaction of nsp1 with the primosome by demonstrating direct binding with purified recombinant components and providing a biochemical characterization of their interaction. Furthermore, we provide a structural basis for the interaction by elucidating the cryo‐electron microscopy structure of nsp1 bound to the primosome. Our findings provide biochemical evidence for the reported targeting of Pol α by the virulence factor nsp1 and suggest that SARS‐CoV‐2 interferes with Pol α''s putative role in the immune response during the viral infection.  相似文献   

13.
14.
Murine hepatitis virus (MHV) has long served as a model system for the study of coronaviruses. Non-structural protein 3 (nsp3) is the largest nsp in the coronavirus genome, and it contains multiple functional domains that are required for coronavirus replication. Despite the numerous functional studies on MHV and its nsp3 domain, the structure of only one domain in nsp3, the small ubiquitin-like domain 1 (Ubl1), has been determined. We report here the x-ray structure of three tandemly linked domains of MHV nsp3, including the papain-like protease 2 (PLP2) catalytic domain, the ubiquitin-like domain 2 (Ubl2), and a third domain that we call the DPUP (domain preceding Ubl2 and PLP2) domain. DPUP has close structural similarity to the severe acute respiratory syndrome coronavirus unique domain C (SUD-C), suggesting that this domain may not be unique to the severe acute respiratory syndrome coronavirus. The PLP2 catalytic domain was found to have both deubiquitinating and deISGylating isopeptidase activities in addition to proteolytic activity. A computationally derived model of MHV PLP2 bound to ubiquitin was generated, and the potential interactions between ubiquitin and PLP2 were probed by site-directed mutagenesis. These studies extend substantially our structural knowledge of MHV nsp3, providing a platform for further investigation of the role of nsp3 domains in MHV viral replication.  相似文献   

15.
The positive-stranded RNA genome of the coronaviruses is translated from ORF1 to yield polyproteins that are proteolytically processed into intermediate and mature nonstructural proteins (nsps). Murine hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV) polyproteins incorporate 16 protein domains (nsps), with nsp1 and nsp2 being the most variable among the coronaviruses and having no experimentally confirmed or predicted functions in replication. To determine if nsp2 is essential for viral replication, MHV and SARS-CoV genome RNA was generated with deletions of the nsp2 coding sequence (MHVDeltansp2 and SARSDeltansp2, respectively). Infectious MHVDeltansp2 and SARSDeltansp2 viruses recovered from electroporated cells had 0.5 to 1 log10 reductions in peak titers in single-cycle growth assays, as well as a reduction in viral RNA synthesis that was not specific for any positive-stranded RNA species. The Deltansp2 mutant viruses lacked expression of both nsp2 and an nsp2-nsp3 precursor, but cleaved the engineered chimeric nsp1-nsp3 cleavage site as efficiently as the native nsp1-nsp2 cleavage site. Replication complexes in MHVDeltansp2-infected cells lacked nsp2 but were morphologically indistinguishable from those of wild-type MHV by immunofluorescence. nsp2 expressed in cells by stable retroviral transduction was specifically recruited to viral replication complexes upon infection with MHVDeltansp2. These results demonstrate that while nsp2 of MHV and SARS-CoV is dispensable for viral replication in cell culture, deletion of the nsp2 coding sequence attenuates viral growth and RNA synthesis. These findings also provide a system for the study of determinants of nsp targeting and function.  相似文献   

16.
Viral proteomics.   总被引:1,自引:0,他引:1  
Viruses have long been studied not only for their pathology and associated disease but also as model systems for molecular processes and as tools for identifying important cellular regulatory proteins and pathways. Recent advances in mass spectrometry methods coupled with the development of proteomic approaches have greatly facilitated the detection of virion components, protein interactions in infected cells, and virally induced changes in the cellular proteome, resulting in a more comprehensive understanding of viral infection. In addition, a rapidly increasing number of high-resolution structures for viral proteins have provided valuable information on the mechanism of action of these proteins as well as aided in the design and understanding of specific inhibitors that could be used in antiviral therapies. In this paper, we discuss proteomic studies conducted on all eukaryotic viruses and bacteriophages, covering virion composition, viral protein structures, virus-virus and virus-host protein interactions, and changes in the cellular proteome upon viral infection.  相似文献   

17.
18.
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease in pigs caused by PRRS virus (PRRSV). Although PRRSV infection-induced cell apoptosis has been established, the related viral protein is still unknown. Here, we reported that PRRSV nonstructural protein 4 (nsp4) was a critical apoptosis inducer. Nsp4 could activate caspase-3, -8, and -9. Using truncated constructs without different domains in nsp4, we demonstrated that the full-length of nsp4 structure was required for its apoptosis-inducing activity. Furthermore, using site-directed mutagenesis to inactivate the 3C-like serine protease activity of nsp4, we showed that nsp4-induced apoptosis was dependent on its serine protease activity. The ability of nsp4 to induce apoptosis was significantly impaired by His39, Asp64, and Ser118 mutations, suggesting that His39, Asp64, and Ser118 were essential for nsp4 to trigger apoptosis. In conclusion, our present work showed that PRRSV nsp4 could induce apoptosis in host cells and might be partially responsible for the apoptosis induced by PRRSV infection. PRRSV 3C-like protease-mediated apoptosis represents the first report in the genus Arterivirus, family Arteriviridae.  相似文献   

19.
The herpes simplex virus transactivator VP16 and the virion host shutoff protein vhs are viral structural components that direct the activation of immediate-early gene expression and the arrest of host protein synthesis, respectively, during an infection. Recent studies show that VP16 and vhs physically interact with each other in vitro and in infected cells, suggesting that their respective regulatory functions are coupled. In this report, we used the yeast two-hybrid system and affinity chromatography with purified VP16 fusion proteins to precisely map a region in vhs that directs interaction with VP16. Deletion analysis of vhs demonstrated that a 21-amino-acid-long domain spanning residues 310 to 330 (PAAGGTEMRVSWTEILTQQIA) was sufficient for directing complex formation with VP16 in vivo and in vitro when fused to a heterologous protein. Site-directed mutagenesis of this region identified tryptophan 321 as a crucial determinant for interaction with VP16 in vitro and in vivo and additional residues that are important for stable complex formation in vitro. These findings indicate that vhs residues 310 to 330 constitute an independent and modular binding interface that is recognized by VP16.  相似文献   

20.
The cytoplasmic domains of viral glycoproteins are often involved in specific interactions with internal viral components. These interactions can concentrate glycoproteins at virus budding sites and drive efficient virus budding, or can determine virion morphology. To investigate the role of the vesicular stomatitis virus (VSV) glycoprotein (G) cytoplasmic and transmembrane domains in budding, we recovered recombinant VSVs expressing chimeric G proteins with the transmembrane and cytoplasmic domains derived from the human CD4 protein. These unrelated foreign sequences were capable of supporting efficient VSV budding. Further analysis of G protein cytoplasmic domain deletion mutants showed that a cytoplasmic domain of only 1 amino acid did not drive efficient budding, whereas 9 amino acids did. Additional studies in agreement with the CD4-chimera experiments indicated the requirement for a short cytoplasmic domain on VSV G without the requirement for a specific sequence in that domain. We propose a model for VSV budding in which a relatively non-specific interaction of a cytoplasmic domain with a pocket or groove in the viral nucleocapsid or matrix proteins generates a glycoprotein array that promotes viral budding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号