首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The herpes simplex virus (HSV) virion host shutoff (vhs) protein, the product of the UL41 (vhs) gene, is an important determinant of HSV virulence. vhs has been implicated in HSV interference with host antiviral immune responses, down-regulating expression of major histocompatibility complex molecules to help HSV evade host adaptive immunity. The severe attenuation of vhs-deficient viruses in vivo could reflect their inability to escape immune detection. To test this hypothesis, BALB/c or congenic SCID mice were infected intravaginally (i.vag.) with the HSV type 2 (HSV-2) vhs null mutant 333d41 or the vhs rescue virus 333d41(R). vhs-deficient virus remained severely attenuated in SCID mice compared with rescue virus, indicating that vhs regulation of adaptive immune responses does not influence HSV pathogenesis during acute infection. Innate antiviral effectors remain intact in SCID mice; prominent among these is alpha/beta interferon (IFN-alpha/beta). The attenuation of HSV-2 vhs mutants could reflect their failure to suppress IFN-alpha/beta-mediated antiviral activity. To test this hypothesis, 129 and congenic IFN-alpha/beta receptor-deficient (IFN-alpha/betaR(-/-)) mice were infected i.vag. with wild-type virus, vhs null mutants 333-vhsB or 333d41, or the vhs rescue virus 333d41(R). Whereas vhs-deficient viruses showed greatly reduced replication in the genital mucosa of 129 mice compared with wild-type or vhs rescue viruses, they were restored to nearly wild-type levels of replication in IFN-alpha/betaR(-/-) mice over the first 2 days postinfection. Only wild-type and vhs rescue viruses caused severe genital disease and hind limb paralysis in 129 mice, but infection of IFN-alpha/betaR(-/-) mice restored the virulence of vhs-deficient viruses. vhs-deficient viruses replicated as vigorously as wild-type and rescue viruses in the nervous systems of IFN-alpha/betaR(-/-) mice. Restoration was specific for the vhs mutation, because thymidine kinase-deficient HSV-2 did not regain virulence or the capacity to replicate in the nervous systems of IFN-alpha/betaR(-/-) mice. Furthermore, the defect in the IFN-alpha/beta response was required for restoration of vhs-deficient virus replication and virulence, but the IFN-alpha/beta-stimulated protein kinase R pathway was not involved. Finally, vhs of HSV-2 has a unique capacity to interfere with the IFN-alpha/beta response in vivo, because an HSV-1 vhs null mutant did not recover replication and virulence after i.vag. inoculation into IFN-alpha/betaR(-/-) mice. These results indicate that vhs plays an important role early in HSV-2 pathogenesis in vivo by interfering with the IFN-alpha/beta-mediated antiviral response.  相似文献   

2.
During lytic infection, the virion host shutoff (vhs) protein of herpes simplex virus (HSV) mediates the rapid degradation of RNA and shutoff of host protein synthesis. In mice, HSV type 1 (HSV-1) mutants lacking vhs activity are profoundly attenuated. HSV-2 has significantly higher vhs activity than HSV-1, eliciting a faster and more complete shutoff. To examine further the role of vhs activity in pathogenesis, we generated an intertypic recombinant virus (KOSV2) in which the vhs open reading frame of HSV-1 strain KOS was replaced with that of HSV-2 strain 333. KOSV2 and a marker-rescued virus, KOSV2R, were characterized in cell culture and tested in an in vivo mouse eye model of latency and pathogenesis. The RNA degradation kinetics of KOSV2 was identical to that of HSV-2 333, and both showed vhs activity significantly higher than that of KOS. This demonstrated that the fast vhs-mediated degradation phenotype of 333 had been conferred upon KOS. The growth of KOSV2 was comparable to that of KOS, 333, and KOSV2R in cell culture, murine corneas, and trigeminal ganglia and had a reactivation frequency similar to those of KOS and KOSV2R from explanted latently infected trigeminal ganglia. There was, however, significantly reduced blepharitis and viral replication within the periocular skin of KOSV2-infected mice compared to mice infected with either KOS or KOSV2R. Taken together, these data demonstrate that heightened vhs activity, in the context of HSV-1 infection, leads to increased viral clearance from the skin of mice and that the replication of virus in the skin is a determining factor for blepharitis. These data also suggest a role for vhs in modulating host responses to HSV infection.  相似文献   

3.
The virion host shutoff (vhs) protein of herpes simplex virus (HSV) has endoribonuclease activity and rapidly reduces protein synthesis in infected cells through mRNA degradation. Herpes simplex virus 1 (HSV-1) and HSV-2 vhs mutants are highly attenuated in vivo, but replication and virulence are largely restored to HSV-2 vhs mutants in the absence of a type I interferon (IFN) response. The role of vhs in pathogenesis and the hindrance of the type I IFN response have classically been examined with viruses that completely lack vhs or express a truncated vhs protein. To determine whether RNase activity is the principal mechanism of vhs-mediated type I IFN resistance and virulence, we constructed a HSV-2 point mutant that synthesizes full-length vhs protein lacking RNase activity (RNase(-) virus). Wild-type and mutant HSV-2 vhs proteins coimmunoprecipitated with VP16 and VP22. vhs protein bearing the point mutation was packaged into the virion as efficiently as the wild-type vhs protein. Like a mutant encoding truncated vhs, the RNase(-) virus showed IFN-dependent replication that was restricted compared with that of the wild-type virus. The RNase(-) virus was highly attenuated in wild-type mice infected intravaginally, with reduced mucosal replication, disease severity, and spread to the nervous system comparable to those of the vhs truncation mutant. Surprisingly, in alpha/beta interferon (IFN-alpha/beta) receptor knockout mice, the vhs RNase mutant was more attenuated than the vhs truncation mutant in terms of disease severity and virus titer in vaginal swabs and central nervous system samples, suggesting that non-enzymatically active vhs protein interferes with efficient virus replication. Our results indicate that vhs enzymatic activity plays a complex role in vhs-mediated type I IFN resistance during HSV-2 infection.  相似文献   

4.
During lytic infection, the virion host shutoff (vhs) protein mediates the rapid degradation of mRNA and the shutoff of host protein synthesis. In vivo, herpes simplex virus type 1 (HSV-1) mutants lacking vhs activity are profoundly attenuated. Homologs of vhs exist in all of the neurotropic herpesviruses, and the goal of this study was to determine the virulence of HSV-2 mutants lacking vhs. Two HSV-2 recombinants were used in this study: 333-vhsB, which has a lacZ cassette inserted into the N terminus of vhs, and 333d41, which has a 939-bp deletion in vhs. As expected, both 333-vhsB and 333d41 failed to induce the cellular RNA degradation characteristic of HSV. Corneal, vaginal, and intracerebral routes of infection were used to study pathogenesis. Both viruses grew to significantly lower titers in the corneas, trigeminal ganglia, vaginas, dorsal root ganglia, spinal cords, and brains of mice than wild-type and rescue viruses, with a correspondingly reduced induction of disease. Both viruses, however, reactivated efficiently from explanted trigeminal ganglia, showing that vhs is dispensable for reactivation. The lethality of 333d41 following peripheral infection of mice, however, was significantly higher than that of 333-vhsB, suggesting that some of the attenuation of 333-vhsB may be due to the presence of a lacZ cassette in the vhs locus. Taken together, these data show that vhs represents an important determinant of HSV-2 pathogenesis and have implications for the design of HSV-2 recombinants and vaccines.  相似文献   

5.
Herpes simplex viruses lacking the virion host shutoff function (Δvhs) are avirulent and hypersensitive to type I and type II interferon (IFN). In this study, we demonstrate that even in the absence of IFN responses in AG129 (IFN-αβγR(-/-)) mice, Δvhs remains highly attenuated via corneal infection but is fully virulent via intracranial infection. The data demonstrate that the interferon-independent inherent replication defect of Δvhs has a significant impact upon peripheral replication and neuroinvasion.  相似文献   

6.
7.
8.
Virus-infected cells secrete a broad range of interferon (IFN) subtypes which in turn trigger the synthesis of antiviral factors that confer host resistance. IFN-alpha, IFN-beta and other type I IFNs signal through a common universally expressed cell surface receptor, whereas IFN-lambda uses a distinct receptor complex for signaling that is not present on all cell types. Since type I IFN receptor-deficient mice (IFNAR1(0/0)) exhibit greatly increased susceptibility to various viral diseases, it remained unclear to which degree IFN-lambda might contribute to innate immunity. To address this issue we performed influenza A virus infections of mice which carry functional alleles of the influenza virus resistance gene Mx1 and which, therefore, develop a more complete innate immune response to influenza viruses than standard laboratory mice. We demonstrate that intranasal administration of IFN-lambda readily induced the antiviral factor Mx1 in mouse lungs and efficiently protected IFNAR1(0/0) mice from lethal influenza virus infection. By contrast, intraperitoneal application of IFN-lambda failed to induce Mx1 in the liver of IFNAR1(0/0) mice and did not protect against hepatotropic virus infections. Mice lacking functional IFN-lambda receptors were only slightly more susceptible to influenza virus than wild-type mice. However, mice lacking functional receptors for both IFN-alpha/beta and IFN-lambda were hypersensitive and even failed to restrict usually non-pathogenic influenza virus mutants lacking the IFN-antagonistic factor NS1. Interestingly, the double-knockout mice were not more susceptible against hepatotropic viruses than IFNAR1(0/0) mice. From these results we conclude that IFN-lambda contributes to inborn resistance against viral pathogens infecting the lung but not the liver.  相似文献   

9.
Immunization of mice with herpes simplex virus type 1 (HSV-1) mutant viruses containing deletions in the gene for virion host shutoff (vhs) protein diminishes primary and recurrent corneal infection with wild-type HSV-1. vhs mutant viruses are severely attenuated in vivo but establish latent infections in sensory neurons. A safer HSV-1 mutant vaccine strain, Delta41Delta29, has combined vhs and replication (ICP8-) deficits and protects BALB/c mice against primary corneal infection equivalent to a vhs- strain (BGS41). Here, we tested the hypothesis that Delta41Delta29 can protect as well as BGS41 in a therapeutic setting. Because immune response induction varies with the mouse and virus strains studied, we first determined the effect of prophylactic Delta41Delta29 vaccination on primary ocular infection of NIH inbred mice with HSV-1 McKrae, a model system used to evaluate therapeutic vaccines. In a dose-dependent fashion, prophylactic Delta41Delta29 vaccination decreased postchallenge tear film virus titers and ocular disease incidence and severity while eliciting high levels of HSV-specific antibodies. Adoptive transfer studies demonstrated a dominant role for immune serum and a lesser role for immune cells in mediating prophylactic protection. Therapeutically, vaccination with Delta41Delta29 effectively reduced the incidence of UV-B-induced recurrent virus shedding in latently infected mice. Therapeutic Delta41Delta29 and BGS41 vaccination decreased corneal opacity and delayed-type hypersensitivity responses while elevating antibody titers, compared to controls. These data indicate that replication is not a prerequisite for generation of therapeutic immunity by live HSV mutant virus vaccines and raise the possibility that genetically tailored replication-defective viruses may make effective and safe therapeutic vaccines.  相似文献   

10.
Highly attenuated modified vaccinia virus Ankara (MVA) serves as a candidate vaccine to immunize against infectious diseases and cancer. MVA was randomly obtained by serial growth in cultures of chicken embryo fibroblasts (CEF), resulting in the loss of substantial genomic information including many genes regulating virus-host interactions. The vaccinia virus interferon (IFN) resistance gene E3L is among the few conserved open reading frames encoding viral immune defense proteins. To investigate the relevance of E3L in the MVA life cycle, we generated the deletion mutant MVA-DeltaE3L. Surprisingly, we found that MVA-DeltaE3L had lost the ability to grow in CEF, which is the first finding of a vaccinia virus host range phenotype in this otherwise highly permissive cell culture. Reinsertion of E3L led to the generation of revertant virus MVA-E3rev and rescued productive replication in CEF. Nonproductive infection of CEF with MVA-DeltaE3L allowed viral DNA replication to occur but resulted in an abrupt inhibition of viral protein synthesis at late times. Under these nonpermissive conditions, CEF underwent apoptosis starting as early as 6 h after infection, as shown by DNA fragmentation, Hoechst staining, and caspase activation. Moreover, we detected high levels of active chicken alpha/beta IFN (IFN-alpha/beta) in supernatants of MVA-DeltaE3L-infected CEF, while moderate IFN quantities were found after MVA or MVA-E3rev infection and no IFN activity was present upon infection with wild-type vaccinia viruses. Interestingly, pretreatment of CEF with similar amounts of recombinant chicken IFN-alpha inhibited growth of vaccinia viruses, including MVA. We conclude that efficient propagation of MVA in CEF, the tissue culture system used for production of MVA-based vaccines, essentially requires conserved E3L gene function as an inhibitor of apoptosis and/or IFN induction.  相似文献   

11.
Complement activation is an important component of the innate immune response against viral infection and also shapes adaptive immune responses. Despite compelling evidence that complement activation enhances T cell and antibody (Ab) responses during viral infection, it is unknown whether inhibition of complement by pathogens alters these responses. Vaccinia virus (VACV) modulates complement activation by encoding a complement regulatory protein called the vaccinia virus complement control protein (VCP). Although VCP has been described as a virulence factor, the mechanisms by which VCP enhances VACV pathogenesis have not been fully defined. Since complement is necessary for optimal adaptive immune responses to several viruses, we hypothesized that VCP contributes to pathogenesis by modulating anti-VACV T cell and Ab responses. In this study, we used an intradermal model of VACV infection to compare pathogenesis of wild-type virus (vv-VCPwt) and a virus lacking VCP (vv-VCPko). vv-VCPko formed smaller lesions in wild-type mice but not in complement-deficient mice. Attenuation of vv-VCPko correlated with increased accumulation of T cells at the site of infection, enhanced neutralizing antibody responses, and reduced viral titers. Importantly, depleting CD8(+) T cells together with CD4(+) T cells, which also eliminated T helper cell-dependent Ab responses, restored vv-VCPko to wild-type levels of virulence. These results suggest that VCP contributes to virulence by dampening both antibody and T cell responses. This work provides insight into how modulation of complement by poxviruses contributes to virulence and demonstrates that a pathogen-encoded complement regulatory protein can modulate adaptive immunity.  相似文献   

12.
Virion host shutoff (vhs) is a 58-kDa protein encoded by the UL41 gene of herpes simplex virus (HSV). vhs resides within the tegument of HSV, enters the cell cytoplasm at infection, and destabilizes host cell and viral mRNA. Late in infection, vhs must be assembled into the tegument of progeny virions, a poorly understood process. Using an anti-vhs antiserum and Western blotting of total cell or cytoplasmic extracts, we found that vhs is largely insoluble in HSV-infected cells, even in the presence of high levels of salt and the detergent Triton X-100. Furthermore, a subpopulation of vhs appears to be associated with detergent-insoluble lipid rafts and this raft population is enriched in a cytoplasmic fraction which contains assembling and mature HSV particles. Our data raise the possibility that HSV tegument polypeptides associate with membrane rafts, in common with the matrix proteins of a number of other viruses.  相似文献   

13.
The propensity of RNA viruses to revert attenuating mutations contributes to disease and complicates vaccine development. Despite the presence of virulent revertant viruses in some live-attenuated vaccines, disease from vaccination is rare. This suggests that in mixed viral populations, attenuated viruses may limit the pathogenesis of virulent viruses, thus establishing a virulence threshold. Here we examined virulence thresholds using mixtures of virulent and attenuated viruses in a transgenic mouse model of poliovirus infection. We determined that a 1,000-fold excess of the attenuated Sabin strain of poliovirus was protective against disease induced by the virulent Mahoney strain. Protection was induced locally, and inactivated virus conferred protection. Treatment with a poliovirus receptor-blocking antibody phenocopied the protective effect of inactivated viruses in vitro and in vivo, suggesting that one mechanism controlling virulence thresholds may be competition for a viral receptor. Additionally, the type I interferon response reduces poliovirus pathogenesis; therefore, we examined virulence thresholds in mice lacking the alpha/beta interferon receptor. We found that the attenuated virus was virulent in immunodeficient mice due to the enhanced replication and reversion of attenuating mutations. Therefore, while the type I interferon response limits the virulence of the attenuated strain by reducing replication, protection from disease conferred by the attenuated strain in immunocompetent mice can occur independently of replication. Our results identified mechanisms controlling the virulence of mixed viral populations and indicate that live-attenuated vaccines containing virulent virus may be safe, as long as virulent viruses are present at levels below a critical threshold.  相似文献   

14.
Studies with mice lacking the common plasma membrane receptor for type I interferon (IFN-αβR(-)(/)(-)) have revealed that IFN signaling restricts tropism, dissemination, and lethality after infection with West Nile virus (WNV) or several other pathogenic viruses. However, the specific functions of individual IFN subtypes remain uncertain. Here, using IFN-β(-)(/)(-) mice, we defined the antiviral and immunomodulatory function of this IFN subtype in restricting viral infection. IFN-β(-)(/)(-) mice were more vulnerable to WNV infection than wild-type mice, succumbing more quickly and with greater overall mortality, although the phenotype was less severe than that of IFN-αβR(-)(/)(-) mice. The increased susceptibility of IFN-β(-)(/)(-) mice was accompanied by enhanced viral replication in different tissues. Consistent with a direct role for IFN-β in control of WNV replication, viral titers in ex vivo cultures of macrophages, dendritic cells, fibroblasts, and cerebellar granule cell neurons, but not cortical neurons, from IFN-β(-)(/)(-) mice were greater than in wild-type cells. Although detailed immunological analysis revealed no major deficits in the quality or quantity of WNV-specific antibodies or CD8(+) T cells, we observed an altered CD4(+) CD25(+) FoxP3(+) regulatory T cell response, with greater numbers after infection. Collectively, these results suggest that IFN-β controls WNV pathogenesis by restricting infection in key cell types and by modulating T cell regulatory networks.  相似文献   

15.
Our main objective of this study was to determine how Human Immunodeficiency Virus (HIV) avoids induction of the antiviral Type I Interferon (IFN) system. To limit viral infection, the innate immune system produces important antiviral cytokines such as the IFN. IFN set up a critical roadblock to virus infection by limiting further replication of a virus. Usually, IFN production is induced by the recognition of viral nucleic acids by innate immune receptors and subsequent downstream signaling. However, the importance of IFN in the defense against viruses has lead most pathogenic viruses to evolve strategies to inhibit host IFN induction or responses allowing for increased pathogenicity and persistence of the virus. While the adaptive immune responses to HIV infection have been extensively studied, less is known about the balance between induction and inhibition of innate immune defenses, including the antiviral IFN response, by HIV infection. Here we show that HIV infection of T cells does not induce significant IFN production even IFN I Interferon production. To explain this paradox, we screened HIV proteins and found that two HIV encoded proteins, Vpu and Nef, strongly antagonize IFN induction, with expression of these proteins leading to loss of expression of the innate immune viral RNA sensing adaptor protein, IPS-1 (IFN-β promoter stimulator-1). We hypothesize that with lower levels of IPS-1 present, infected cells are defective in mounting antiviral responses allowing HIV to replicate without the normal antiviral actions of the host IFN response. Using cell lines as well as primary human derived cells, we show that HIV targeting of IPS-1 is key to limiting IFN induction. These findings describe how HIV infection modulates IFN induction providing insight into the mechanisms by which HIV establishes infection and persistence in a host.  相似文献   

16.
17.
Given their generous transgene capacity and inherent neurotropism, herpes simplex virus (HSV-1)-based viral vectors are promising tools for gene delivery to the central nervous system. Despite their widespread pre-clinical use, vector toxicity remains a concern with regard to the use of herpes vectors in humans. One potential source of toxicity stems from the tegument-associated virion host shutoff protein (vhs), which induces translational arrest in the host cell through non-specific mRNAse activity. In the current study we utilized a series of HSV-1 viruses containing a deletion in the U(L)41 open reading frame to investigate: (1) the requirement of intact vhs function in amplicon packaging and (2) whether vhs influences the post-transduction survival of dissociated cortical neurons. Our results demonstrate that while amplicon yield was reduced an order of magnitude, U(L)41 deletion was associated with reduced vector toxicity. Furthermore, partial reconstitution of vhs function using mRNAse-inactive point mutants improved amplicon titers without imparting the toxicity observed with wild-type controls. These findings offer a novel approach to improving the titer and toxicity profiles of HSV-based viral vectors.  相似文献   

18.
19.
20.
Subacute sclerosing panencephalitis (SSPE) is a chronic and usually fatal central nervous system disease caused by a persistent infection with measles virus. The pathogenic mechanisms of the disease are poorly understood, but restricted expression of viral antigens within the infected tissue appears to be involved. We have previously proposed that interferon (IFN) plays a role in the pathogenesis of SSPE by interacting with viral subpopulations that are relatively resistant to IFN-mediated inhibition. Such IFN-resistant viral subpopulations have now been identified in six independent strains of measles virus, two derived from patients with measles and four derived from patients with SSPE. By means of a replicative-plating procedure, these IFN-resistant viruses were found to be heterogeneous with respect to their growth in the presence of high levels of IFN. One viral form replicates fully, with complete destruction of the infected-cell culture, whereas the other form induces a restricted, self-limited form of cytopathic effect, similar to that seen with cell-associated strains of measles virus isolated from SSPE patients. Passage of a virus stock containing both of these viral forms through the central nervous system tissue of newborn hamsters strongly selects for the viral form associated with the self-limiting type of cytopathic effect. The presence of this form of IFN-resistant virus coupled with chronic production of IFN within the central nervous system may account for viral persistence in SSPE patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号