首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The RNA-dependent RNA polymerase from Halobacterium cutirubrum was purified to electrophoretic homogeneity. 2. It requires a single-stranded molecule of RNA or polyribonucleotide as template. 3. Nearest-neighbour analyses of the products formed on random poly(A,U) or alternating poly(A-U) templates and base analysis of the product of synthesis directed by wheat-germ RNA prove that the template is copied accurately. 4. The enzyme initiates new chains with purine ribonucleoside triphosphates. 5. Sucrose-density-gradient analysis of the product indicates that it has a size distribution similar to that of the template. 6. Preliminary amino acid analysis of the RNA-dependent polymerase shows that it contains much less serine than either of the subunits of H. cutirubrum DNA-dependent RNA polymerase. 7. The RNA-dependent enzyme is unable to substitute for either subunit of the DNA-dependent polymerase, and both the latter are devoid of RNA-dependent activity.  相似文献   

2.
K Ito  M Arens    M Green 《Journal of virology》1975,15(6):1507-1510
The major DNA polymerase in a nuclear membrane complex that is capable of synthesizing viral DNA sequences in vitro has been purified about 900-fold from adenovirus 2-infected KB cells. The enzyme was characterized as belonging to the class of mammalian DNA polymerases (DNA polymerase gamma) that can utilize poly(A) with oligo(dT) as template primer.  相似文献   

3.
4.
5.
The in vitro RNA synthesis and poly(A) synthesis catalyzed by cauliflower RNA polymerase are stimulated by an addition of polyethylenimine (PEI) at a low concentration to the reaction medium. Evidence is presented that PEI exerts its stimulative effect on a reaction coexisting of enzyme, template, and substrate, and not on the template or enzyme alone.  相似文献   

6.
Characterization of purified DNA-dependent RNA polymerase (EC 2.7.7.6) of Caulobacter crescentus, strain CB15 has led to the conclusion that this enzyme catalyzes poly(A) synthesis in the absence of template. Poly(A) synthetase activity co-purifies with both holoenzyme and core polymerase on DNA-cellulose columns, and core polymerase purified to 98% homogeneity by glycerol gradient centrifugation is still capable of catalyzing poly(A) polymerization. Both RNA synthesis and poly(A) polymerization activities are sensitive to rifampicin. In addition, RNA polymerase purified from partially rifampicin-sensitive mutants exhibits the same partial sensitivity in vitro to the drug in the synthesis of RNA and poly(A). The enzyme used in these studies was prepared by a simple method which allows a high yield of pure RNA polymerase from large batches of exponential cells. The procedure includes high speed centrifugation of cell extracts, DEAE-cellulose column, DNA-affinity chromatography, and low salt glycerol gradient centrifugation. Holoenzyme can be resolved into core and sigma subunit by either DNA-cellulose chromatography or glycerol gradient centrifugation, and the latter step allows recovery of pure sigma factor.  相似文献   

7.
We have studied the circular dichroism and ultraviolet difference spectra of T7 bacteriophage DNA and various synthetic polynucleotides upon addition of Escherichia coli RNA polymerase. When RNA polymerase binds nonspecifically to T7 DNA, the CD spectrum shows a decrease in the maximum at 272 but no detectable changes in other regions of the spectrum. This CD change can be compared with those associated with known conformational changes in DNA. Nonspecific binding to RNA polymerase leads to an increase in the winding angle, theta, in T7 DNA. The CD and UV difference spectra for poly[d(A-T)] at 4 degrees C show similar effects. At 25 degrees C, binding of RNA polymerase to poly[d(A-T)] leads to hyperchromicity at 263 nm and to significant changes in CD. These effects are consistent with an opening of the double helix, i.e. melting of a short region of the DNA. The hyperchromicity observed at 263 nm for poly[d(A-T)] is used to determine the number of base pairs disrupted in the binding of RNA polymerase holoenzyme. The melting effect involves about 10 base pairs/RNA polymerase molecule. Changes in the CD of poly(dT) and poly(dA) on binding to RNA polymerase suggest an unstacking of the bases with a change in the backbone conformation. This is further confirmed by the UV difference spectra. We also show direct evidence for differences in the template binding site between holo- and core enzyme, presumably induced by the sigma subunit. By titration of the enzyme with poly(dT) the physical site size of RNA polymerase on single-stranded DNA is approximately equal to 30 bases for both holo- and core enzyme. Titration of poly[d(A-T)] with polymerase places the figure at approximately equal to 28 base pairs for double-stranded DNA.  相似文献   

8.
K M Rose  P A Ruch  S T Jacob 《Biochemistry》1975,14(16):3598-3604
Factors affecting the inhibition of RNA polymerase II from rat liver by the O-n-octyloxime of 3-formylrifamycin SV (AF/013) were investigated. Using either native or denatured calf-thymus DNA as template, almost complete inhibition of RNA polymerase II was observed when AF/013 was added directly to the enzyme. Considerable resistance to AF/013 was observed when RNA polymerase II was preincubated with denatured DNA at either 0 or 37 degrees. However, under similar conditions, no resistance was observed when enzyme was preincubated with native DNA. Only when AF/013 was added to the ongoing reaction using native DNA did a resistance to AF/013 occur. The inhibition of RNA polymerase II by AF/013 was competitive with respect to all four nucleoside triphosphate substrates. The inhibition by AF/013 remaining after enzyme-DNA complex formation also appeared competitive with nucleoside triphosphate levels. The effect of exogenous protein (bovine serum albumin, BSA) on the inhibition of RNA polymerase II was also investigated. BSA reduced the extent of inhibition by AF/013, but did not alter the competitive nature of inhibition. Concurrently, the inhibition of highly purified nuclear poly(A) polymerase from rat liver, a template independent enzyme which incorporates AMP in a chain elongation reaction, was examined. As in the case of RNA polymerase, poly(A) polymerase was inhibited by AF/013 in a manner competitive with the nucleoside triphosphate substrate. The competitive nature of inhibition of RNA polymerase by AF/013 with respect to all four nucleoside triphosphate substrates, before and after enzyme-DNA complex formation, as well as the competitive nature of inhibition of poly(A) polymerase with respect to ATP tend to indicate that the major effect of AF/013 on RNA polymerase II is at the level of the substrate binding as opposed to a specific inhibition of initiation.  相似文献   

9.
RNA polymerase I was purified from chromatin isolated from auxin-treated soybean hypocotyl. Purification was achieved by using Agarose A-1.5m gel filtration, DEAE-cellulose, CM-sephadex, and phosphocellulose chromatography, and sucrose density gradient centrifugation. With denatured calf thymus DNA as template, the enzyme has a high specific activity (200-300 nmol/mg/30 min at 28 degrees C) which is comparable to other RNA polymerase I enzymes purified from animals and yeast. While the gel profiles indicate that purification to homogeneity (greater than 90%) may not have been achieved, the enzyme appears to be composed of possibly 7 subunits, several of which are similar to the subunits of yeast RNA polymerase I. The putative subunits and molar ratios are 183 000 (1), 136 000 (1), 50 000 (0.5), 46 000 (0.5), 40 000 (0.5), 33 000 (0.2), and 28 000 (2). The purified enzyme strongly prefers a completely denatured template such as poly(dC).  相似文献   

10.
5-Isopropyl-2'-deoxyuridine (ip5dU) was recently recognized as a clinically useful antiherpetic (HSV-1) agent. An ip5dU-containing polynucleotide, poly (dA-dT, ip5dU) was prepared to study how physical and bio-organic properties of the synthetic DNA model poly (dA-dT) would change upon partial substitution of thymidine. Synthesis was carried out with DNA polymerase enzyme and the polymers contained 7-9% of ip5dU. It proved to be less thermostable than poly (dA-dT) and the transition width was highly increased. Although it was a very efficient template for DNA polymerase enzyme, template activity for RNA synthesis was strongly reduced by the presence of ip5dU. Diminished stability against enzymic degradation, especially against single-strand-specific Nuclease S1 was also observed.  相似文献   

11.
12.
We describe a new method for quantitatively assaying the omega subunit of Escherichia coli RNA polymerase. The assay is based on the ability of RNA polymerase holoenzyme to catalyze the continuous synthesis of the dinucleotide pApU on a poly[d(A-T)] . poly[d(A-T)] template when supplied with AMP and UTP as substrates. Core enzyme, lacking omega subunit, catalyzed this reaction at a rate less than 1% that of holoenzyme. The omega subunit was not released from the enzyme/DNA complex during dinucleotide synthesis. Using this assay, a titration of a fixed concentration of core enzyme was observed with increasing concentrations of added omega subunit. Below a 1:1 omega:core ratio the measured activity increased linearly with omega concentration, whereas above a 1:1 ratio the activity remained constant. An immediate application of the assay is in determining the concentration of active omega, or equivalently of active holoenzyme, in any RNA polymerase preparation.  相似文献   

13.
14.
The rate of homoribopolymer-directed DNA synthesis by detergent-disrupted Moloney murine leukemia virus can be stimulated or inhibited by histone, depending on the ratio of histone to template. Of the fractions which can be separated from the whole histone, f1 causes both the greatest stimulation and the greatest inhibition. The effect of histone f1 is qualitatively similar whether the template is polyadenylate (poly A), polycytidylate, or polyuridylate, but the stimulation is greatest with poly A. The pattern of stimulation and inhibition differs, however, for a different polymerase; the DNA polymerase of Micrococcus luteus is inhibited by histone concentrations which stimulate the viral enzyme and stimulated by concentrations which inhibit the viral enzyme. For the viral enzyme, the optimum histone concentration is unaffected by changes in the virus or primer concentration; but it varies in proportion to the template concentration, suggesting that histone acts by combining stoichiometrically with the template. These data raise the possibility that a histone-like protein may participate in the synthesis of the provirus of RNA tumor viruses.  相似文献   

15.
N Shimamoto  C W Wu 《Biochemistry》1980,19(5):842-848
A non-steady-state kinetic method has been developed to observe the initiation of long RNA chains by Escherichia coli RNA polymerase without the enzyme turnover. This method was used to determine the order of binding of the first two nucleotides to the enzyme in RNA synthesis with the first two nucleotides to the enzyme in RNA synthesis with poly(dA-dT) as the template. It was shown that initiator [ATP, uridyly(3'-5')adenosine, or adenyly(3'-5')uridylyl-(3'-5')adenosine] binds first to the enzyme-template complex, followed by UTP binding. The concentration dependence of UTP incorporation into the initiation complex suggests that more than one UTP molecule may bind to the enzyme-DNA complex during the initiation process. Comparison of the kinetic parameters derived from these studies with those obtained under steady-state conditions indicates that the steps involving binding of initiator or UTP during initiation cannot be rate limiting in the poly(dA-dT)-directed RNA synthesis. The non-steady-state technique also provides a method for active-site titration of RNA polymerase. The results show that only 36 +/- 9% of the enzyme molecules are active in a RNA polymerase preparation of high purity and specific activity. In addition, the minimal length of poly(dA-dT) involved in RNA synthesis by one RNA polymerase molecule was estimated to be approximately 500 base pairs.  相似文献   

16.
Kirsten murine sarcoma-leukemia virus (Ki-MSV[MLV]) was found to contain less RNase H per unit of viral DNA polymerase than avian Rous sarcoma virus (RSV). Upon purification by chromatography on Sephadex G-200 and subsequent glycerol gradient sedimentation the avian DNA polymerase was obtained in association with a constant amount of RNase H. By contrast, equally purified DNA polymerase of Ki-MSV(MLV) and Moloney [Mo-MSV(MLV)] lacked detectable RNase H if assayed with two homopolymer and phage fd DNA-RNA hybrids as substrates. On the basis of picomoles of nucleotides turned over, the ratio of RNase H to purified avian DNA polymerase was 1:20 and that of RNase H to purified murine DNA polymerase ranged between <1:2,800 and 5,000. Based on the same activity with poly (A).oligo(dT) the activity of the murine DNA polymerase was 6 to 60 times lower than that of the avian enzyme with denatured salmon DNA template or with avian or murine viral RNA templates assayed under various conditions (native, heat-dissociated, with or without oligo(dT) and oligo(dC) and at different template enzyme ratios). The template activities of Ki-MSV(MLV) RNA and RSV RNA were enhanced uniformly by oligo(dT) but oligo(dC) was much less efficient in enhancing the activity of MSV(MLV) RNA than that of RSV RNA. It was concluded that the purified DNA polymerase of Ki-MSV(MLV) differs from that of Rous sarcoma virus in its lack of detectable RNase H and in its low capacity to transcribe viral RNA and denatured salmon DNA. Some aspects of these results are discussed.  相似文献   

17.
18.
19.
20.
Evidence for template-specific sites in DNA polymerases   总被引:3,自引:0,他引:3  
Using rabbit hemoglobin messenger RNA as template, E. coli polymerase I produces poly (dT), poly (dA)·(dT) and antimessenger DNA products. Mild heating of the enzyme causes a differential loss in activity as indicated by three rates of inactivation for the three types of synthesis. Heat inactivation studies have also been carried out with DNA polymerases from oncogenic RNA viruses and mammalian sources using various homopolymer-oligomer pairs as primertemplates. In general, for any given enzyme these synthetic primer-templates reveal different extents of inactivation of the polymerase. These findings may be interpreted to suggest a) that the binding of DNA polymerase to various primer-templates produces conformational changes in the enzyme which are dependent on the type of template bound, or b) that many, if not all, DNA polymerases have different subsites for different templates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号