首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stimulation with live dengue virus of peripheral blood mononuclear cells from a dengue virus type 4-immune donor generated virus-specific, serotype-cross-reactive, CD8+, class I-restricted cytotoxic T lymphocytes (CTL) capable of lysing dengue virus-infected cells and cells pulsed with dengue virus antigens of all four serotypes. These CTL lysed autologous fibroblasts infected with vaccinia virus-dengue virus recombinant viruses containing the E gene or several nonstructural dengue virus type 4 genes. These results demonstrate that both dengue virus structural and nonstructural proteins are targets for the cytotoxic T-cell-mediated immune response to dengue virus and suggest that serotype-cross-reactive CD8+ CTL may be important mediators of viral clearance and of virus-induced immunopathology during secondary dengue virus infections.  相似文献   

2.
Vaccinia virus-specific cytotoxic T-lymphocyte (CTL) clones were established from a healthy donor, who had been immunized with vaccinia virus vaccine, by stimulation of peripheral blood lymphocytes with UV-inactivated vaccinia virus antigen. The phenotype of all of the clones established was CD3+ CD4+ CD8- Leu11-. We used a panel of allogenic vaccinia virus-infected B-lymphoblastoid cell lines and demonstrated that some of the clones recognized vaccinia virus epitopes presented by human leukocyte antigen (HLA) class II molecules. Monoclonal antibodies specific for either HLA-DP or HLA-DR determinant reduced the cytotoxicity of specific clones. The HLA-restricted cytotoxicity of the clones is vaccinia virus specific, because vaccinia virus-infected but not influenza virus-infected autologous target cells were lysed. Using vaccinia virus deletion mutants, we found that some of the CTL clones recognize an epitope(s) that lies within the HindIII KF regions of the vaccinia virus genome. These results indicate that heterogeneous CD4+ CTL clones specific for vaccinia virus are induced in response to infection and may be important in recovery from and protection against poxvirus infections.  相似文献   

3.
Distinct functional CD8+ T-cell populations have been observed during human immunodeficiency virus (HIV) infection. One of these functions is the inhibition of viral replication by a noncytotoxic mechanism, which was shown to be mediated by the CD8+CD28+ subpopulation. On the other hand, CD8+ T cells exert an HIV-specific cytotoxic activity. The present study shows that CD8+CD28- lymphocytes display this HIV-specific cytotoxic activity, which is detectable immediately after the cells are purified from peripheral blood. The CD28- population is also able to proliferate and to retain its cytotoxic activity after in vitro restimulation with autologous blast cells. Finally, HIV-specific cytotoxic T cells can be obtained in vitro from the CD8+CD28+ population.  相似文献   

4.
Murine CD8+ cytotoxic T lymphocytes lyse Toxoplasma gondii-infected cells   总被引:14,自引:0,他引:14  
Studies were performed to determine whether CTL against Toxoplasma gondii-infected cells could be induced in a murine model of T. gondii infection in which CD8+ T lymphocytes have been shown to play a major role in resistance against this parasite. In 51Cr release assays, nylon wool nonadherent spleen cells from BALB/c (H-2d) mice immunized with the temperature-sensitive (ts-4) mutant strain of T. gondii were cytotoxic for T. gondii-infected P815 (H-2d) mastocytoma cells but not for uninfected cells. This cytotoxic activity was remarkably increased after in vitro stimulation with T. gondii-infected syngeneic spleen cells. The effector cells were shown to be CD8+ T lymphocytes, because the cytotoxicity was significantly inhibited by depletion of CD8+ T lymphocytes but not by depletion of CD4+ T lymphocytes. This cytotoxic activity was genetically restricted. Spleen cells from T. gondii-immune BALB/c mice were not cytotoxic for T. gondii-infected EL4 (H-2b) thymoma cells, whereas spleen cells from T. gondii-immune C57B1/6 (H-2b) mice were cytotoxic for T. gondii-infected EL4 cells but not for T. gondii-infected P815 cells. The cytolytic activity of CD8+ T lymphocytes against T. gondii-infected cells might be a mechanism whereby these cells confer resistance against T. gondii.  相似文献   

5.
CD8+ cytotoxic T lymphocytes (CTLs) are preferred immune cells for targeting cancer. During cancer progression, CTLs encounter dysfunction and exhaustion due to immunerelated tolerance and immunosuppression within the tumor microenvironment (TME), with all favor adaptive immune-resistance. Cancer-associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and regulatory T cells (Tregs) could make immunologic barriers against CD8 + T cell-mediated antitumor immune responses. Thus, CD8 + T cells are needed to be primed and activated toward effector CTLs in a process called tumor immunity cycle for making durable and efficient antitumor immune responses. The CD8 + T cell priming is directed essentially as a corroboration work between cells of innate immunity including dendritic cells (DCs) and natural killer (NK) cells with CD4 + T cells in adoptive immunity. Upon activation, effector CTLs infiltrate to the core or invading site of the tumor (so-called infiltrated–inflamed [I–I] TME) and take essential roles for killing cancer cells. Exogenous reactivation and/or priming of CD8 + T cells can be possible using rational immunotherapy strategies. The increase of the ratio for costimulatory to coinhibitory mediators using immune checkpoint blockade (ICB) approach. Programmed death-1 receptor (PD-1)–ligand (PD-L1) and CTL-associated antigen 4 (CTLA-4) are checkpoint receptors that can be targeted for relieving exhaustion of CD8 + T cells and renewing their priming, respectively, and thereby eliminating antigen-expressing cancer cells. Due to a diverse relation between CTLs with Tregs, the Treg activity could be dampened for increasing the number and rescuing the functional potential of CTLs to induce immunosensitivity of cancer cells.  相似文献   

6.
This brief review focuses on the way that our understanding of virus-specific CD8(+) T-cell-mediated immunity evolved, giving particular attention to the early impact of the program at the Australian National University. The story developed through a sequence of distinct eras, each of which can be defined in the context of the technologies available at that time. The progress has been enormous, but there is a great deal still to be learned. A particular challenge is to use what we know for human benefit.  相似文献   

7.
PBMC from healthy adult individuals seropositive for measles virus (MV) were tested for their capacity to proliferate to UV-inactivated MV (UV-MV) or to autologous MV-infected EBV-transformed B cell lines (EBV-BC). MV-specific T cell responses were observed in 11 of 15 donors tested (stimulation index greater than 2), when optimal doses of UV-MV were used in proliferative assays. T cell clones were generated from PBMC of three donors responding to MV, by using either UV-MV or MV-infected autologous EBV-BC as APC. Stimulation with UV-MV generated exclusively CD3+ CD4+ CD8- MV-specific T cells, whereas after stimulation of PBMC with MV-infected EBV-BC, both CD3+ CD4+ CD8- and CD3+ CD4- CD8+ MV-specific T cell clones were obtained. Of 19 CD4+ T cell clones tested so far, 7 clones reacted specifically with purified fusion protein and 1 with purified hemagglutinin protein. Seven clones proliferated in response to the internal proteins of MV. Three clones reacted to whole virus but not to one of the purified proteins, whereas one clone seemed to recognize more than one polypeptide. Some of the T cell clones, generated from in vitro stimulation of PBMC with UV-MV, failed to recognize MV Ag when MV-infected EBV-BC were used as APC instead of UV-MV and PBMC. CD3+ CD4+ CD8- T cell clones recognized MV in association with HLA class II Ag (HLA-DQ or -DR), and most of them displayed CTL activity to autologous MV-infected EBV-BC. All CD4+ HLA class II-restricted CTL clones thus far tested were capable of assisting B lymphocytes for the production of MV-specific antibody. The CD4- CD8+ T cell clone MARO 1 recognized MV in association with HLA class I molecules and displayed cytotoxic activity toward MV-infected EBV-BC.  相似文献   

8.
In order to clarify the differential activation of CD4+ and CD8+ HSV-specific CTL, we compared the characteristics of CTL generated by different methods of in vitro HSV stimulation by treatment of effectors with anti-CD4 and anti-CD8 mAb and C after the elimination of nonspecific cytotoxic effector cells. Cell-free HSV mainly activated CD4+ CTL precursors, whereas HSV-infected fibroblasts were more effective in activating CD8+ CTL precursors than CD4+ CTL precursors. In addition, limiting dilution analyses with enriched T cells from two HSV-seropositive donors revealed that the frequency of HSV-specific CD4+ CTL precursors responsive to stimulation with free HSV was approximately 1/4,000 to 6,000 CD4+ T cells, whereas that of precursors responsive to stimulation with HSV-infected fibroblasts was approximately 1/19,000 to 22,000 CD4+ T cells. Conversely, the frequency of CD8+ CTL precursors in peripheral blood responsive to stimulation with free HSV was approximately 1/28,000 to 30,000 CD8+ T cells, whereas that of precursors responsive to stimulation with HSV-infected fibroblasts was approximately 1/10,000 to 11,000 CD8+ T cells. The present data suggest that generalized viral infection due to cell-free viruses is fought mainly by CD4+ CTL, which have previously been reported to possess both cytotoxicity and helper function, and that localized viral infection on HLA class II-negative fibroblasts is prevented from spreading to adjacent cells mainly by CD8+ CTL. Such differential activation of CD4+ and CD8+ CTL seems probable when considering the protective mechanisms against viral infection.  相似文献   

9.
The question of whether virus-induced immunosuppression includes the antibody response against the infecting virus itself was evaluated in a model situation. Transgenic mice expressing the T-cell receptor (TCR) specific for peptide 32-42 of lymphocytic choriomeningitis virus (LCMV) glycoprotein 1 presented by Db reacted with a strong transgenic cytotoxic T-lymphocyte (CTL) response starting on day 3 after infection with a high dose (10(6) PFU intravenously [i.v.]) of the WE strain of LCMV (LCMV-WE); LCMV-specific antibody production in the spleen was suppressed in these mice. Low-dose (10(2) PFU i.v.) infection resulted in an antiviral antibody response comparable to that of the transgene-negative littermates. The induction of suppression of LCMV-specific antibody responses was specifically mediated by CD8+ TCR transgenic CTLs, since the LCMV-8.7 variant virus (which is not recognized by transgenic TCR-expressing CTLs because of a point mutation) did not induce suppression. In addition, treatment with CD8 monoclonal antibody in vivo abrogated suppression. Once suppression had been established, it was found to be nonspecific. The abrogation of antibody responses depended on the relative kinetics of the antibody response involved and the kinetics of the anti-LCMV CTL response. Analysis of T- and B-cell subpopulations showed no significant changes, but immunohistochemical analysis of spleens revealed extensive destruction of follicular organization in lymphoid tissue by day 4 in transgenic mice infected with LCMV-WE but not in those infected with the CTL escape mutant LCMV-8.7. Impairment of antigen presentation rather than of T or B cells was also suggested by adoptive transfer experiments, showing that transferred infected macrophages may improve the anti-LCMV antibody response in LCMV-immunosuppressed transgenic recipients; also, T and B cells from suppressed transgenic mice did respond in irradiated and virus-infected nontransgenic mice with antibody formation to LCMV. Such virus-triggered, T-cell-mediated immunopathology causing the suppression of B cells and of protective antibody responses, including those against the infecting virus itself, may permit certain viruses to establish persistent infections.  相似文献   

10.
In rodent malaria model systems, protective immunity induced by immunization with irradiated sporozoites is eliminated by in vivo depletion of CD8+ T cells, and adoptive transfer of CTL clones against the circumsporozoite protein protects against malaria. We recently demonstrated that volunteers immunized with irradiated Plasmodium falciparum sporozoites produce CTL against peptide 368-390 of the P. falciparum circumsporozoite protein. To determine whether natural exposure to malaria induced similar CTL, we studied 11 adult, male, life-long residents of a highly malarious area of Kenya, who were selected because their lymphocytes had been shown to proliferate after stimulation with peptides 361-380, 371-390, or 368-390 and because nine had been resistant to malaria in previous studies. In four of the 11 individuals there was peptide-specific, genetically restricted, CTL activity. In all four individuals, this activity was unaffected by depletion of CD4+ T cells. In three volunteers the activity was eliminated or reduced by depletion of CD8+ T cells; in the fourth volunteer the CD8+ T cell depletion was uninterpretable. This first demonstration of CD8+ T cell, genetically restricted, Ag-specific CTL against a malaria protein among individuals exposed to endemic malaria provides a foundation for studying the relationship between circulating CTL and resistance to malaria infection.  相似文献   

11.
A CD8+ alpha beta TCR+ T cell clone (A35) was isolated from the synovial fluid of a patient with post-enteric reactive arthritis caused by Yersinia enterocolitica. This clone efficiently killed autologous and allogeneic target cells that had been preincubated with live but not with heat-killed bacteria. There was no restriction by polymorphic parts of HLA-A, -B, or -C molecules and a HLA class II-deficient mutant cell line was lysed as efficiently as its normal counterpart, whereas infected HLA class I-deficient cells (Daudi cells) were not. The clone showed crossreaction between Yersinia enterocolitica, Escherichia coli, Pseudomonas aeruginosa, and Streptococcus pyogenes, but did not lyse target cells preincubated with Staphylococcus epidermidis. MAb to CD2, CD3, and CD8 efficiently blocked A35, whereas the addition of mAb to HLA class II or to HLA class I did not. This clone apparently represents a novel effector mechanism against bacteria-infected or -modified cells that could be involved in the immunopathology of reactive arthritis.  相似文献   

12.
Recent studies have defined vaccinia virus (VACV)-specific CD8(+) T cell epitopes in mice and humans. However, little is known about the epitope specificities of CD4(+) T cell responses. In this study, we identified 14 I-A(b)-restricted VACV-specific CD4(+) T cell epitopes by screening a large set of 2146 different 15-mer peptides in C57BL/6 mice. These epitopes account for approximately 20% of the total anti-VACV CD4(+) T cell response and are derived from 13 different viral proteins. Surprisingly, none of the CD4(+) T cell epitopes identified was derived from VACV virulence factors. Although early Ags were recognized, late Ags predominated as CD4(+) T cell targets. These results are in contrast to what was previously found in CD8(+) T cells responses, where early Ags, including virulence factors, were prominently recognized. Taken together, these results highlight fundamental differences in immunodominance of CD4(+) and CD8(+) T cell responses to a complex pathogen.  相似文献   

13.
Experimental cerebral malaria (ECM) resulting from Plasmodium berghei ANKA infection involves T lymphocytes. However, the mechanisms of T cell-mediated pathogenesis remain unknown. We found that, in contrast to ECM-susceptible C57BL6 mice, perforin-deficient (PFP-KO) mice were resistant to ECM in the absence of brain lesions, whereas cytoadherence of parasitized erythrocytes and massive accumulation of activated/effector CD8 lymphocytes were observed in both groups of mice. ECM is induced in PFP-KO mice after adoptive transfer of cytotoxic CD8+ cells from infected C57BL6 mice, which were directed to the brain of PFP-KO mice. This specific recruitment might involve chemokine/chemokine receptors, since their expression was up-regulated on activated CD8 cells, and susceptibility to ECM was delayed in CCR5-KO mice. Thus, lymphocyte cytotoxicity and cell trafficking are key players in ECM pathogenesis.  相似文献   

14.
To characterize the anti-melanoma reactivity of CD8+ cytotoxic T lymphocytes (CTL) from choroidal melanoma patients, CTL clones were isolated from the peripheral blood of three patients after mixed lymphocyte/tumor cell culture (MLTC). Clones were derived from lymphocytes stimulated by allogeneic (OCM-1, A24, A28) or autologous (OCM-3, Al, A30) melanoma cells. Their reactivity against a panel of HLA-typed melanoma and nonmelanoma cells was assessed, to determine whether a single CTL clone could recognize and lyse a variety of allogeneic melanoma cell lines. While proportionately more clones derived from autologous MLTC were melanoma-specific than allogeneic MLTC (42% versus 14%), melanoma-specific CTL were recovered from both. Notably, a novel melanoma specificity was identified. These CTL clones were termed non-fastidious because they were capable of lysing melanoma cells with which they had no HLA class I alleles in common. Nonetheless, lysis was mediated by the HLA class I molecule. Since lysis was specific for melanoma cells, these CTL appeared to recognize a shared melanoma peptide(s). Because of their prevalence, we propose that non-fastidious CTL are integral to human anti-melanoma T cell immunity. This reinforces clinical findings that allogeneic melanomas can substitute for autologous tumors in active specific immunotherapy. By circumventing the need for autologous melanoma, it is possible to treat patients after removal of the primary choroidal melanoma in an attempt to prevent metastasis.Supported by USPHS grants EY-09031 and EY-09427, and the Lucy Adams Choroidal Melanoma Research Fund to J. K.-M.  相似文献   

15.
The Ag receptors on CD8+ CTL recognize foreign antigenic peptides associated with cell surface MHC class I molecules. Peptides derived from self proteins are also normally presented by MHC class I molecules. Here we report that an H-2Kd-restricted murine CD8+ CTL clone directed to an influenza hemagglutinin epitope can recognize a peptide derived from the murine mitochondrial aconitase enzyme in association with H-2Kd molecules. Surprisingly, this self peptide is not normally displayed on the cell surface associated with the restricting MHC class I molecule. Several lines of evidence suggest that this self peptide, although requiring association with the Kd molecule for CTL recognition, is not associated with this or other MHC class I allele under physiologic conditions in intact cells. Rather, it is sequestered in the cytoplasm associated with a carrier protein and is released only upon cell disruption. These results suggest a means of restricting the entry of self peptide into the class I pathway. In addition, this finding raises the possibility that self peptides sequestered within the cell can, after release from damaged cells, interact with MHC class I molecules on bystander cells and trigger autoimmune injury by virus-specific CTLs during viral infection.  相似文献   

16.
In the present study, we generated killer cells specific for hepatitis C virus (HCV) structural protein by re-stimulation of immune spleen cells from H-2(d) haplotype transgenic (Tg) mice, expressing the core, E1, E2, and NS2 genes of HCV regulated by the Cre/loxP switching system. The generated killer cells were conventional CD8(+)L(d) class-I MHC molecule-restricted cytotoxic T lymphocytes (CTLs) and specific for the HCV E1 structural protein. Because the CTLs could also kill hepatocytes from the Tg mice expressing HCV structural proteins in vitro, we attempted to transfer those CTLs intravenously into interferon regulatory factor-1 (IRF-1) negative, CD8-deficient Tg mice representing the HCV structural genes on hepatocytes to examine whether the inoculated CD8(+) CTLs can eliminate hepatocytes expressing the HCV genes in vivo. We observed an elevation of serum ALT level as well as damage of the liver tissue histologically. To our knowledge, this is the first demonstration to show that HCV-specific CD8(+) CTLs specifically attack hepatocytes expressing the HCV structural proteins both in vitro and in vivo.  相似文献   

17.
Recent evidence has shown that cloned, murine CTL cell lines are resistant to the cytotoxic components of the toxic granules they release upon specific interaction with their target cells. Inasmuch as the resistance might be due to selection in culture over many months by repeated exposure to these cytolytic components (which are released repeatedly as a result of the cultured CTL being periodically stimulated by target cells), we asked whether primary CTL are also resistant. The primary CTL were elicited in vivo by i.p. injection of allogeneic tumor cells or in vitro by 5- to 6-day MLC or by 48-h exposure to the lectin Con A. The responding cells were separated into purified CD8+ (i.e., CD4-, CD8+) and purified CD4+ (i.e., CD4+, CD8-) T cell populations that were analyzed for cytolytic activity and for resistance to lysis by toxic secretory granules derived from cloned CTL cell lines. The CD8+ T cells were highly cytolytic and relatively resistant; they retained their cytolytic activity and were lysed to a minimal extent (0 to 10%) by quantities of isolated granules that lysed 80 to 90% of the P815 tumor cell line (tested as a representative standard cell line). The CD4+ T cells, in contrast, had only minimal cytolytic activity and were far more susceptible to granule-mediated lysis. Although the resistance of primary CD8+ T cells is impressive, it is not as pronounced as the resistance of the cloned CTL cell lines, indicating that during long-term culture there is some selection for increased resistance to granule-mediated lysis. In contrast to T cells (especially CD8+ T cells), Ia+ macrophages, isolated from primary immune peritoneal exudates, were highly susceptible to granule-mediated lysis.  相似文献   

18.
19.
Tumor growth is allowed by its ability to escape immune system surveillance. An important role in determining tumor evasion from immune control might be played by tumor-infiltrating regulatory lymphocytes. This study was aimed at characterizing phenotype and function of CD8+ CD28- T regulatory cells infiltrating human cancer. Lymphocytes infiltrating primitive tumor lesion and/or satellite lymph node from a series of 42 human cancers were phenotypically studied and functionally analyzed by suppressor assays. The unprecedented observation was made that CD8+ CD28- T regulatory lymphocytes are almost constantly present and functional in human tumors, being able to inhibit both T cell proliferation and cytotoxicity. CD4+ CD25+ T regulatory lymphocytes associate with CD8+ CD28- T regulatory cells so that the immunosuppressive activity of tumor-infiltrating regulatory T cell subsets, altogether considered, may become predominant. The infiltration of regulatory T cells seems tumor related, being present in metastatic but not in metastasis-free satellite lymph nodes; it likely depends on both in situ generation (via cytokine production) and recruitment from the periphery (via chemokine secretion). Collectively, these results have pathogenic relevance and implication for immunotherapy of cancer.  相似文献   

20.
Herpesvirus saimiri (HVS) was used to infect and transform human CD8+ cytotoxic T lymphocytes (CTL), and the phenotypic and functional consequences of HVS infection of CD8+ T lymphocytes were investigated. HVS-transformed CTL no longer require antigen restimulation yet maintain their phenotype and HLA-restricted cytolytic function and specificity. The ability of HVS to transform CTL may have an important role in the functional analysis of human antigen-specific CTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号