首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The wound response in tomato--role of jasmonic acid   总被引:27,自引:0,他引:27  
Plants respond to mechanical wounding or herbivore attack with a complex scenario of sequential, antagonistic or synergistic action of different signals leading to defense gene expression. Tomato plants were used as a model system since the peptide systemin and the lipid-derived jasmonic acid (JA) were recognized as essential signals in wound-induced gene expression. In this review recent data are discussed with emphasis on wound-signaling in tomato. The following aspects are covered: (i) systemin signaling, (ii) JA biosynthesis and action, (iii) orchestration of various signals such as JA, H2O2, NO, and salicylate, (iv) local and systemic response, and (v) amplification in wound signaling. The common occurrence of JA biosynthesis and systemin generation in the vascular bundles suggest JA as the systemic signal. Grafting experiments with JA-deficient, JA-insensitive and systemin-insensitive mutants strongly support this assumption.  相似文献   

2.
Wound-induced systemic expression of defensive proteinase inhibitor (PI) genes in tomato plants requires the action of systemin and its precursor protein prosystemin. Although it is well established that systemin induces PI expression through the octadecanoid pathway for jasmonic acid (JA) biosynthesis, relatively little is known about how systemin and JA interact to promote long-distance signaling between damaged and undamaged leaves. Here, this question was addressed by characterizing a systemin-insensitive mutant (spr1) that was previously identified as a suppressor of prosystemin-mediated responses. In contrast to JA biosynthetic or JA signaling mutants that lack both local and systemic PI expression in response to wounding, spr1 plants were deficient mainly in the systemic response. Consistent with this phenotype, spr1 plants exhibited normal PI induction in response to oligosaccharide signals that are thought to play a role in the local wound response. Moreover, spr1 abolished JA accumulation in response to exogenous systemin, and reduced JA accumulation in wounded leaves to approximately 57% of wild-type (WT) levels. Analysis of reciprocal grafts between spr1 and WT plants showed that spr1 impedes systemic PI expression by blocking the production of the long-distance wound signal in damaged leaves, rather than inhibiting the recognition of that signal in systemic undamaged leaves. These experiments suggest that Spr1 is involved in a signaling step that couples systemin perception to activation of the octadecanoid pathway, and that systemin acts at or near the site of wounding (i.e. in rootstock tissues) to increase JA synthesis to a level that is required for the systemic response. It was also demonstrated that spr1 plants are not affected in the local or systemic expression of a subset of rapidly induced wound-response genes, indicating the existence of a systemin-independent pathway for wound signaling.  相似文献   

3.
Li C  Liu G  Xu C  Lee GI  Bauer P  Ling HQ  Ganal MW  Howe GA 《The Plant cell》2003,15(7):1646-1661
Genetic analysis of the wound response pathway in tomato indicates that systemin and its precursor protein, prosystemin, are upstream components of a defensive signaling cascade that involves the synthesis and subsequent action of the octadecatrienoic acid (18:3)-derived plant hormone jasmonic acid (JA). The suppressor of prosystemin-mediated responses2 (spr2) mutation, which was isolated previously as a suppressor of (pro)systemin-mediated signaling, impairs wound-induced JA biosynthesis and the production of a long-distance signal for the expression of defensive Proteinase inhibitor genes. Using a map-based cloning approach, we demonstrate here that Spr2 encodes a chloroplast fatty acid desaturase involved in JA biosynthesis. Loss of Spr2 function reduced the 18:3 content of leaves to <10% of wild-type levels, abolished the accumulation of hexadecatrienoic acid, and caused a corresponding increase in the level of dienoic fatty acids. The effect of spr2 on the fatty acyl content of various classes of glycerolipids indicated that the Spr2 gene product catalyzes most, if not all, omega3 fatty acid desaturation within the "prokaryotic pathway" for lipid synthesis in tomato leaves. Despite the reduced levels of trienoic fatty acids, spr2 plants exhibited normal growth, development, and reproduction. However, the mutant was compromised in defense against attack by tobacco hornworm larvae. These results indicate that jasmonate synthesis from chloroplast pools of 18:3 is required for wound- and systemin-induced defense responses and support a role for systemin in the production of a transmissible signal that is derived from the octadecanoid pathway.  相似文献   

4.
In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs) in tomato (Solanum lycopersicum) provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA). The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8) mutant, which was isolated as a suppressor of (pro)systemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera) and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against insects and pathogens.  相似文献   

5.
Gross N  Wasternack C  Köck M 《Phytochemistry》2004,65(10):1343-1350
Tomato RNaseLE is induced by phosphate deficiency and wounding and may play a role in macromolecular recycling as well as wound healing. Here, we analyzed the role of jasmonate and systemin in the wound-induced RNaseLE activation. The rapid expression of RNaseLE upon wounding of leaves leading to maximal RNase activity within 10 h, appeared only locally. Jasmonic acid (JA) or its molecular mimic ethyl indanoyl isoleucine conjugate did not induce RNaseLE expression. Correspondingly, RNaseLE was expressed upon wounding of 35S::allene oxide cyclase antisense plants known to be JA deficient. RNaseLE was not expressed upon systemin treatment, but was locally expressed in the spr1 mutant which is affected in systemin perception. In tomato plants carrying a PromLE::uidA construct, GUS activity could be detected upon wounding, but not following treatment with JA or systemin. The data indicate a locally acting wound-inducible systemin- and JA-independent signaling pathway for RNaseLE expression.  相似文献   

6.
A significant advancement in our knowledge and understanding of wound-signaling pathways in plants has been made recently. Essential role in the explanation of these processes came from the genetic screens and analysis of mutants which are defective in either jasmonic acid (JA) biosynthesis, JA perception or systemin function. Plants equally react to wound in the tissues directly damaged (local response) as well as in the non-wounded areas (systemic response). Jasmonides and in particular the most studied JA, produced by the octadecanoid pathway, are responsible for the systemic response. Jasmonides functioning as long-distance signal particles transmit the information about wound to distant, non-wounded tissues where defense response is invoked. Peptyd - systemin, identified in some Solanaceous species, acts locally to the wounded area to elicit the production of JA. Jasmonic acid-dependent and -independent wound signal transduction pathways have been identified and partially characterized. JA-dependent wound signaling pathways are responsible for the activation of systemic responses, whereas JA-independent wound signaling pathways, activated close to wound side, have a role in reparation of damaged tissue and in defense against pathogens.  相似文献   

7.
8.
9.
Damage inflicted by herbivore feeding necessitates multiple defense strategies in plants. The wound site must be sealed and defense responses mounted against the herbivore itself and against invading opportunistic pathogens. These defenses are controlled both in time and space by highly complex regulatory networks that themselves are modulated by interactions with other signaling pathways. In this review, we describe the signaling events that occur in individual wounded leaves, in systemic unwounded regions of the plant, and between the plant, and other organisms, and attempt to place these events in the context of a coordinated system. Key signals that are discussed include ion fluxes, active oxygen species, protein phosphorylation cascades, the plant hormones jasmonic acid, ethylene, abscisic acid and salicylic acid, peptide signals, glycans, volatile chemicals, and physical signals such as hydraulic and electrical signals. Themes that emerge after consideration of the published data are that glycans and peptide elicitors are likely primary triggers of wound-induced defense responses and that they function through the action of jasmonic acid, a central mediator of defense gene expression, whose effect is modulated by ethylene. In the field, wound signaling pathways are significantly impacted on by other stress response pathways, including pathogen responses that often operate through potentially antagonistic signals such as salicylic acid. However, gross generalisations are not possible because some wound and pathogen responses operate through common jasmonate- and ethylene-dependent pathways. Understanding the ways in which local and systemic wound signaling pathways are coordinated individually and in the context of the plants wider environment is a key challenge in the application of this science to crop-protection strategies.  相似文献   

10.
The allene oxide cyclase (AOC)-catalyzed step in jasmonate (JA) biosynthesis is important in the wound response of tomato. As shown by treatments with systemin and its inactive analog, and by analysis of 35S::prosysteminsense and 35S::prosysteminantisense plants, the AOC seems to be activated by systemin (and JA) leading to elevated formation of JA. Data are presented on the local wound response following activation of AOC and generation of JA, both in vascular bundles. The tissue-specific occurrence of AOC protein and generation of JA is kept upon wounding or other stresses, but is compromised in 35S::AOCsense plants, whereas 35S::AOCantisense plants exhibited residual AOC expression, a less than 10% rise in JA, and no detectable expression of wound response genes. The (i). activation of systemin-dependent AOC and JA biosynthesis occurring only upon substrate generation, (ii). the tissue-specific occurrence of AOC in vascular bundles, where the prosystemin gene is expressed, and (iii). the tissue-specific generation of JA suggest an amplification in the wound response of tomato leaves allowing local and rapid defense responses.  相似文献   

11.
G A Howe  C A Ryan 《Genetics》1999,153(3):1411-1421
In tomato plants, systemic induction of defense genes in response to herbivory or mechanical wounding is regulated by an 18-amino-acid peptide signal called systemin. Transgenic plants that overexpress prosystemin, the systemin precursor, from a 35S::prosystemin (35S::prosys) transgene exhibit constitutive expression of wound-inducible defense proteins including proteinase inhibitors and polyphenol oxidase. To study further the role of (pro)systemin in the wound response pathway, we isolated and characterized mutations that suppress 35S::prosys-mediated phenotypes. Ten recessive, extragenic suppressors were identified. Two of these define new alleles of def-1, a previously identified mutation that blocks both wound- and systemin-induced gene expression and renders plants susceptible to herbivory. The remaining mutants defined four loci designated Spr-1, Spr-2, Spr-3, and Spr-4 (for Suppressed in 35S::prosystemin-mediated responses). spr-3 and spr-4 mutants were not significantly affected in their response to either systemin or mechanical wounding. In contrast, spr-1 and spr-2 plants lacked systemic wound responses and were insensitive to systemin. These results confirm the function of (pro)systemin in the transduction of systemic wound signals and further establish that wounding, systemin, and 35S::prosys induce defensive gene expression through a common signaling pathway defined by at least three genes (Def-1, Spr-1, and Spr-2).  相似文献   

12.
LapA RNAs, proteins, and activities increased in response to systemin, methyl jasmonate, abscisic acid (ABA), ethylene, water deficit, and salinity in tomato (Lycopersicon esculentum). Salicylic acid inhibited wound-induced increases of LapA RNAs. Experiments using the ABA-deficient flacca mutant indicated that ABA was essential for wound and systemin induction of LapA, and ABA and systemin acted synergistically to induce LapA gene expression. In contrast, pin2 (proteinase inhibitor 2) was not dependent on exogenous ABA. Whereas both LapA and le4 (L. esculentum dehydrin) were up-regulated by increases in ABA, salinity, and water deficit, only LapA was regulated by octadecanoid pathway signals. Comparison of LapA expression with that of the PR-1 (pathogenesis-related 1) and GluB (basic β-1,3-glucanase) genes indicated that these PR protein genes were modulated by a systemin-independent jasmonic acid-signaling pathway. These studies showed that at least four signaling pathways were utilized during tomato wound and defense responses. Analysis of the expression of a LapA1:GUS gene in transgenic plants indicated that the LapA1 promoter was active during floral and fruit development and was used during vegetative growth only in response to wounding, Pseudomonas syringae pv tomato infection, or wound signals. This comprehensive understanding of the regulation of LapA genes indicated that this regulatory program is distinct from the wound-induced pin2, ABA-responsive le4, and PR protein genes.  相似文献   

13.
Jasmonic acid (JA) and salicylic acid (SA) have both been implicated as important signal molecules mediating induced defenses of Nicotiana tabacum L. against herbivores and pathogens. Since the application of SA to a wound site can inhibit both wound-induced JA and a defense response that it elicits, namely nicotine production, we determined if tobacco mosaic virus (TMV) inoculation, with its associated endogenous systemic increase in SA, reduces a plant's ability to increase JA and nicotine levels in response to mechanical damage, and evaluated the consequences of these interactions for the amount of tissue removed by a nicotine-tolerant herbivore, Manduca sexta. Additionally, we determined whether the release of volatile methyl salicylic acid (MeSA) from inoculated plants can reduce wound-induced JA and nicotine responses in uninoculated plants sharing the same chamber. The TMV-inoculated plants, though capable of inducing nicotine normally in response to methyl jasmonate applications, had attenuated wound-induced JA and nicotine responses. Moreover, larvae consumed 1.7- to 2.7-times more leaf tissue from TMV-inoculated plants than from mock-inoculated plants. Uninoculated plants growing in chambers downwind of either TMV-inoculated plants or vials releasing MeSA at 83- to 643-times the amount TMV-inoculated plants release, exhibited normal wound-induced responses. We conclude that tobacco plants, when inoculated with TMV, are unable to elicit normal wound responses, due likely to the inhibition of JA production by the systemic increase in SA induced by virus-inoculation. The release of volatile MeSA from inoculated plants is not sufficient to influence the wound-induced responses of neighboring plants. Received: 6 January 1999 / Accepted: 11 January 1999  相似文献   

14.
Systemic signaling in the wound response   总被引:2,自引:0,他引:2  
In many plants, localized tissue damage elicits an array of systemic defense responses against herbivore attack. Progress in our understanding of the long-distance signaling events that control these responses has been aided by the identification of mutants that fail to mount systemic defenses in response to wounding. Grafting experiments conducted with various mutants of tomato indicate that systemic signaling requires both the biosynthesis of jasmonic acid at the site of wounding and the ability to perceive a jasmonate signal in remote tissues. These and other studies support the hypothesis that jasmonic acid regulates the production of, or acts as, a mobile wound signal. Following its synthesis in peroxisomes, further metabolism of jasmonic acid might enhance its stability, transport, or action in remote tissues. Recent studies in tomato suggest that the peptide signal systemin promotes long-distance defense responses by amplifying jasmonate production in vascular tissues.  相似文献   

15.
系统素、茉莉酸在番茄系统伤反应中的作用   总被引:2,自引:0,他引:2  
当植物受到机械损伤或昆虫伤害时,植物体会在受伤部位产生伤信号分子启动防御基因的系统表达,蛋白酶抑制剂基因是防御基因的一典型代表.番茄是研究植物系统伤信号很好的模式植物,目前,三种类型的番茄系统伤信号突变体被鉴定出来,通过对番茄系统伤信号突变体进行功能分析并在它们之间进行相互嫁接实验,研究结果表明系统素和茉莉酸通过同一信号通路来激活防御基因的系统表达.系统素(或它的前体原系统素)在受伤部位激活茉莉酸的合成,使之达到系统反应的水平,应对外来伤害;茉莉酸或其衍生物是重要的系统伤信号分子,它诱导伤防御基因的系统表达.植物的系统伤反应可比做动物的炎症反应,它们之间有许多相似之处.  相似文献   

16.
17.
Immunomodulation of jasmonate to manipulate the wound response   总被引:1,自引:0,他引:1  
Jasmonates are signals in plant stress responses and development. The exact mode of their action is still controversial. To modulate jasmonate levels intracellularly as well as compartment-specifically, transgenic Nicotiana tabacum plants expressing single-chain antibodies selected against the naturally occurring (3R,7R)-enantiomer of jasmonic acid (JA) were created in the cytosol and the endoplasmic reticulum. Consequently, the expression of anti-JA antibodies in planta caused JA-deficient phenotypes such as insensitivity of germinating transgenic seedlings towards methyl jasmonate and the loss of wound-induced gene expression. Results presented here suggest an essential role for cytosolic JA in the wound response of tobacco plants. The findings support the view that substrate availability takes part in regulating JA biosynthesis upon wounding. Moreover, high JA levels observed in immunomodulated plants in response to wounding suggest that tobacco plants are able to perceive a reduced level of physiologically active JA and attempt to compensate for this by increased JA accumulation.  相似文献   

18.
Jasmonates mediate various physiological events in plant cells such as defense responses, flowering, and senescence through intracellular and intercellular signaling pathways, and the expression of a large number of genes appears to be regulated by jasmonates. In order to obtain information on the regulatory network of jasmonate-responsive genes (JRGs) in Arabidopsis thaliana (Arabidopsis), we screened 2880 cDNA clones for jasmonate responsiveness by a cDNA macroarray procedure. Since many of the JRGs reported so far have been identified in leaf tissues, the cDNA clones used were chosen from a non-redundant EST library that was prepared from above-ground organs. Hybridization to the filters was achieved using alpha-33P-labeled single-strand DNAs synthesized from mRNAs obtained from methyl jasmonate (MeJA)-treated and untreated Arabidopsis seedlings. Data analysis identified 41 JRGs whose mRNA levels were changed by more than three fold in response to MeJA. This was confirmed by Northern blot analysis by using eight representatives. Among the 41 JRGs identified, 5 genes were JA biosynthesis genes and 3 genes were involved in other signaling pathways (ethylene, auxin, and salicylic acid). These results suggest the existence of a positive feedback regulatory system for JA biosynthesis and the possibility of crosstalk between JA signaling and other signaling pathways.  相似文献   

19.
Jasmonate signaling plays a critical role in protecting plants from pathogens or insect attacks and in limiting damage from abiotic stress. Many events contribute to the regulation of jasmonic acid (JA) synthesis during abiotic or biotic stress, but the details of the underlying mechanism remain unclear. In this Mini-Review paper, we discuss the possible roles of reactive oxygen species (ROS), nitric oxide (NO), calcium influx and mitogen-activated protein kinase (MAPK) cascade during JA synthesis or JA signal transduction.Key words: jasmonic acid, singal, transductionJasmonic acid (JA) is a member of the jasmonate group of plant hormones; it is biosynthesized from linolenic acid by the octadecanoid pathway.1 The main functions of this hormone are growth related, including growth inhibition, senescence and leaf abscission. It also plays an important role in plant response to wounding and in systemic resistance. JA has a structure similar to that of mammal prostaglandins and is synthesized from alpha-linolenic acid, which is a C-18 poly-unsaturated fatty acid. Lipoxygenase, allene oxide synthase and allene oxide cyclase are the putative key enzymes for JA synthesis; these enzymes have chloroplast transit peptides that direct their import into chloroplasts. JA can be conjugated with amino acids, namely, leucine, valine, isoleucine and the sugar, B-glucoside using UDP-glucose. (-)-JA and (-)-methyl jasmonate are major JAs in plants. Methyl jasmonate (MeJA) in particular is a strong candidate for airborne signals that mediate interplant communication for defense responses. JA and its derivates induce the production of vegetative storage proteins, osmotin, thionin (antifungal) and defensin. It also induces enzymes related to phytoalexin, chalcone synthase, phenylalanine ammonia lyase (PAL), and hydroxymethylglutaryl-COA reductase; it also induces protease inhibitors to suppress the insect growth. JA and ethylene induce PR-3, PR-4 and PDF 1.2 chitinases (CHI-B) and hevein-like protein. In plants, ROS, Calcium ion influx, MAP kinase cascade, and NO, a novel signaling molecule are involved in the JA octadecanoid signal pathway.14  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号