首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
人工合成人甲状旁腺激素1-34肽段 (PTH1-34)的cDNA序列,克隆到大肠杆菌蛋白表达载体pThioHis中,获得了高表达菌株。经发酵、破菌、金属鳌合层析、反相层析和凝胶层析后获得了纯度大于95%的hPTH1-34。hPTH1-34肽N端测序和质谱分子量测定结果与天然PTH1-34一致。生物学活性研究表明,hPTH1-34在体外具有刺激腺苷酸环化酶的作用。  相似文献   

2.
The human parathyroid hormone (PTH) receptor (hPTH1R), containing a 9-amino acid sequence of rhodopsin at its C terminus, was transiently expressed in COS-7 cells and solubilized with 0.25% n-dodecyl maltoside. Approximately 18 microg of hPTH1R were purified to homogeneity per mg of crude membranes by single-step affinity chromatography using 1D4, a monoclonal antibody to a rhodopsin epitope. The N terminus of the hPTH1R is Tyr(23), consistent with removal of the 22-amino acid signal peptide. Comparisons of hPTH1R by quantitative immunoblotting and Scatchard analysis revealed that 75% of the receptors in membrane preparations were functional; there was little, if any, loss of functional receptors during purification. The binding affinity of the purified hPTH1R was slightly lower than membrane-embedded hPTH1R (K(d) = 16.5 +/- 1.3 versus 11.9 +/- 1.9 nm), and the purified receptors bound rat [Nle(8,21),Tyr(34)]PTH-(1-34)-NH(2) (PTH-(1-34)), and rat [Ile(5),Trp(23),Tyr(36)]PTHrP-(5-36)-NH(2) with indistinguishable affinity. Maximal displacement of (125)I-PTH-(1-34) binding by rat [alpha-aminoisobutyric acid (Aib)(1,3),Nle(8),Gln(10),Har(11),Ala(12),Trp(14),Arg(19),Tyr(21)]PTH-(1-21)-NH(2) and rat [Aib(1,3),Gln(10),Har(11),Ala(12),Trp(14)]PTH-(1-14)-NH(2) of 80 and 10%, respectively, indicates that both N-terminal and juxtamembrane ligand binding determinants are functional in the purified hPTH1R. Finally, PTH stimulated [(35)S]GTP gamma S incorporation into G alpha(s) in a time- and dose-dependent manner, when recombinant hPTH1R, G alpha(s)-, and beta gamma-subunits were reconstituted in phospholipid vesicles. The methods described will enable structural studies of the hPTH1R, and they provide an efficient and general technique to purify proteins, particularly those of the class II G protein-coupled receptor family.  相似文献   

3.
Three sulfur-free analogues of bovine parathyroid hormone (bPTH) containing D-amino acids were synthesized by the solid-phase method and their biological properties compared in an in vitro bioassay (rat renal adenylate cyclase assay), a receptor assay for parathyroid hormone (PTH) (canine renal membranes), and an in vivo bioassay (chick hypercalcemia assay). The analogue [Nle8,Nle18,D-Tyr34]-bPTH-(1-34)-amide, which was found to be more than 4 times as potent in vitro as unsubstituted PTH, is the most potent analogue of PTH yet synthesized. The enhanced potency was largely attributable to increased affinity for the PTH receptor. In vivo, however, this analogue was only one-third as potent as bPTH-(1-34). Cumulative evidence suggests that the nearly 15-fold decline in the relative potency when the compound was assayed in vivo is due to the substitution of norleucine for methionine. The other analogues, [D-Val2,Nle8,D-Tyr34]bPTH-(1-34)-amide and [D-Val2,Nle8,Nle18,D=Tyr34]bPTH-(2-34)-amide, were only weakly active in vitro and in vivo, indicating that substitution with D-amino acids at the NH2 terminus of PTH causes markedly diminished receptor affinity. In fact, the placement of a D-amino acid at the NH2 terminus is more deleterious to biological activity than is omission of amino acids at positions 1 and 2.  相似文献   

4.
The first 4 residues of parathyroid hormone (PTH) are highly conserved in evolution and are important for biological activity. We randomly mutated codons 1-4 of human PTH (hPTH) with degenerate oligonucleotides and, after expression in COS cells, screened the mutants for receptor binding and cAMP-stimulating activity using ROS 17/2.8 cells. This survey identified Glu4 and Val2 as important determinants of receptor binding and activation, respectively. Positions 1 and 3 were more tolerant of substitutions indicating that these sites are less vital to hormone function. Activities of synthetic hPTH(1-34) analogs further demonstrated the importance of positions 2 and 4. The binding affinity of [Ala4,Tyr34] hPTH(1-34)NH2 was 100-fold reduced relative to [Tyr34]hPTH(1-34)NH2 (Kd values = 653 +/- 270 and 4 +/- 1 nM, respectively), and [Arg2, Tyr34]hPTH(1-34)NH2 was a weak partial agonist which bound well to the ROS cell receptor (Kd = 31 +/- 10 nM). The Arg2 analog was nearly as potent as PTH(3-34) as an in vitro PTH antagonist in osteoblast derived cells. However, unlike PTH(3-34), [Arg2]PTH was a full agonist in opossum kidney (OK) cells. These observations suggest that the activation domains of the OK and ROS cell PTH receptors are different. Thus, amino-terminal PTH analogs may be useful as probes for distinguishing properties of PTH receptors.  相似文献   

5.
A tumor-derived protein with a spectrum of biologic activities remarkably similar to that of parathyroid hormone (PTH) has recently been purified and its sequence deduced from cloned cDNA. This PTH-like protein (PLP) has substantial sequence homology with PTH only in the amino-terminal 1-13 region and shows little similarity to other regions of PTH thought to be important for binding to receptors. In the present study, we compared the actions of two synthetic PLP peptides, PLP-(1-34)amide and [Tyr36]PLP-(1-36)amide, with those of bovine parathyroid hormone (bPTH)-(1-34) on receptors and adenylate cyclase in bone cells and in renal membranes. Synthetic PLP peptides were potent activators of adenylate cyclase in canine renal membranes (EC50 = 3.0 nM) and in UMR-106 osteosarcoma cells (EC50 = 0.05 nM). Bovine PTH-(1-34) was 6-fold more potent than the PLP peptides in renal membranes, but was 2-fold less potent in UMR-106 cells. A competitive PTH receptor antagonist, [Tyr34]bPTH-(7-34)amide, rapidly and fully inhibited adenylate cyclase stimulation by the PLP peptides as well as bPTH-(1-34). Competitive binding experiments with 125I-labeled PLP peptides revealed the presence of high affinity PLP receptors in UMR-106 cells IC50 = 3-4 nM) and in renal membranes (IC50 = 0.3 nM). There was no evidence of heterogeneity of PLP receptors. Bovine PTH-(1-34) was equipotent with the PLP peptides in binding to PLP receptors. Likewise, PLP peptides and bPTH-(1-34) were equipotent in competing with 125I-bPTH-(1-34) for binding to PTH receptors in renal membranes. Photoaffinity cross-linking experiments revealed that PTH and PLP peptides both interact with a major 85-kDa and minor 55- and 130-kDa components of canine renal membranes. We conclude that PTH and PLP activate adenylate cyclase by binding to common receptors in bone and kidney. The results further imply that subtle differences exist between PTH and PLP peptides in their ability to induce receptor-adenylate cyclase coupling.  相似文献   

6.
We demonstrated that 125I-labeled human parathyroid hormone (1-34;8,18-Nle,34-Tyr)[[125I]hPTH(1-34)] bound specifically to hemopoietic blast cells supported by granulocyte-macrophage colony-stimulating factor. Half-maximal inhibition of binding was achieved at concentrations of unlabeled hPTH(1-34) of about 5 x 10(-9)M. Insulin and hPTH(39-68) did not compete for PTH binding sites. Specific binding of hPTH(1-34) was detected in neither macrophages nor multinucleated cells (MNC's). Furthermore, treatment of hemopoietic blast cells with hPTH(1-34) stimulated MNC formation, and the range of concentrations (10(-10)-10(-8)M) over which hPTH(1-34) caused these effects was similar to that which inhibited the binding of [125I]hPTH(1-34). These findings suggest the presence of a PTH receptor on osteoclast precursors and the direct effect of PTH on them, resulting in osteoclast-mediated bone resorption.  相似文献   

7.
A bioactive biotin-containing derivative of the synthetic bovine parathyroid hormone analog [Nle8,Nle18,Tyr34]bovine parathyroid hormone-(1-34) (bPTH-(1-34] amide was prepared by reacting the peptide with N-biotinyl-epsilon-aminocaproic acid N-hydroxysuccinimide ester. The derivative was incubated with particulate renal plasma membranes or with detergent [3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) extracts of renal cortical membranes, and two membrane components were identified. Labeling of these components was competitively inhibited by underivatized bPTH-(1-34) or bPTH-(3-34) but not by insulin, adrenocorticotropin, or oxidized rat PTH-(1-34). PTH-binding components that were immobilized on nitrocellulose could be detected by incubating the membrane with biotinyl-bPTH-(1-34). Binding components of apparent molecular mass 68, 70, and 150 kDa were specifically labeled in plasma membranes derived from canine, human, and porcine renal cortex, rat liver, and human fibroblasts. The 68-kDa binding protein was found to be consistently more acidic than the 70-kDa binding protein in human, porcine, and canine renal membranes analyzed by two-dimensional electrophoresis. The 68-70-kDa receptor doublet could be specifically isolated by streptavidin-agarose chromatography of solubilized membrane extracts that had first been incubated with biotinyl-BPTH-(1-34). Biotinyl-bPTH-(1-34) should be useful as a tool for further characterization and purification of the PTH receptor.  相似文献   

8.
To further explore the evolution of receptors for parathyroid hormone (PTH) and PTH-related peptide (PTHrP), we searched for zebrafish (z) homologs of the PTH/PTHrP receptor (PTH1R). In mammalian genes encoding this receptor, exons M6/7 and M7 are highly conserved and separated by 81-84 intronic nucleotides. Genomic polymerase chain reaction using degenerate primers based on these exons led to two distinct DNA fragments comprising portions of genes encoding the zPTH1R and the novel zPTH3R. Sequence comparison of both full-length teleost receptors revealed 69% similarity (61% identity), but less homology with zPTH2R. When compared with hPTH1R, zPTH1R showed 76% and zPTH3R 67% amino acid sequence similarity; similarity with hPTH2R was only 59% for both teleost receptors. When expressed in COS-7 cells, zPTH1R bound [Tyr(34)]hPTH-(1-34)-amide (hPTH), [Tyr(36)]hPTHrP-(1-36)-amide (hPTHrP), and [Ala(29),Glu(30), Ala(34),Glu(35), Tyr(36)]fugufish PTHrP-(1-36)-amide (fuguPTHrP) with a high apparent affinity (IC(50): 1.2-3.5 nM), and was efficiently activated by all three peptides (EC(50): 1.1-1.7 nM). In contrast, zPTH3R showed higher affinity for fuguPTHrP and hPTHrP (IC(50): 2.1-11.1 nM) than for hPTH (IC(50): 118.2-127.0 nM); cAMP accumulation was more efficiently stimulated by fugufish and human PTHrP (EC(50): 0.47 +/- 0.27 and 0.45 +/- 0.16, respectively) than by hPTH (EC(50): 9.95 +/- 1.5 nM). Agonist-stimulated total inositol phosphate accumulation was observed with zPTH1R, but not zPTH3R.  相似文献   

9.
Predictive and spectroscopic methods were used to develop a model of the structures of the 1-34 peptides of parathyroid hormone (PTH) and the PTH-related protein (PTHrP). Circular dichroism (CD) studies of bovine PTH-(1-34) and human PTHrP-(1-34)amide in the presence of trifluoroethanol suggest the presence of 24-26 alpha-helical residues. For both peptides, interactions between amino- and carboxyl-region alpha-helices are predicted to result in a hydrophobic core with externally facing hydrophilic residues that include probable determinants of receptor binding and activation. Two such residues, Ser3 and Gln6, are conserved in all known members of the PTH/PTHrP family. We have synthesized 13 novel analogues of bovine PTH-(1-34) monosubstituted at positions 3 and 6 and have determined their biological activities in renal and bone cell radioreceptor and adenylyl cyclase assays. Position 3 analogues displayed biological activity that was reduced in direct proportion to the volume of the substituent side-chain. Position 6 analogues also displayed reduced biological activity, but no simple correlation with side-chain volume or hydrophobicity was evident. The analogues fully displaced labeled PTH from binding sites in renal membranes and bone cells, but [Phe3]bPTH-(1-34), [Tyr3]bPTH-(1-34), [Phe6] bPTH-(1-34), and [Ser6]bPTH-(1-34) were only partial agonists in one or both adenylyl cyclase assays. Of these, [Phe3]bPTH-(1-34) and [Phe6]bPTH-(1-34) were tested for antagonist activity and were found to inhibit the activation of adenylyl cyclase in response to bPTH-(1-34) or hPTHrP-(1-34)amide. These results indicate that positions 3 and 6 contribute important determinants of PTH receptor binding and activation. Modification at these positions represents a novel approach to the development of antagonists of PTH action.  相似文献   

10.
R L Shew  P K Pang 《Peptides》1984,5(3):485-488
Synthetic bovine parathyroid hormone containing the NH2 terminal 34 amino acids [bPTH-(1-34)] was recently demonstrated to inhibit oxytocin stimulated uterine contraction in vitro. The parathyroid hormone analogues [Nle8, Nle18, Tyr34]bPTH-(3-34)amide [NTA-(3-34)] and [Tyr34]bPTH-(7-34)amide [NTA-(7-34)] have been reported to act as inhibitors of antagonists of parathyroid hormone (PTH) in numerous assays. In the present study the effects of these PTH analogues on uterine contraction and the ability of these analogues to act as antagonists to the uterine inhibitory action of bPTH-(1-34) in vitro were investigated. The NTA-(3-34) fragment had no effect on oxytocin stimulated uterine contractions. However, the NTA-(3-34) fragment was able to alter the ability of bPTH (1-34) to reduce oxytocin stimulated uterine contraction in a dose-related manner. Bovine PTH(1-34) (0.3 microgram/ml) reduced the contractile response obtained with oxytocin (0.5 mU/ml) by 20%. A dose of 15 micrograms/ml) of NTA-(3-34) abolished this inhibitory action of bPTH-(1-34) on oxytocin stimulated uterine contraction. In contrast the NTA-(7-34) caused a change in itself, stimulated contraction of resting uterine horns in a dose-related manner; 3.0 micrograms/ml of NTA-(7-34) caused a change in gram tension of + 1.5 grams. Bovine PTH-(1-34) was able to reduce the uterine contraction stimulated by NTA-(7-34) and 0.3 microgram/ml of bPTH-(1-34) reduced the contractile response obtained with 3.0 micrograms/ml of NTA-(7-34) by as much as 70%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We have previously reported that alkaline phosphatase (ALPase) is functionally involved in calcium uptake by several osteoblast-like cell lines. We have extended these studies to investigate the actions of ALPase on the cAMP response to and the receptor binding of human parathyroid hormone (hPTH) and human parathyroid hormone-related protein (hPTHrP). Pretreatment of human osteoblast-like SaOS-2 cells with human placental ALPase (hpALPase) inhibited the cAMP response to hPTH(1-34) but had no effect on the actions of hPTHrP(1-34) or vasoactive intestinal peptide. The inhibitory effect was reversed by L-Phe-Gly-Gly, an inhibitor of hpALPase. Treatment of SaOS-2 cells with hpALPase modestly reduced the binding of hPTH to 70% of control values, with little or no effect on the binding of hPTHrP. Bovine kidney and calf intestine ALPases were without effect on either the cAMP response or binding of hPTH or hPTHrP in SaOS-2 cells. In rat osteoblast-like ROS 17/2.8 cells, hpALPase had no effect on cAMP production stimulated by hPTH(1-34) or hPTHrP(1-34), arguing against a nonspecific effect of hpALPase. We suggest that, in SaOS-2 cells, the common PTH/PTHrP receptor can differentiate between the agonist activities of hPTH and hPTHrP by a mechanism that is sensitive to hpALPase. © 1994 Wiley-Liss, Inc.  相似文献   

12.
We have studied the responsiveness of vascular adenylate cyclase to vasoactive intestinal peptide (VIP) and parathyroid hormone (PTH) using preparations of cerebral microvessels and arteries. Cerebral microvessels obtained from rats, guinea-pigs, cattle, and pigs all responded potently to bovine (b) PTH-(1-34), whereas considerable between-species variability was observed in the responsiveness to VIP. The homologous peptide to VIP, PHI (porcine heptacosapeptide), stimulated adenylate cyclase in both rat microvessels and a broken-cell preparation of bovine arteries. The ED50 values for activation of bovine arterial adenylate cyclase by VIP, PHI, and bPTH-(1-34) were 6.9 nM, 10 nM, and 100 nM, respectively, with the following order of efficacy: VIP = PHI greater than bPTH-(1-34). The other related peptides, hpGRF (human pancreatic growth hormone releasing factor), secretin, and glucagon, and the fragment VIP-(10-28) were inactive. The PTH antagonist, [Nle8, Nle18, Tyr34]bPTH-(3-34) amide, inhibited bPTH-(1-34) activation of vascular adenylate cyclase but did not affect activation by VIP using either microvessels or arteries. VIP or PHI demonstrated an additive effect with bPTH-(1-34) on vascular adenylate cyclase activity. However, the effects of VIP and PHI were nonadditive with each other. These data suggest that VIP and bPTH-(1-34) activate cerebral vascular adenylate cyclase by interacting with pharmacologically distinct receptors, whereas PHI and VIP likely interact with a common receptor.  相似文献   

13.
Human parathyroid hormone (hPTH) is a promising agent in the treatment of osteoporosis. The intact recombinant human parathyroid hormone [rhPTH(1-84)] was prepared in a large scale from Escherichia coli using a soluble fusion protein strategy. With degenerate codons, gene of hPTH(1-84) was synthesized, ligated with pET32a(+) vector, and then expressed in E. coli BL21(DE3) cells. The soluble fusion protein His(6)-thioredoxin-hPTH(1-84) was harvested after purification by immobilized metal affinity chromatography (IMAC). Following enterokinase cleavage, ion-exchange-chromatography (IEC) and size-exclusive-chromatography (SEC) were used, and finally, over 300mg/l intact hPTH(1-84) with high purity up to 99% was obtained. The purified rhPTH(1-84) was confirmed by mass spectrometry and N-terminal/C-terminal amino-acid sequence analysis. Additionally, this product stimulated adenylate cyclase in Rat Osteosarcoma Cell UMR-106 at the same extent as hPTH standards, indicating that the purified rhPTH(1-84) has full biological activity. The efficient procedure for expression and purification of rhPTH(1-84) may be useful for the mass production of this important protein.  相似文献   

14.
1. The cardiac effects of the N-terminal (1-34) peptide fragment of bovine parathyroid hormone [bPTH-(1-34)] on isolated atria were examined in the frog, Rana tigrina. 2. bPTH-(1-34) produced dose-related inotropic response but no chronotropic response. This inotropic response varied at different times of the year. 3. The inotropic effect of bPTH-(1-34) was attenuated in the presence of verapamil and imidazole. 4. The mechanism of action of bPTH-(1-34) is probably a stimulation of calcium influx directly or indirectly via cAMP production.  相似文献   

15.
High-Level Production of Recombinant Human Parathyroid Hormone 1-34   总被引:4,自引:1,他引:3       下载免费PDF全文
Expression of the synthetic human parathyroid hormone 1-34 [hPTH(1-34)] gene by a gene fusion strategy was demonstrated. hPTH(1-34) was produced at the C terminus of the partner peptides involving amino acids 1 to 97, 1 to 117, or 1 to 139 of a modified Escherichia coli β-galactosidase by linker peptides containing oligohistidine of different lengths. The fusion proteins in the inclusion bodies were rendered soluble with urea and subjected to site-specific cleavage with the secretory type yeast Kex2 protease. Optimal expression and enzymatic processing were achieved in the fusion protein βG-117S4HPT, constructed from amino acids 1 to 117 of β-galactosidase and the linker of HHHHPGGSVKKR. The fusion protein accumulated more than 20% of the E. coli total protein. The hPTH(1-34) was purified up to 99.5% with a good yield of 0.5 g/liter of culture. The purified product was identified as intact hPTH(1-34) by amino acid analysis and N-terminal sequencing.  相似文献   

16.
The 1-34 N-terminal fragments of human parathyroid hormone (PTH) and PTH-related protein (PTHrP) elicit the full spectrum of bone-relevant activities characteristic of the intact hormones. The structural elements believed to be required for receptor binding and biological activity are two helical segments, one N-terminal and one C-terminal, connected by hinges or flexible points located around positions 12 and 19. To test this hypothesis, we synthesized and characterized the following analogues of PTH-(1-34), each containing single or double substitutions with beta-amino acid residues around the putative hinge located at position 12: I. [Nle(8,18),beta-Ala(11,12),Nal(23),Tyr(34)]bPTH-(1-34)NH(2); II. [Nle(8,18),beta-Ala(12,13),Nal(23),Tyr(34)]bPTH-(1-34)NH(2); III. [Nle(8,18),beta-Ala(11),Nal(23),Tyr(34)]bPTH-(1-34)NH(2); IV. [Nle(8,18),beta-hLeu(11),Nal(23),Tyr(34)]bPTH-(1-34)NH(2); V. [Nle(8,18),beta-Ala(12), Nal(23),Tyr(34)]bPTH-(1-34)NH(2); VI. [Nle(8,18),beta-Ala(13), Nal(23),Tyr(34)]bPTH-(1-34)NH(2) (beta-hLeu = beta-homo-leucine; beta-Ala = beta-alanine; Nal = L-2-naphthyl-alanine; Nle = norleucine). Analogues I and III exhibit very low binding affinity and are devoid of adenylyl cyclase activity. Analogue II, despite its very low binding capacity is an agonist. Biological activity and binding capacity are partially restored in analogue IV, and completely restored in analogues V and VI. The conformational properties of the analogues were investigated in aqueous solution containing dodecylphosphocholine (DPC) micelles as a membrane-mimetic environment using CD, 2D-NMR, and molecular dynamics calculations. All peptides fold partially into the alpha-helical conformation in the presence of DPC micelles, with a maximum helix content in the range of 30-35%. NMR analysis reveals the presence of two helical segments, one N-terminal and one C-terminal, as a common structural motif in all analogues. Incorporation of beta-Ala dyads at positions 11,12 and 12,13 in analogues I and II, respectively, enhances the conformational disorder in this portion of the sequence but also destabilizes the N-terminal helix. This could be one of the possible reasons for the lack of biological activity in these analogues. The partial recovery of binding affinity and biological activity in analogue IV, compared to the structurally similar analogue III, is clearly the consequence of the reintroduction of Leu side-chain of the native sequence. In the fully active analogues V and VI, the helix stability at the N-terminus is further increased. Taken together, these results stress the functional importance of the conformational stability of the helical activation domain in PTH-(1-34). Contrary to expectation, insertion of a single beta-amino acid residue in positions 11, 12, or 13 in analogues III-VI does not favor a disordered structure in this portion of the sequence.  相似文献   

17.
Cyclic AMP and the vascular action of parathyroid hormone   总被引:2,自引:0,他引:2  
The involvement of tissue cAMP in the vasodilating action of parathyroid hormone (PTH) was investigated. The bovine active fragment bPTH-(1-34) was used in all studies. In anesthetized dogs, theophylline, a phosphodiesterase inhibitor, potentiated the hypotensive action of bPTH-(1-34) at the dose of 1 microgram/kg. The potentiation was related to the dose of theophylline infused. In an in vitro rat tail artery helical strip assay, dibutyryl cAMP produced dose-related relaxation in arginine vasopressin (AVP) constricted blood vessels. bPTH-(1-34) also produced dose-related relaxation in the tail artery constricted by AVP. In the presence of isobutylmethylxanthine, another phosphodiesterase inhibitor, the bPTH-(1-34) dose--response curve was shifted to the left, indicating potentiation. Imidazole, which has phosphodiesterase stimulating activity, significantly decreased the in vitro vasorelaxing effect of bPTH-(1-34). In addition, bPTH-(1-34) increased significantly the rat tail artery cAMP content. b-PTH-(1-34) oxidized with hydrogen peroxide lost its vasorelaxing activity and was also ineffective in increasing the tail artery cAMP content. All these data strongly suggest that cAMP may be involved in eliciting the vasorelaxing action of bPTH-(1-34).  相似文献   

18.
Endocytosis and intracellular trafficking of the human parathyroid hormone receptor subtype 1 (hPTH1-Rc) and its ligands was monitored independently by real-time fluorescence microscopy in stably transfected HEK-293 cells. Complexes of fluorescence-labeled parathyroid hormone (PTH)-(1-34) agonist bound to the hPTH1-Rc internalized rapidly at 37 degrees C via clathrin-coated vesicles, whereas fluorescent PTH-(7-34) antagonist-hPTH1Rc complexes did not. A functional C terminus epitope-tagged receptor (C-Tag-hPTH1-Rc) was immunolocalized to the cell membrane and, to a lesser extent, the cytoplasm. PTH and PTH-related protein agonists stimulated C-Tag-hPTH1-Rc internalization. Relocalization to the cell membrane occurred 1 h after removal of the ligand. Endocytosis of fluorescent PTH agonist-hPTH1-Rc complexes was blocked by the protein kinase C (PKC) inhibitor staurosporine but not by the specific protein kinase A inhibitor N-(2-(methylamino)ethyl)-5-isoquinoline-sulfonamide. Fluorescent PTH antagonist-hPTH1-Rc complexes were rapidly internalized after PKC activation by phorbol 12-myristate 13-acetate or thrombin, but not after stimulation of the cAMP/protein kinase A pathway by forskolin. In cells co-expressing the hPTH1-Rc and a green fluorescent protein-beta-arrestin2 fusion protein (beta-Arr2-GFP), PTH agonists stimulated beta-Arr2-GFP mobilization to the cell membrane. Subsequently, fluorescent PTH-(1-34)-hPTH1Rc complexes and beta-Arr2-GFP co-localized intracellularly. In conclusion, agonist-activated hPTH1-Rc internalization involves beta-arrestin mobilization and targeting to clathrin-coated vesicles. Our results also indicate that receptor occupancy, rather than receptor-mediated signaling, is necessary, although not sufficient, for endocytosis of the hPTH1-Rc. Activation of PKC, however, is absolutely required.  相似文献   

19.
Crystal structure of human parathyroid hormone 1-34 at 0.9-A resolution   总被引:4,自引:0,他引:4  
The N-terminal fragment 1-34 of parathyroid hormone (PTH), administered intermittently, results in increased bone formation in patients with osteoporosis. PTH and a related molecule, parathyroid hormone-related peptide (PTHrP), act on cells via a common PTH/PTHrP receptor. To define more precisely the ligand-receptor interactions, we have crystallized human PTH (hPTH)-(1-34) and determined the structure to 0.9-A resolution. hPTH-(1-34) crystallizes as a slightly bent, long helical dimer. Analysis reveals that the extended helical conformation of hPTH-(1-34) is the likely bioactive conformation. We have developed molecular models for the interaction of hPTH-(1-34) and hPTHrP-(1-34) with the PTH/PTHrP receptor. A receptor binding pocket for the N terminus of hPTH-(1-34) and a hydrophobic interface with the receptor for the C terminus of hPTH-(1-34) are proposed.  相似文献   

20.
Although the effect of sucrose on the physical stability of proteins has been well documented, its impact on their chemical stability is largely unknown. The aim of this study was to investigate the potential effects of sucrose on the structural conformation of human brain natriuretic peptide [hBNP (1-32)] and the synthetic human parathyroid hormone [hPTH (1-34)], and link these effects to chemical degradation pathways of these peptides. The stability of hBNP (1-32) and hPTH (1-34) was studied at pH 5.5. Aggregation was monitored using size exclusion high-performance liquid chromatography (SE-HPLC), whereas oxidation and deamidation products were measured by reversed phase (RP) HPLC. Fourier transform infrared (FT-IR) spectroscopy was used to study the peptides' conformation. Sucrose retarded aggregation, deamidation, and oxidation of hBNP (1-32) and hPTH (1-34), with a maximum effect at relatively high concentrations (as much as 1 m). FT-IR spectroscopy indicated that sucrose maintained the native conformation of hBNP (1-32) and induced small conformation changes in the hPTH (1-34) structure. Sucrose enhanced the stability of hBNP (1-32) and hPTH (1-34) in liquid formulations. The stabilizing effect of sucrose was due to a large extent to retardation of oxidation and deamidation of hBNP (1-32) and hPTH (1-34).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号