首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formyl-coenzyme A (formyl-CoA) transferase was purified from Oxalobacter formigenes by high-pressure liquid chromatography with hydrophobic interaction chromatography and by DEAE anion-exchange chromatography. The enzyme was a single entity on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel permeation chromatography (Mr, 44,000). It had an isoelectric point of 4.7. The enzyme catalyzed the transfer of CoA from formyl-CoA to either oxalate or succinate. Apparent Km and Vmax values, respectively, were 3.0 mM and 29.6 mumols/min per mg for formyl-CoA with an excess of succinate. The maximum specific activity was 2.15 mumols of CoA transferred from formyl-CoA to oxalate per min per mg of protein.  相似文献   

2.
R Mineyama  K Saito 《Microbios》1991,67(274):37-52
Dipeptidyl peptidase IV (DAP IV) was purified from Streptococcus salivarius HHT by anion-exchange chromatography, gel filtration and affinity chromatography after lysis of cell walls with N-acetylmuramidase. DAP IV was purified 114-fold with a yield of 16.6% from total activity of the crude extract. The purified enzyme was shown to be homogeneous by disc gel electrophoresis. The molecular weight of the enzyme was estimated to be about 109,000 by gel filtration and 47,000 by sodium dodecylsulphate SDS-polyacrylamide gel electrophoresis, suggesting that the native enzyme is a dimeric form. The optimum pH for the reaction was 8.7 in Gly-NaOH buffer, and the isoelectric point of the enzyme was pH 4.2. The enzyme hydrolysed specifically N-terminal X-Pro from X-Pro-p-nitroanilides. The enzyme activity was hardly affected by various cations, sulphydryl-blocking reagents and metal chelators. The enzyme activity was markedly inhibited by 1 mM diisopropylfluoride, and the desialysed enzyme was attacked by proteinases.  相似文献   

3.
In cytosolic fraction of adult Paragonimus westermani, superoxide dismutase activity was identified (4.3 units/mg of specific activity) using a xanthine-xanthine oxidase system. The enzyme was purified 150 fold in its activity using the ammonium sulfate precipitation, DEAE-Trisacryl M anion-exchange chromatography and Sephadex G-100 molecular sieve chromatography. The enzyme exhibited the enhanced activity at pH 10.0. The enzyme activity totally disappeared in 1.0mM cyanide while it remained 77.8% even in 10 mM azide. These findings indicated that the enzyme was Cu, Zn-SOD type. Molecular mass of the enzyme was estimated to be 34 kDa by gel filtration and 17 kDa on reducing SDS-polyacrylamide gel electrophoresis which indicated a dimer protein.  相似文献   

4.
Acid trehalase was purified from the yeast suc2 deletion mutant. After hydrophobic interaction chromatography, the enzyme could be purified to a single band or peak by a further step of either polyacrylamide gel electrophoresis, gel filtration, or isoelectric focusing. An apparent molecular mass of 218,000 Da was calculated from gel filtration. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate suggested a molecular mass of 216,000 Da. Endoglycosidase H digestion of the purified enzyme resulted after sodium dodecyl sulfate gel electrophoresis in one distinct band at 41,000 Da, representing the mannose-free protein moiety of acid trehalase. The carbohydrate content of the enzyme was 86%. Amino acid analysis indicated 354 residues/molecule of enzyme including 9 cysteine moieties and only 1 methionine. The isoelectric point of the enzyme was estimated by gel electrofocusing to be approximately 4.7. The catalytic activity showed a maximum at pH 4.5. The activity of the enzyme was not inhibited by 10 mM each of HgCl2, EDTA, iodoacetic acid, phenanthrolinium chloride or phenylmethylsulfonyl fluoride. There was no activation by divalent metal ions. The acid trehalase exhibited an apparent Km for trehalose of 4.7 +/- 0.1 mM and a Vmax of 99 mumol of trehalose min-1 X mg-1 at 37 degrees C and pH 4.5. The acid trehalase is located in the vacuoles. The rabbit antiserum raised against acid trehalase exhibited strong cross-reaction with purified invertase. These cross-reactions were removed by affinity chromatography using invertase coupled to CNBr-activated Sepharose 4B. Precipitation of acid trehalase activity was observed with the purified antiserum.  相似文献   

5.
Plastidic pyruvate kinase (ATP: pyruvate phosphotransferase, EC 2.7.1.40) was purified to near homogeneity as judged by native PAGE with about 4% recovery from developing seeds of Brassica campestris using (NH4)2SO4 fractionation, DEAE-cellulose chromatography, gel filtration through Sepharose-CL-6B and affinity chromatography through reactive blue Sepharose-CL-6B. The purified enzyme having molecular mass of about 266 kDa was quite stable and showed a broad pH optimum between pH 6.8-7.8. Typical Michaelis-Menten kinetics was obtained for both the substrates with K(m) values of 0.13 and 0.14 mM for PEP and ADP, respectively. The enzyme could also utilize CDP, GDP or UDP as alternative nucleotide to ADP, but with lower Vmax and higher K(m). The enzyme had an absolute requirement for a divalent and a monovalent cation for activity and was inhibited by oxalate, fumarate, citrate, isocitrate and ATP, and activated by AMP, aspartate, 3-PGA, tryptophan and inorganic phosphate. ATP inhibited the enzyme competitively with respect to PEP and non-competitively with respect to ADP. Similarly, oxalate inhibition was also of competitive type with respect to PEP and non-competitive with respect to ADP. This inhibition by either ATP or oxalate was not due to chelation of Mg2+, as the inhibition was not relieved on increasing Mg2+ concentration even upto 30 mM. Initial velocity and product inhibition studies demonstrated the reaction mechanism to be compulsory ordered type. The enzyme seems to be regulated synergistically by ATP and citrate.  相似文献   

6.
The sesquiterpene cyclase, trichodiene synthetase, has been purified from a supernatant fraction of Fusarium sporotrichioides by hydrophobic interaction, anion exchange, and gel filtration chromatography. Purified enzyme had a specific activity 15-fold higher than that previously reported for preparations of terpene cyclases. Molecular weight determinations by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography indicated the enzyme to be a dimer with a subunit of Mr 45,000. The requirement of Mg2+ (Km 0.1 mM) for activity could be partially substituted with Mn2+ at a concentration of 0.01 mM, but higher concentrations of Mn2+ were inhibitory. Maximum activity was observed between pH 6.75 and pH 7.75. The Km for farnesyl pyrophosphate was 0.065 microM.  相似文献   

7.
By means of a simple procedure involving two gel filtrations and an ion-exchange chromatography, alpha-N-acetylgalactosaminidase was purified to an electrophoretically homogeneous form from skipjack liver, in which the enzyme is the dominant glycosidase. The final alpha-N-acetylgalactosaminidase preparation contained practically no other glycosidase activities except alpha-galactosidase activity, which amounted to 0.8% of the alpha-N-acetylgalactosaminidase activity and may be an intrinsic activity of the enzyme. The molecular weight of the enzyme was estimated to be 80,000 at pH 4.2 and 40,000 at pH 7.2 by molecular sieve chromatography, and to be 35,000 by SDS-polyacrylamide gel electrophoresis. The enzyme was most active at pH 4 and was inactive above pH 7. These results suggest that skipjack alpha-N-acetylgalactosaminidase exists as an active dimer at acidic pH and as inactive monomer at neutral or alkaline pH. The enzyme efficiently liberated the N-acetylgalactosamine unit from ovine submaxillary glycoprotein which had been desialylated by neuraminidase. The Km value and maximum velocity were 4.28 mM and 409 mumol/min X mg for p-nitrophenyl alpha-N-acetylgalactosaminide, and 0.0543 mM and 1.19 mumol/min X mg for ovine submaxillary asialoglycoprotein.  相似文献   

8.
Heparinase I has been purified from F. heparinum by a novel scheme with 10mM CaCl(2) added in crude extracts of cells. The enzyme was purified to apparent homogeneity through ammonium sulfate precipitation, Octyl-Sepharose chromatography, CM-52 chromatography, SP-650 chromatography, and Sephadex G-100 gel filtration chromatography. The specific activity of the purified enzyme was 90.33 U/mg protein with a purification fold of 185.1. The yield was 17.8%, which is higher than any previous scheme achieved. The molecular weight of the purified enzyme was 43 kDa with a pI of 8.5. It has an activity maximum at pH range of 6.4-7.0 and 41 degrees C. CaCl(2) is a good stabilizer of the purified enzyme in liquid form toward either storaging at 4 degrees C or freezing-thawing.  相似文献   

9.
The isocitrate dehydrogenase from bass liver was purified to homogeneity by gel filtration, affinity and ion exchange chromatographies. The molecular weight was estimated by gel filtration chromatography to about 120,000. Analysis of the enzyme on sodium dodecyl sulphate polyacrylamide gel electrophoresis showed it to be a dimeric protein. The enzyme showed maximum activity in the pH range between 7.0 and 8.0 while its maximum activity was at pH 7.5. DL-Isocitrate and Mn2+ stabilized the enzyme, while NADP had the opposite effect. The Km for isocitrate was 0.31 mM and the Km for NADP was 36 microM.  相似文献   

10.
Active nonphosphorylated fructose bisphosphatase (EC 3.1.3.11) was purified from bakers' yeast. After chromatography on phosphocellulose, the enzyme appeared as a homogeneous protein as deduced from polyacrylamide gel electrophoresis, gel filtration, and isoelectric focusing. A Stokes radius of 44.5 A and molecular weight of 116,000 was calculated from gel filtration. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate resulted in three protein bands of Mr = 57,000, 40,000, and 31,000. Only one band of Mr = 57,000 was observed, when the single band of the enzyme obtained after polyacrylamide gel electrophoresis in the absence of sodium dodecyl sulfate was eluted and then resubmitted to electrophoresis in the presence of sodium dodecyl sulfate. Amino acid analysis indicated 1030 residues/mol of enzyme including 12 cysteine moieties. The isoelectric point of the enzyme was estimated by gel electrofocusing to be around pH 5.5. The catalytic activity showed a maximum at pH 8.0; the specific activity at the standard pH of 7.0 was 46 units/mg of protein. Fructose 1,6-bisphosphatase b, the less active phosphorylated form of the enzyme, was purified from glucose inactivated yeast. This enzyme exhibited maximal activity at pH greater than or equal to 9.5; the specific activity measured at pH 7.0 was 25 units/mg of protein. The activity ratio, with 10 mM Mg2+ relative to 2 mM Mn2+, was 4.3 and 1.8 for fructose 1,6-bisphosphatase a and fructose 1,6-bisphosphatase b, respectively. Activity of fructose 1,6-bisphosphatase a was 50% inhibited by 0.2 microM fructose 2,6-bisphosphate or 50 microM AMP. Inhibition by fructose 2,6-bisphosphate as well as by AMP decreased with a more alkaline pH in a range between pH 6.5 and 9.0. The inhibition exerted by combinations of the two metabolites at pH 7.0 was synergistic.  相似文献   

11.
Collagenase from the internal organs of a mackerel was purified using acetone precipitation, ion-exchange chromatography on a DEAE-Sephadex A-50, gel filtration chromatography on a Sephadex G-100, ion-exchange chromatography on DEAE-Sephacel, and gel filtration chromatography on a Sephadex G-75 column. The molecular mass of the purified enzyme was estimated to be 14.8 kDa by gel filtration and SDS-PAGE. The purification and yield were 39.5-fold and 0.1% when compared to those in the starting-crude extract. The optimum pH and temperature for the enzyme activity were around pH 7.5 and 55 degrees, respectively. The K(m) and V(max) of the enzyme for collagen Type I were approximately 1.1mM and 2,343 U, respectively. The purified enzyme was strongly inhibited by Hg2+, Zn2+, PMSF, TLCK, and the soybean-trypsin inhibitor.  相似文献   

12.
A bacteriolytic enzyme obtained from the culture fluid of Staphylococcus aureus FDA 209P was purified to homogeneity utilizing dye-ligand affinity column chromatography, hydrophobic interaction high pressure liquid chromatography (HPLC) and hydroxyapatite HPLC. Subsequent characterizations indicated that the purified enzyme acted as endo-beta-N-acetylglucosaminidase. The molecular weight determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was 51,000 and the isoelectric point was higher than 10. The optimum pH for the enzyme activity on whole cells of Micrococcus luteus as a substrate was 8.0. Some heavy metal cations (Cu2+ and Zn2+) inhibited the enzyme activity at a concentration of 0.1 mM and others (Ba2+, Mg2+ and Co2+) showed a stimulating effect at a concentration of 1 mM.  相似文献   

13.
Frog liver (Rana esculenta) is a rich source of acylneuraminate cytidylyltransferase. The soluble enzyme was purified 250-fold almost to purity with 25% yield and a specific activity of 9 mkat/kg protein (0.54 U/mg protein) using DEAE Sephadex and Sepharose 6B chromatography, followed by preparative polyacrylamide gel electrophoresis. The molecular weight of the cytidylyltransferase was determined to be 163 000 with the aid of Sepharose 6B chromatography and gel electrophoresis, with or without dodecyl sulphate or urea. No subunits were found. The isoelectric point of the enzyme is at pH 6. Optimum reaction rate was observed at pH 9, 37 degrees C, 50mM Mg2 or Ca2 and ImM mercaptoethanol. The Km values for N-acetylneuraminic acid, N-glycoloylneuraminic acid and CTP are 1.6mM, 2.3 mM and 0.6mM, respectively. O-Acetylated sialic acids are inactive with the cytidylyltransferase from frog liver. Enzyme activity can be inhibited by SH reagents and CMP (Ki = 0.5mM).  相似文献   

14.
Membrane-bound ATPase was found in membranes of the archaebacterium Methanosarcina barkeri. The ATPase activity required divalent cations, Mg2+ or Mn2+, and maximum activity was obtained at pH 5.2. The activity was specifically stimulated by HSO3- with a shift of optimal pH to 5.8, and N,N'-dicyclohexylcarbodiimide inhibited ATP hydrolysis. The enzyme could be solubilized from membranes by incubation in 1 mM Tris-maleate buffer (pH 6.9) containing 0.5 mM EDTA. The solubilized ATPase was purified by DEAE-Sepharose and Sephacryl S-300 chromatography. The molecular weight of the purified enzyme was estimated to be 420,000 by gel filtration through Sephacryl S-300. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate revealed two classes of subunit, Mr 62,000 (alpha) and 49,000 (beta) associated in the molar ratio 1:1. These results suggest that the ATPase of M. barkeri is similar to the F0F1 type ATPase found in many eubacteria.  相似文献   

15.
An adenosine nucleosidase (ANase) (EC 3.2.2.7) was purified from young leaves of Coffea arabica L. cv. Catimor. A sequence of fractionating steps was used starting with ammonium sulphate salting-out, followed by anion exchange, hydrophobic interaction and gel filtration chromatography. The enzyme was purified 5804-fold and a specific activity of 8333 nkat mg-1 protein was measured. The native enzyme is a homodimer with an apparent molecular weight of 72 kDa estimated by gel filtration and each monomer has a molecular weight of 34.6 kDa, estimated by SDS-PAGE. The enzyme showed maximum activity at pH 6.0 in citrate-phosphate buffer (50 mM). The calculated Km is 6.3 microM and Vmax 9.8 nKat.  相似文献   

16.
A Monascus pilosus strain was selected for production of intracellular alpha-galactosidase. Optimum conditions for mycelial growth and enzyme induction were determined. Galactose was one of the best enzyme inducers. The enzyme was purified by ammonium sulfate precipitation, gel filtration, and ion exchange chromatography and was demonstrated to be homogeneous by slab gel electrophoresis. The molecular weight of this enzyme, estimated by gel filtration, was about 150,000. The optimum conditions for the enzyme reaction was pH 4.5 to 5.0 at 55 degrees C. The purified enzyme was stable at 55 degrees C or below and in buffer at pH 3 to 8. The activity was inhibited by mercury, silver, and copper ions. The kinetics of this enzyme, with p-nitrophenyl-alpha-d-galactoside as substrate, was determined: K(m) was about 0.8 mM, and V(max) was 39 mumol/min per mg of protein. Enzymatic hydrolysis of melibiose, raffinose, and stachyose was analyzed by thin-layer chromatography.  相似文献   

17.
Park J  Cho SY  Choi SJ 《BMB reports》2008,41(3):254-258
Lipase was purified from squid (Todarodes pacificus) liver in an attempt to investigate the possibility of applying the enzyme for biotechnological applications. Crude extract of squid liver was initially fractionated by the batch type ion exchange chromatography. The fraction containing lipase activity was further purified with an octyl-Sepharose column. Finally, lipase was purified by eluting active protein from a non-dissociating polyacrylamide gel after zymographic analysis. Molecular weight of the purified enzyme was determined to be 27 kDa by SDS-polyacrylamide gel electrophoresis. The enzyme showed the highest activity at a temperature range of 35-40 degrees C and at pH 8.0. The activity was almost completely inhibited at 1 mM concentration of Hg(2+) or Cu(2+) ion. Partial amino acid sequence of the enzyme was also determined.  相似文献   

18.
Abstract The enzyme ornithine carbamoyltransferase was purified from Streptomyces fradiae . A 1200-fold increase in specific activity was achieved by ammonium sulphate precipitation, DEAE-cellulose and aminohexyl-agarose chromatography and gel filtration. The purified enzyme has a M r of 87 000. Its isoelectric point is 5.3 as determined by isoelectric focusing. Apparent K m values at pH 7.7 for ornithine and carbamoyl phosphate are 1.8 and 1.2 mM, respectively.  相似文献   

19.
A tissue carboxypeptidase-A-like enzyme was purified to apparent homogeneity from terminally differentiated epidermal cells of 2-day-old rats by potato inhibitor affinity chromatography followed by FPLC Mono Q column chromatography. The enzyme has an Mr of 35,000 as determined by SDS-polyacrylamide gel electrophoresis and HPLC gel filtration. It has a pH optimum of 8.5 for hydrolysis of benzyloxycarbonyl-Phe-Leu (Km = 0.22 mM, kcat = 57.9 s-1). The enzyme does not hydrolyze substrates with Arg, Lys and Pro at the C-terminal and Pro at the penultimate position. Angiotensin I was effectively hydrolyzed (Km = 0.06 mM, kcat = 6.48 s-1) and produced both des-Leu10-angiotensin I and angiotensin II. The enzyme activity, relatively stable at 4 degrees C and pH 8.0-10.5, was inactivated at pH values higher than 12.0 and lower than 5.0 or at 65 degrees C for 10 min. Inhibitor profiles of the epidermal enzyme also differed slightly from those of tissue carboxypeptidase A of pancreatic or mast cell origin.  相似文献   

20.
Extracellular alpha-galactosidase, a glycoprotein from the extracellular culture fluid of Aspergillus ficuum grown on glucose and raffinose in a batch culture system, was purified to homogeneity in five steps by ion exchange and hydrophobic interaction chromatography. The molecular mass of the enzyme was 70.8 Kd by SDS polyacrylamide gel electrophoresis and 74.1 Kd by gel permeation HPLC. On the basis of a molecular mass of 70.7 Kd, the molar extinction coefficient of the enzyme at 279 nm was estimated to be 6.1 X10(4) M-1 cm-1. The purified enzyme was remarkably stable at 0 degrees C. It had a broad temperature optimum and maximum catalytic activity was at 60 degrees C. It retained 33% of its activity after 10 min. at 65 degrees C. It had a pH optimum of 6.0. It retained 62% of its activity after 12 hours at pH 2.3. The Kms for p-nitrophenyl-alpha-D-galactopyranoside, o-nitrophenyl-alpha-D-galactopyranoside and m-nitrophenyl-alpha-D-galactopyranoside are: 1462, 839 and 718 microM. The enzyme was competitively inhibited by mercury (19.8 microM), silver (21.5 microM), copper (0.48 mM), zinc (0.11 mM), galactose (64.0 mM) and fructose (60.3 mM). It was inhibited non-competitively by glucose (83.2 mM) and uncompetitively by mannose (6.7 mM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号