首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oleic acid lung injury in sheep   总被引:3,自引:0,他引:3  
Intravenous infusion of oleic acid into experimental animals causes acute lung injury resulting in pulmonary edema. We investigated the mechanism of oleic acid lung injury in sheep. In experiments with anesthetized and unanesthetized sheep with lung lymph fistulas, we measured pulmonary arterial and left atrial pressures, cardiac output, lung lymph flow, and lymph and plasma protein concentrations. We injured the lungs with intravenous infusions of oleic acid at doses ranging from 0.015 to 0.120 ml/kg. We found that oleic acid caused reproducible dose-related increases in pulmonary arterial pressure and pulmonary vascular resistance, arterial hypoxemia, and increased protein-rich lung lymph flow and extravascular lung water. The lung fluid balance changes were characteristic of increased permeability pulmonary edema. Infusion of the esterified fat triolein had no hemodynamic or lung fluid balance effects. Depletion of leukocytes with a nitrogen mustard or platelets with an antiplatelet serum had no effect on oleic acid lung injury. Treatment of sheep before injury with methylprednisolone 30 mg/kg or ibuprofen 12.5-15.0 mg/kg also had no effects. Unlike other well-characterized sheep lung injuries, injury caused by oleic acid does not require participation of leukocytes.  相似文献   

2.
The proteolytic action of Arvin on human fibrinogen   总被引:10,自引:2,他引:10       下载免费PDF全文
1. Human fibrinogen was subjected to proteolysis by enzyme preparations (clinical Arvin and IRC-50 Arvin) from the venom of Agkistrodon rhodostoma. 2. IRC-50 Arvin releases three peptides from fibrinogen, and these were identified as fibrinopeptides AP, AY and A. 3. The less purified ;clinical' Arvin releases, in addition to fibrinopeptides AP, AY and A, small amounts of two heptapeptides derived from fibrinopeptides AP and A, probably because it contains another enzyme as well as Arvin. 4. No fibrinopeptide B is released by either Arvin preparation. 5. Thus, although Arvin is known to differ from ;reptilase' from Bothrops jararaca in that it does not activate the enzyme that cross-links fibrin (fibrin-stabilizing factor), it is identical with reptilase with respect to the peptides that it liberates from fibrinogen.  相似文献   

3.
To determine whether lung injury causes increased plasma prostaglandin (PG) levels, 35 rabbits received oleic acid and 35 served as controls. Half of each group also received 4 ml/kg of Intralipid over one hour and at least five in each subgroup received indomethacin 7.5 mg/kg. Arterial and venous plasma concentrations of PGE2, 6-keto-PGF1 alpha, and PGF2 alpha-M were measured. Venous PGE2 was significantly higher in the oleic acid-injured than in the normal lung group, 1560 +/- 270 (Mean +/- SEM) versus 880 +/- 140 pg/ml (p less than .05). Plasma levels were reduced by 50% with indomethacin, but PGE2 levels remained significantly higher than in the normal lung group, 850 +/- 180 versus 480 +/- 60 for arterial (p less than .05) and 820 +/- 140 versus 480 +/- 80 for venous (p less than .05), respectively. PGF2 alpha-M levels were significantly higher in the lung injury group, 240 +/- 50 versus 50 +/- 40 pg/ml for arterial (p less than .05) and 220 +/- 50 versus 95 +/- 40 for venous (p less than .05), respectively. These lung injury-related increases in PGE2 and PGF2 alpha-M appear related both to increased pulmonary production and to decreased pulmonary clearance. With Intralipid infusion, however, arterial PGE2 increased by 500 +/- 260 pg/ml compared to baseline (p less than .05) with no change in venous PGE2, indicating in this instance that the increase in arterial PGE2 levels is related to increased pulmonary production.  相似文献   

4.
5.
The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2α). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.  相似文献   

6.
The action of histamine in oleic acid (OA)-induced injury was investigated using the isolated guinea pig lung perfused with blood-free media. OA infusion caused a significant increase in pulmonary arterial pressure, airway inspiratory pressure, lung weight, and protein flux across the alveolar-capillary barrier. These changes were dose dependent and caused injury regardless of the chemical form of OA (salt or free acid). Triolein (a neutral fat) infused at comparable emulsion particle size did not alter lung weight or bronchoalveolar lavage protein concentration in the perfused lung, suggesting that mechanical obstruction or emboli per se is not responsible for initiating early events in OA-induced injury. Infusion of OA caused a significant early histamine release into the venous effluent in the presence of aminoguanidine, a histamine catabolism inhibitor. Pretreatment with H1-receptor antagonists significantly attenuated OA-induced increase in lung weight and protein leak. These data support the link between OA-induced mast cell degranulation, histamine release, and OA-induced edema.  相似文献   

7.
Monokine-induced acute lung injury in rabbits   总被引:4,自引:0,他引:4  
Interleukin-1 (IL-1) mediates components of the acute phase response, stimulates granulocyte metabolism, and induces endothelial cell surface changes. We studied in unanesthetized rabbits the effects of intravenous divided dose infusions of a murine monokine preparation containing IL-1 activity, on circulating granulocytes, their sequestration within the pulmonary microvasculature, pulmonary edema formation, and changes in pulmonary vascular permeability. Monokine administration induced significant (P less than 0.01) granulocytopenia as well as a significant (P less than 0.001) increase in mean alveolar septal wall granulocytes per high power field (HPF) compared with saline-injected controls. Infusions of the monokine preparation significantly (P less than 0.005) increased lung wet-to-dry weight ratios as well as significantly (P less than 0.025) increased pulmonary extravasation of radiolabeled albumin. Electron microscopic analysis of lung sections obtained from monokine-infused animals demonstrated endothelial injury, perivascular edema, and extravasation of an ultrastructural tracer. We conclude that a monokine preparation containing IL-1 activity can induce profound granulocytopenia, pulmonary leukostasis, and acute pulmonary vascular endothelial injury.  相似文献   

8.
We hypothesized that leukotrienes might contribute to the pathophysiology of acute lung injury induced by oleic acid. Oleic acid (2-20 mg.kg-1.h-1), LY171883 [leukotriene (LT) D4/LTE4 receptor antagonist, 10 mg/kg + 1 mg.kg-1.h-1] + oleic acid (10 mg.kg-1. h-1), or triolein (20 mg.kg-1.h-1) were infused intravenously into anesthetized pigs. Treatment with the cyclooxygenase inhibitor was designed to possibly enhance LT release. Bronchoalveolar lavage fluid concentrations of LTB4, LTC4, LTD4, and LTE4 were measured by reverse-phase high-performance liquid chromatography and radioimmunoassay. Oleic acid caused dose-related hypoxemia and pulmonary hypertension and increased pulmonary vascular resistance, lung water, and alveolar-capillary membrane permeability. Bronchoalveolar lavage fluid levels of LTB4, LTC4, LTD4, and LTE4 showed no significant changes in oleic acid- or indomethacin + oleic acid-treated pigs, compared with triolein-treated controls. Indomethacin modestly attenuated the oleic acid-induced hypoxemia and the early increases (i.e., 0-0.5 h) in mean pulmonary arterial pressure and pulmonary vascular resistance. In contrast, LY171883 provided no protection against any oleic acid-induced cardiopulmonary effect (measured or calculated). We conclude that LTs are not likely to be important mediators of oleic acid-induced lung injury in the pig.  相似文献   

9.
Fatty acids are important second messengers that mediate various cellular functions, but their role in the formation of macrophage foam cells is not known. High plasma levels of oleic acid (OA) in obese patients are often associated with a high risk for atherosclerosis. In this study, we investigated the protein kinase C (PKC) isozymes involved in OA-induced lipid accumulation in RAW 264.7 macrophages. The results show that OA induces translocation of PKC alpha, beta1, and delta from the cytosol to the cell membrane 5 min after the treatment. After 16 h incubation with OA, PKC delta was found to be colocalized with adipose differentiation-related protein (ADRP) on the surface of lipid droplets, but immunoprecipitation experiments showed that PKC delta was not biochemically associated with ADRP. After 16 h incubation with OA plus phorbol 12-myristate 13-acetate (PMA), PKC delta staining on the lipid droplet surface was not seen, whereas the accumulation of lipid droplets was unaffected. Furthermore, downregulation of PKC delta was confirmed by immunoblotting. These results demonstrate possible involvement of specific PKC isozymes in the early phase of lipid accumulation, possibly during the uptake of OA.  相似文献   

10.
11.
12.
We studied the effects of oleic acid (OA) on pulmonary clearance of three aerosolized radioactive solutes: 99mTc-diethylenetriamine pentaacetate (99mTc-DTPA), 67Ga-desferoxamine (67Ga-DFOM), and 111In-transferrin (111In-TF). Either 0.09 ml/kg OA or an equivalent volume of 0.9% NaCl (controls) was administered intravenously to 48 anesthetized, paralyzed dogs. Each animal received one aerosolized solute either 60 min after (protocol A) or 30 min before (protocol B) the infusion of OA or NaCl. In protocol A clearances of all three solutes were similar in OA and control animals. In contrast, in protocol B clearances of all three solutes increased significantly during OA infusion; during the next 60 min clearances of 99mTc-DTPA and 67Ga-DFOM returned to control values but 111In-TF remained increased. We conclude that 1) in OA-induced permeability edema pulmonary clearance of aerosolized solutes is increased when the aerosol is delivered 30 min before but not 60 min after injury, and 2) increased clearance persists only for large molecules, presumably because smaller molecules cross injured epithelium quickly and completely. These phenomena are best explained by a nonhomogeneous distribution of OA-induced injury.  相似文献   

13.
14.
Lung injury was induced in rabbits with N-nitroso-N-methylurethane (NNNMU), and saturated phosphatidylcholine (Sat PC) pool sizes and phospholipid compositions were measured in alveolar wash subfractions isolated by differential centrifugation (large and small surfactant aggregates). Surfactant metabolism also was studied using intravascular and intratracheal radiolabels. Protein permeability, gas exchange, and compliance were significantly abnormal as lung injury progressed. At peak injury, there was a decrease in the large aggregate Sat PC pool size in alveolar wash accompanied by increased uptake of Sat PC from the air space and increased specific activity of both intravascular and intratracheal radiolabels in lamellar bodies. This was followed by a marked rise in the small aggregate pool size in the alveolar wash and increased secretion of Sat PC into the air spaces. Phospholipid compositions, total phospholipid-to-protein ratios, and in vivo functional studies using a preterm ventilated rabbit model were abnormal for both large and small aggregate surfactant fractions from the lung-injured rabbits. These studies characterize quantitative, qualitative, and functional changes of alveolar wash surfactant subfractions in NNNMU-injured lungs.  相似文献   

15.
Acute respiratory distress syndrome (ARDS) is a serious clinical problem that has a 30–50% mortality rate. Budesonide has been used to reduce lung injury. This study aims to investigate the effects of nebulized budesonide on endotoxin-induced ARDS in a rabbit model. Twenty-four rabbits were randomized into three groups. Rabbits in the control and budesonide groups were injected with endotoxin. Thereafter, budesonide or saline was instilled, ventilated for four hours, and recovered spontaneous respiratory. Peak pressure, compliance, and PaO2/FiO2 were monitored for 4 h. After seven days, PaO2/FiO2 ratios were measured. Wet-to-dry weight ratios, total protein, neutrophil elastase, white blood cells, and percentage of neutrophils in BALF were evaluated. TNF-α, IL-1β, IL-8, and IL-10 in BALF were detected. Lung histopathologic injury and seven-day survival rate of the three groups were recorded. Peak pressure was downregulated, but compliance and PaO2/FiO2 were upregulated by budesonide. PaO2/FiO2 ratios significantly increased due to budesonide. Wet-to-dry weight ratios, total protein, neutrophil elastase, white blood cells and percentage of neutrophils in BALF decreased in the budesonide group. TNF-α, IL-1β, and IL-8 levels decreased in BALF, while IL-10 levels increased in the budesonide group. Lung injuries were reduced and survival rate was upregulated by budesonide. Budesonide effectively ameliorated respiratory function, attenuated endotoxin-induced lung injury, and improved the seven-day survival rate.  相似文献   

16.
Alveolar type II (ATII) cell proliferation and differentiation are important mechanisms in repair following injury to the alveolar epithelium. KGF is a potent ATII cell mitogen, which has been demonstrated to be protective in a number of animal models of lung injury. We have assessed the effect of recombinant human KGF (rhKGF) and liposome-mediated KGF gene delivery in vivo and evaluated the potential of KGF as a therapy for acute lung injury in mice. rhKGF was administered intratracheally in male BALB/c mice to assess dose response and time course of proliferation. SP-B immunohistochemistry demonstrated significant increases in ATII cell numbers at all rhKGF doses compared with control animals and peaked 2 days following administration of 10 mg/kg rhKGF. Protein therapy in general is very expensive, and gene therapy has been suggested as a cheaper alternative for many protein replacement therapies. We evaluated the effect of topical and systemic liposome-mediated KGF-gene delivery on ATII cell proliferation. SP-B immunohistochemistry showed only modest increases in ATII cell numbers following gene delivery, and these approaches were therefore not believed to be capable of reaching therapeutic levels. The effect of rhKGF was evaluated in a murine model of OA-induced lung injury. This model was found to be associated with significant alveolar damage leading to severe impairment of gas exchange and lung compliance. Pretreatment with rhKGF 2 days before intravenous OA challenge resulted in significant improvements in PO2, PCO2, and lung compliance. This study suggests the feasibility of KGF as a therapy for acute lung injury.  相似文献   

17.
Platelet-activating factor (PAF) is a proinflammatory mediator that plays a central role in acute lung injury (ALI). PAF- acetylhydrolases (PAF-AHs) terminate PAF's signals and regulate inflammation. In this study, we describe the kinetics of plasma and bronchoalveolar lavage (BAL) PAF-AH in the early phase of ALI. Six pigs with oleic acid induced ALI and two healthy controls were studied. Plasma and BAL samples were collected every 2h and immunohistochemical analysis of PAF-AH was performed in lung tissues. PAF-AH activity in BAL was increased at the end of the experiment (BAL PAF-AH Time 0=0.001+/-0.001 nmol/ml/min/g vs Time 6=0.031+/-0.018 nmol/ml/min/g, p=0.04) while plasma activity was not altered. We observed increased PAF-AH staining of macrophages and epithelial cells in the lungs of animals with ALI but not in healthy controls. Our data suggest that increases in PAF-AH levels are, in part, a result of alveolar production. PAF-AH may represent a modulatory strategy to counteract the excessive pro-inflammatory effects of PAF and PAF-like lipids in lung inflammation.  相似文献   

18.
The effect of static magnetic field of induction 0.005 T, 0.12 T and 0.3 T applied in daily rhythm (one hour every day) for the period of 2 weeks and 4 weeks produces an increase of FDP level in the serum. Especially, the effect elicited by the magnetic field applied 2 weeks prior to experimental thrombosis development. The range of changes was related to the duration of the exposure to the magnetic field. No dependence of the degree of induction of the magnetic field was established.  相似文献   

19.
Gallic acid (GA) is generally distributed in a variety of plants and foods, and its various biological effects have been reported. Here, we investigated the effects of GA and/or caspase inhibitors on Calu-6 and A549 lung cancer cells in relation to cell death and reactive oxygen species (ROS). The growths of Calu-6 and A549 cells were diminished with an IC(50) of approximately 30 and 150 μM GA at 24 h, respectively. GA also inhibited the growth of primary human pulmonary fibroblast (HPF) cells with an IC(50) of about 300 μM. GA induced apoptosis and/or necrosis in lung cancer cells, which was accompanied by the loss of mitochondrial membrane potential (MMP, ΔΨ(m)). The percents of MMP (ΔΨ(m)) loss and death cells by GA were lower in A549 cells than in Calu-6 cells. Caspase inhibitors did not significantly rescued lung cancer cells from GA-induced cell death. GA increased ROS levels including O(2) (?-) and induced GSH depletion in both lung cancer cells. Z-VAD (pan-caspase inhibitor) did not decrease ROS levels and GSH depleted cell number in GA-treated lung cancer cells. In conclusion, GA inhibited the growth of lung cancer and normal cells. GA-induced lung cancer cell death was accompanied by ROS increase and GSH depletion.  相似文献   

20.
Oxygen-induced lung microvascular injury in neutropenic rabbits and lambs   总被引:2,自引:0,他引:2  
We did two studies to see if severe neutropenia might reduce the severity or delay development of O2-induced lung microvascular injury. First, we treated 11 rabbits with nitrogen mustard until their circulating neurophil count decreased to less than 50/microliters of blood, after which the rabbits breathed pure O2 until death; nine other rabbits received no nitrogen mustard and had normal numbers of circulating neutrophils during O2 breathing. All rabbits died of respiratory failure with pulmonary edema, and although chemotherapy decreased the number of neutrophils in the lungs by greater than 90%, it did not influence survival time or extravascular lung water content. To see if severe neutropenia might slow the development of O2-induced lung microvascular injury, we assessed the effects of sustained hyperoxia on lung fluid balance in unanesthetized lambs treated with hydroxyurea, so that their absolute neutrophil count was less than 50/microliters of blood. We measured pulmonary arterial and left atrial pressures, cardiac output, lung lymph flow, and concentrations of protein in lymph and plasma during a 2- to 4-h control period and then daily for 2 to 4 h as the lambs continuously breathed pure O2. After 3 days of hyperoxia, lymph flow doubled and the concentration of protein in lymph increased from 3.3 +/- 0.5 to 4.2 +/- 0.3 g/dl. Tracer studies with 125I-albumin before and 3 days after the start of O2 breathing confirmed the development of increased lung vascular permeability to protein. All lambs died of respiratory failure with pulmonary edema after 3-5 days in O2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号