首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 227 毫秒
1.
研究使用环境DNA宏条形码(eDNA metabarcoding)检测洱海鱼类多样性,探索适用于洱海鱼类多样性监测和保护的新方法。通过水样采集、过滤、eDNA提取、遗传标记扩增、测序与生物信息分析的环境DNA宏条形码标准化分析流程,从洱海16个采样点中获得可检测的9个采样点数据,共检测出17种鱼类,其中土著种5种、外来种12种;鲫(Carassius auratus)、鳙(Hypophthalmichthys nobilis)、麦穗鱼(Pseudorasbora parva)、泥鳅(Misgurnus anguillicaudatus)和食蚊鱼(Gambusia affinis)为优势种。研究结果表明虽然环境DNA宏条形码无法完全替代传统的鱼类监测方法,但作为一种新兴的生物多样性监测手段,其可用于快速检测洱海鱼类多样性及其空间分布。  相似文献   

2.
利用环境DNA宏条形码(environmental DNA metabarcoding;eDNA metabarcoding)检测长江上游珍稀特有鱼类国家级自然保护区重庆段鱼类多样性,探索适用于长江鱼类多样性监测和保护的新方法,为后期长江"十年禁渔"效果评估提供一定的基础资料.研究于2021年3月在保护区重庆段共设置6...  相似文献   

3.
环境DNA宏条形码(eDNA metabarcoding)技术通过提取水体、土壤、空气中的环境DNA,使用引物PCR扩增与高通量测序,进行物种鉴定与生物多样性评估.作为一种新的监测技术,相比于传统监测技术更加快捷、准确以及对自然环境的破坏小,因此在一定程度上改变了我们调查地球生物多样性的方式.本文综述了环境DNA宏条形...  相似文献   

4.
冯芸芝  孙栋  邵倩文  王春生 《生态学报》2022,42(21):8544-8554
浮游动物是海洋生态系统的关键类群,其覆盖门类广泛,多样性高。传统形态鉴定技术需要检测人员具备专业的形态鉴定知识,且费时费力。宏条形码技术无需分离生物个体,而是提取拖网采集到的浮游动物混合样本的总DNA,或者水体中的环境DNA (eDNA),依托高通量测序平台测序,能够实现对大规模样本快速、准确、经济的分析,在海洋浮游动物生态学研究中得到越来越广泛的应用。分析了DNA宏条形码技术常用的核糖体和线粒体分子标记,在浮游动物多样性和数量研究中的可靠性和不足,并给出在海洋浮游动物群落监测,食物关系分析及生物入侵早期预警等研究中的应用。未来,开发多基因片段组合条形码,发展完备的参考数据库及实现准确的量化研究是DNA宏条形码技术发展的重要方向。  相似文献   

5.
为了阐明在使用环境DNA宏条形码技术时不同环境样本类型如何影响蚌类物种的可检测性,于2021年冬季和春季在鄱阳湖分别采集表层水、底层水和沉积物进行环境DNA宏条形码分析,并结合传统方法采集验证。基于环境DNA宏条形码技术共检测到鄱阳湖蚌类33种,传统方法共采集蚌类18种,环境DNA宏条形码技术能检测出传统方法采集到的所有蚌类物种。表层水和底层水注释到的蚌类物种数均分别高于沉积物的,且表层水和底层水注释到的蚌类物种分别完全覆盖沉积物的。基于环境DNA宏条形码技术的蚌类α多样性水平季节差异不显著,但蚌类β多样性水平季节差异显著。表层水和底层水的蚌类多样性均显著高于沉积物样本的, Beta多样性分析也显示水体样本(表层水和底层水分别)和沉积物样本存在显著性差异。但表层水和底层水的蚌类多样性和群落结构均无显著差异。鄱阳湖蚌类群落结构与环境因子的关联分析表明水深(WD)、透明度(SD)、水温(WT)和总氮(TN)显著影响蚌类群落结构。环境DNA宏条形码技术在蚌类的多样性监测中可行,且采水样比采沉积物效果好,表层水和底层水无显著差异。  相似文献   

6.
水螅水母类是浮游动物群落的重要组成部分,在近岸海洋生态系统物质循环和能量流动中扮演着重要角色。水螅水母类形态结构简单,但其物种的准确鉴定一直是分类工作中的难点。DNA条形码极大地促进了水螅水母物种的快速、准确鉴定。本研究扩增了北部湾北部28种水螅水母的线粒体COI和16S序列,分别为92条和116条;比较了2个基因片段的种内、种间K2P(Kimura 2-parameter)遗传距离;构建了基于这2个基因片段的系统发育邻接树(neighbor-joining phylogenetic tree);并结合矢量分析构建了Klee-diagram图。结果显示:COI序列的种内遗传距离为0.008±0.005(0–0.033),种间遗传距离为0.298±0.128(0.092–0.597);16S序列的种内遗传距离为0.006±0.010(0–0.047),种间遗传距离为0.394±0.195(0.068–0.898)。2个基因序列在所调查种类中,种内遗传差异均小于种间遗传差异,存在明显的条形码间隔(barcoding gap)。基于2个基因片段的NJ树均显示,单种所有个体都位于同一独立分枝。研究结果表明,以COI和16S作为DNA条形码均能对北部湾北部常见水螅水母类进行物种鉴定。  相似文献   

7.
环境DNA (eDNA)是指生物有机体在环境中(例如土壤、沉积物或水体)遗留下的DNA片段。eDNA技术是指从环境中提取DNA片段进行测序以及数据分析来反映环境中的物种或群落信息。与传统方法相比, eDNA技术具有高灵敏度、省时省力、无损伤等优点。目前, eDNA技术已成为一种新的水生生物监测方法, 主要应用于水生生物的多样性研究、濒危和稀有动物的物种状态及外来入侵动物扩散动态的监测等。本文从eDNA技术在水生生物多样性监测应用领域的发展历程、eDNA技术的操作流程以及其在监测淡水底栖大型无脊椎动物方面的应用进展、技术优势和局限性五个方面进行了综述。最后, 本文对eDNA技术在淡水底栖大型无脊椎动物多样性监测应用的发展趋势和前景作出展望。  相似文献   

8.
环境 DNA (eDNA) 技术是一种生态和生物多样性监测和评价的新手段, 完整和准确的参考序列库是eDNA技术应用于水生生物多样性调查的基础。当前, 不同水生生物eDNA参考序列还存在诸多问题, 如不同类群使用的标记基因不同且资源较为分散, 部分参考序列分类不准确, 以及针对我国各类水体中水生生物eDNA参考序列不多等。针对上述问题, 研究构建了水生生物eDNA数据库(AeDNA, http://aedna.ihb.ac.cn/)。 AeDNA整合了DNA条形码和基因组两种类型参考序列。其中18S、28S、ITS、COΙ、12S、rbcL 等各类DNA条形码60余万条, 涉及2万余种鱼类、1万余种水生植物、1万余种底栖动物、1万余种浮游动物和1万余种浮游植物; 基因组包含线粒体、叶绿体等细胞器基因组6199个及万种鱼类基因组计划和万种原生生物基因组计划所产生的物种基因组。涉及的生境有江、河、湖、海、冰川和温泉等各类水环境, 尤其数据库构建团队贡献的6万余条参考序列, 具有我国丰富的各类水体生境信息。总体来说, AeDNA是一个数据量大、类群覆盖全、准确性高且具有我国水生生物特色的综合性eDNA参考序列库, 是水生态和水生生物多样性监测的重要基础资源。  相似文献   

9.
文章采用环境DNA宏条码和底拖网对珠江河口鱼类多样性进行了研究, 并对两种方法进行了比较。利用环境DNA宏条码检测到了175种鱼类, 而利用底拖网采集到了47种鱼类, 结合两种方法共检测出179种鱼类, 隶属于15 目63科128属。其中两种方法共同识别了鱼类43种, 占总检测物种的24.02%, 基于底拖网的调查未能收集到基于环境DNA宏条码检测到的大多数物种。根据Shannon指数和Simpson指数显示, DNA宏条码所检测珠江河口鱼类群落α多样性显著高于底拖网方法(P<0.05)。两种方法的PCoA结果均显示珠江河口鱼类群落存在空间结构, 基于环境DNA宏条码的分析显示空间重叠更多。两种方法基于冗余分析均显示溶解氧和盐度是影响鱼类群落结构的主要环境因子。研究表明, 环境DNA 宏条形码是一种环保且可靠的评估方法, 将其搭载到现有调查可以更好地了解河口鱼类多样性。  相似文献   

10.
研究采用高通量测序技术对长江口水域环境DNA(Environmental DNA, eDNA)样品进行分析,并与传统渔业资源调查结果对比,阐述长江口鱼类群落在其生境内的多样性特征,探讨eDNA技术在长江口水域鱼类多样性研究中的应用前景。结果显示, eDNA技术共检测到10目21科41属45种鱼类,各站点鱼类丰富度之间无显著差异,而多样性之间存在显著差异性。底拖网法共捕获11目16科29属33种鱼类。有18种鱼类在两种方法中均检测到,占鱼类总数的30%。两种方法检测到的鱼类中均以鲈形目(Perciformes)最多,其次是鲤形目(Cypriniformes),两种方法的结果均表明刀鲚(Coilia nasus)和凤鲚(Coilia mystus)为优势物种。研究表明环境DNA技术在长江口水域渔业资源监测中具有可行性,在禁捕环境下可根据实际情况采用不同方法对渔业资源进行监测。  相似文献   

11.
Because significant global changes are currently underway in the Arctic, creating a large‐scale standardized database for Arctic marine biodiversity is particularly pressing. This study evaluates the potential of aquatic environmental DNA (eDNA) metabarcoding to detect Arctic coastal biodiversity changes and characterizes the local spatio‐temporal distribution of eDNA in two locations. We extracted and amplified eDNA using two COI primer pairs from ~80 water samples that were collected across two Canadian Arctic ports, Churchill and Iqaluit, based on optimized sampling and preservation methods for remote regions surveys. Results demonstrate that aquatic eDNA surveys have the potential to document large‐scale Arctic biodiversity change by providing a rapid overview of coastal metazoan biodiversity, detecting nonindigenous species, and allowing sampling in both open water and under the ice cover by local northern‐based communities. We show that DNA sequences of ~50% of known Canadian Arctic species and potential invaders are currently present in public databases. A similar proportion of operational taxonomic units was identified at the species level with eDNA metabarcoding, for a total of 181 species identified at both sites. Despite the cold and well‐mixed coastal environment, species composition was vertically heterogeneous, in part due to river inflow in the estuarine ecosystem, and differed between the water column and tide pools. Thus, COI‐based eDNA metabarcoding may quickly improve large‐scale Arctic biomonitoring using eDNA, but we caution that aquatic eDNA sampling needs to be standardized over space and time to accurately evaluate community structure changes.  相似文献   

12.
Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, in vitro and in situ. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 (CI = 0.90–0.99) vs. 0.58 (CI = 0.50–0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA‐based approach has the potential to become the next‐generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems.  相似文献   

13.
Freshwater fauna are particularly sensitive to environmental change and disturbance. Management agencies frequently use fish and amphibian biodiversity as indicators of ecosystem health and a way to prioritize and assess management strategies. Traditional aquatic bioassessment that relies on capture of organisms via nets, traps and electrofishing gear typically has low detection probabilities for rare species and can injure individuals of protected species. Our objective was to determine whether environmental DNA (eDNA) sampling and metabarcoding analysis can be used to accurately measure species diversity in aquatic assemblages with differing structures. We manipulated the density and relative abundance of eight fish and one amphibian species in replicated 206‐L mesocosms. Environmental DNA was filtered from water samples, and six mitochondrial gene fragments were Illumina‐sequenced to measure species diversity in each mesocosm. Metabarcoding detected all nine species in all treatment replicates. Additionally, we found a modest, but positive relationship between species abundance and sequencing read abundance. Our results illustrate the potential for eDNA sampling and metabarcoding approaches to improve quantification of aquatic species diversity in natural environments and point the way towards using eDNA metabarcoding as an index of macrofaunal species abundance.  相似文献   

14.
Organisms continuously release DNA into their environments via shed cells, excreta, gametes and decaying material. Analysis of this ‘environmental DNA’ (eDNA) is revolutionizing biodiversity monitoring. eDNA outperforms many established survey methods for targeted detection of single species, but few studies have investigated how well eDNA reflects whole communities of organisms in natural environments. We investigated whether eDNA can recover accurate qualitative and quantitative information about fish communities in large lakes, by comparison to the most comprehensive long‐term gill‐net data set available in the UK. Seventy‐eight 2L water samples were collected along depth profile transects, gill‐net sites and from the shoreline in three large, deep lakes (Windermere, Bassenthwaite Lake and Derwent Water) in the English Lake District. Water samples were assayed by eDNA metabarcoding of the mitochondrial 12S and cytochrome b regions. Fourteen of the 16 species historically recorded in Windermere were detected using eDNA, compared to four species in the most recent gill‐net survey, demonstrating eDNA is extremely sensitive for detecting species. A key question for biodiversity monitoring is whether eDNA can accurately estimate abundance. To test this, we used the number of sequence reads per species and the proportion of sampling sites in which a species was detected with eDNA (i.e. site occupancy) as proxies for abundance. eDNA abundance data consistently correlated with rank abundance estimates from established surveys. These results demonstrate that eDNA metabarcoding can describe fish communities in large lakes, both qualitatively and quantitatively, and has great potential as a complementary tool to established monitoring methods.  相似文献   

15.
Determining the species compositions of local assemblages is a prerequisite to understanding how anthropogenic disturbances affect biodiversity. However, biodiversity measurements often remain incomplete due to the limited efficiency of sampling methods. This is particularly true in freshwater tropical environments that host rich fish assemblages, for which assessments are uncertain and often rely on destructive methods. Developing an efficient and nondestructive method to assess biodiversity in tropical freshwaters is highly important. In this study, we tested the efficiency of environmental DNA (eDNA) metabarcoding to assess the fish diversity of 39 Guianese sites. We compared the diversity and composition of assemblages obtained using traditional and metabarcoding methods. More than 7,000 individual fish belonging to 203 Guianese fish species were collected by traditional sampling methods, and ~17 million reads were produced by metabarcoding, among which ~8 million reads were assigned to 148 fish taxonomic units, including 132 fish species. The two methods detected a similar number of species at each site, but the species identities partially matched. The assemblage compositions from the different drainage basins were better discriminated using metabarcoding, revealing that while traditional methods provide a more complete but spatially limited inventory of fish assemblages, metabarcoding provides a more partial but spatially extensive inventory. eDNA metabarcoding can therefore be used for rapid and large‐scale biodiversity assessments, while at a local scale, the two approaches are complementary and enable an understanding of realistic fish biodiversity.  相似文献   

16.
Terrestrial animals must have frequent contact with water to survive, implying that environmental DNA (eDNA) originating from those animals should be detectable from places containing water in terrestrial ecosystems. Aiming to detect the presence of terrestrial mammals using forest water samples, we applied a set of universal PCR primers (MiMammal, a modified version of fish universal primers) for metabarcoding mammalian eDNA. The versatility of MiMammal primers was tested in silico and by amplifying DNAs extracted from tissues. The results suggested that MiMammal primers are capable of amplifying and distinguishing a diverse group of mammalian species. In addition, analyses of water samples from zoo cages of mammals with known species composition suggested that MiMammal primers could successfully detect mammalian species from water samples in the field. Then, we performed an experiment to detect mammals from natural ecosystems by collecting five 500‐ml water samples from ponds in two cool‐temperate forests in Hokkaido, northern Japan. MiMammal amplicon libraries were constructed using eDNA extracted from water samples, and sequences generated by Illumina MiSeq were subjected to data processing and taxonomic assignment. We thereby detected multiple species of mammals common to the sampling areas, including deer (Cervus nippon), mouse (Mus musculus), vole (Myodes rufocanus), raccoon (Procyon lotor), rat (Rattus norvegicus) and shrew (Sorex unguiculatus). Many previous applications of the eDNA metabarcoding approach have been limited to aquatic/semiaquatic systems, but the results presented here show that the approach is also promising even for forest mammal biodiversity surveys.  相似文献   

17.
Environmental DNA (eDNA) analysis is a rapid, cost‐effective, non‐invasive biodiversity monitoring tool which utilises DNA left behind in the environment by organisms for species detection. The method is used as a species‐specific survey tool for rare or invasive species across a broad range of ecosystems. Recently, eDNA and “metabarcoding” have been combined to describe whole communities rather than focusing on single target species. However, whether metabarcoding is as sensitive as targeted approaches for rare species detection remains to be evaluated. The great crested newt Triturus cristatus is a flagship pond species of international conservation concern and the first UK species to be routinely monitored using eDNA. We evaluate whether eDNA metabarcoding has comparable sensitivity to targeted real‐time quantitative PCR (qPCR) for T. cristatus detection. Extracted eDNA samples (N = 532) were screened for T. cristatus by qPCR and analysed for all vertebrate species using high‐throughput sequencing technology. With qPCR and a detection threshold of 1 of 12 positive qPCR replicates, newts were detected in 50% of ponds. Detection decreased to 32% when the threshold was increased to 4 of 12 positive qPCR replicates. With metabarcoding, newts were detected in 34% of ponds without a detection threshold, and in 28% of ponds when a threshold (0.028%) was applied. Therefore, qPCR provided greater detection than metabarcoding but metabarcoding detection with no threshold was equivalent to qPCR with a stringent detection threshold. The proportion of T. cristatus sequences in each sample was positively associated with the number of positive qPCR replicates (qPCR score) suggesting eDNA metabarcoding may be indicative of eDNA concentration. eDNA metabarcoding holds enormous potential for holistic biodiversity assessment and routine freshwater monitoring. We advocate this community approach to freshwater monitoring to guide management and conservation, whereby entire communities can be initially surveyed to best inform use of funding and time for species‐specific surveys.  相似文献   

18.
Freshwater fish biodiversity is quickly decreasing and requires effective monitoring and conservation. Environmental DNA (eDNA)‐based methods have been shown to be highly sensitive and cost‐efficient for aquatic biodiversity surveys, but few studies have systematically investigated how spatial sampling design affects eDNA‐detected fish communities across lentic systems of different sizes. We compared the spatial patterns of fish diversity determined using eDNA in three lakes of small (SL; 3 ha), medium (ML; 122 ha) and large (LL; 4,343 ha) size using a spatially explicit grid sampling method. A total of 100 water samples (including nine, 17 and 18 shoreline samples and six, 14 and 36 interior samples from SL, ML and LL, respectively) were collected, and fish communities were analysed using eDNA metabarcoding of the mitochondrial 12S region. Together, 30, 35 and 41 fish taxa were detected in samples from SL, ML, and LL, respectively. We observed that eDNA from shoreline samples effectively captured the majority of the fish diversity of entire waterbodies, and pooled samples recovered fewer species than individually processed samples. Significant spatial autocorrelations between fish communities within 250 m and 2 km of each other were detected in ML and LL, respectively. Additionally, the relative sequence abundances of many fish species exhibited spatial distribution patterns that correlated with their typical habitat occupation. Overall, our results support the validity of a shoreline sampling strategy for eDNA‐based fish community surveys in lentic systems but also suggest that a spatially comprehensive sampling design can reveal finer distribution patterns of individual species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号