首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new nematode, Tripius gyraloura n. sp., is described from the arundo gall midge, Lasioptera donacis Coutin (Diptera: Cecidomyiidae). This gall midge is being considered as a biological control agent for use in North America against the introduced giant reed Arundo donax (L.) (Poaceae: Cyperales). Thus the present study was initiated to investigate a nematode parasite that was unknown at the time studies with L. donacis were initiated. The new species has a rapid development in the fly host and the mature parasitic female nematodes evert their uterine cells in the hosts’ hemolymph. Because large numbers of nematodes sterilise the host, eradication of the parasite from laboratory colonies of the midge may be necessary before populations of the fly are released.  相似文献   

2.
The nematode, Abbreviata terrapenis (Physalopteridae) was found in 16 (6%) of 267 banded rock rattlesnakes (Crotalus lepidus klauberi) from Arizona and New Mexico. Abbreviata terrapenis in C. lepidus represents an accidental parasite in that "infection" was acquired by the ingestion of lizard prey. Feeding captive snakes on wild-caught lizards poses a risk of introducing nematodes to the snakes.  相似文献   

3.
Bitter gourd (Momordica charantia L.) was inoculated with root-knot nematode Meloidogyne incognita to investigate the anatomical abnormalities in the affected roots. Soon after inoculation the second-stage juveniles (J2) entered at or near the root caps and migrated intercellularly towards the zone of vascular differentiation. Discrete giant cells were observed after three days of inoculation. The nematode induced hypertrophy and hyperplasia near the giant cells. After six days, the juveniles moulted to their third stage (J3). At the same, time giant cell size and density of giant cell cytoplasm increased. The continuity of vascular strands remained unaffected. Between 12 and 24 days of inoculation the giant cells enlarged several times and became multinucleate and enclosed dense and granular cytoplasm. The nematodes became almost pyriform 18 days after inoculation. The orientation of vascular strands changed, due to hypertrophy, hyperplasia and enlargement of the nematode. After 30 days of inoculation the nematodes developed into mature females and started egg laying. A large amount of parenchyma transformed into abnormal xylem.  相似文献   

4.
Some aspects of the host-parasite relationships of two heteroderid nematodes are described. Meloidodera floridensis induced formation of single uninucleate giant cells in the stelar parenchyma tissue of sand pine (Pinus clausa) roots. Wrinkling and yellowing of the cuticle were associated with maturation of the adult female (cystoid stage). The mode of parasitism of different life stages of Verutus volvingentis on buttonweed (Diodia virginiana) is described. The nematode caused extensive necrosis during penetration and the formation of a large feeding site consisting of nonhypertrophied parenchyma cells with enlarged nuclei and thickened cell walls in the cortex. Walls between cells within the feeding site degenerated, resulting in the formation of a syncytium. Two citrus rootstocks, rough lemon (Citrus lirnon) and trifoliate orange (Poncirus trifoliata), were not hosts of V. volvingentis.  相似文献   

5.
Host responses to Meloidodera floridensis Chitwood et al., 1956, M. charis Hooper, 1960, and M. belli Wouts, 1973 were examined on loblolly pine, peony, and sage, respectively, with light, scanning, and transmission electron microscopy. In each case the nematodes induce a single uninucleate giant cell. The giant cell is initiated in the pericycle and expands as it matures. The mature giant cell induced by M. floridensis is surrounded by vascular parenchyma, whereas that caused by M. charts and M. belli coutacts xylem and phloem. The cell wall of giant cells induced by all three Meloidodera spp. is generally thicker than that of surrounding cells, with the thickest part adjacent to the lip region of the nematode. The thinner portion of the wall includes numerous pit fields with plasmodesmata, but wall ingrowths were not detected in a thorough examination of the entire wall. The nucleus of a giant cell induced by M. goridensis is highly irregular in shape with deep invaginations, whereas those caused by M. charis and M. belli include a cluster of apparently interconnected nuclear units. Organelles, including mitochondria, endoplasmic reticulum, and plastids of giant cells caused by Meloidodera, are typical of those reported in host responses of other Heteroderidae. The formation of a single uninucleate giant cell by Meloidodera, Cryphodera, Hylonerna, and Sarisodera, but a syncytium by Atalodera and Heterodera sensu lato, might be considered in conjunction with additional characters to determine the most parsimonious pattern of phylogeny of Heteroderidae.  相似文献   

6.
The parasitic larva of Telenomus remus is surrounded by giant cells throughout its first instar. These cells arise in the embryonic serosa of the parasite and grow in size, starting with a radius of 5nm and ending with 27nm. Young cells are round and mononuclear, whereas older ones are often polynuclear and have varied, irregular contours. Most cells are profusely vacuolated, the vacuoles being especially large in some of the older cells. Only a few of the giant cells are devoured by the first instar parasite larva, but all disappear at the end of this stage. No giant cells seem to be produced by supernumerary larvae. Once the parasite egg hatches, the host tissue disintegrates almost instantaneously.  相似文献   

7.
Nematode parasite infections cause disease in humans and animals and threaten global food security by reducing productivity in livestock and crop farming. The escalation of anthelmintic resistance in economically important nematode parasites underscores the need for the identification of novel drug targets in these worms. Nematode neuropeptide signalling is an attractive system for chemotherapeutic exploitation, with neuropeptide G-protein coupled receptors (NP-GPCRs) representing the lead targets. In order to successfully validate NP-GPCRs for parasite control it is necessary to characterise their function and importance to nematode biology. This can be aided through identification of receptor activating ligand(s) via deorphanisation. Such efforts require the identification of all neuropeptide ligands within parasites. Here we mined the genomes of nine therapeutically relevant pathogenic nematodes to characterise the neuropeptide-like protein complements and demonstrate that: (i) parasitic nematodes possess a reduced complement of neuropeptide-like protein-encoding genes relative to Caenorhabditis elegans; (ii) parasite neuropeptide-like protein profiles are broadly conserved between nematode clades; (iii) five Ce-nlps are completely conserved across the nematode species examined; (iv) the extent and position of neuropeptide-like protein-motif conservation is variable; (v) novel RPamide-encoding genes are present in parasitic nematodes; (vi) novel Allatostatin-C-like peptide encoding genes are present in both C. elegans and parasitic nematodes; (vii) novel neuropeptide-like protein families are absent in C. elegans; and (viii) highly conserved nematode neuropeptide-like proteins are bioactive. These data highlight the complexity of nematode neuropeptide-like proteins and reveal the need for nomenclature revision in this diverse neuropeptide family. The identification of neuropeptide-like protein ligands, and characterisation of those with functional relevance, advance our understanding of neuropeptide signalling to support exploitation of the neuropeptidergic system as an anthelmintic target.  相似文献   

8.
9.
Root-knot nematodes (RKN) are highly specialized, obligatory plant parasites. These animals reprogram root cells to form large, multinucleate, and metabolically active feeding cells (giant cells) that provide a continuous nutrient supply during 3–6 weeks of the nematode’s life. The establishment and maintenance of physiologically fully functional giant cells are necessary for the survival of these nematodes. As such, giant cells may be useful targets for applying strategies to reduce damage caused by these nematodes, aiming the reduction of their reproduction. We have recently reported the involvement of cell cycle inhibitors of Arabidopsis, named Kip-Related Proteins (KRPs), on nematode feeding site ontogeny. Our results have demonstrated that this family of cell cycle inhibitors can be envisaged to efficiently disrupt giant cell development, based on previous reports which showed that alterations in KRP concentration levels can induce cell cycle transitions. Herein, we demonstrated that by overexpressing KRP genes, giant cells development is severely compromised as well as nematode reproduction. Thus, control of root-knot nematodes by modulating cell cycle-directed pathways through the enhancement of KRP protein levels may serve as an attractive strategy to limit damage caused by these plant parasites.  相似文献   

10.
The nature of resistance in Cucumis ficifolius and C. metuliferus to the root-knot nematode, Meloidogyne incognita acrita, was studied under greenhouse conditions. Although as many larvae penetrated the roots of these species as those of the susceptible C. melo, few developed to the adult female stage. Resistance in C. ficifolius and C. metuliferus was associated with hindrance of larval development beyond the second stage, delayed development of larvae to adults and stimulation toward maleness. Tissue necrosis or hypersensitivity was not associated with larval penetration. Comparisons of the histopathology of 26-day-old infections of C. melo and C. metuliferus roots showed no observable differences in the type of giant cell development in regions of roots associated with adult females. However, in C. rnetuliferus immature nematodes were associated with small giant cells which were limited to a few cells near the head of the nematode.  相似文献   

11.
White yam tissues naturally and artificially infected with root-knot nematodes were fixed, sectioned, and examined with a microscope. Infective second-stage juveniles of Meloidogyne incognita penetrated and moved intercellularly within the tuber. Feeding sites were always in the ground tissue layer where the vascular tissues are distributed in the tubers. Giant cells were always associated with xylem tissue. They were thin walled with dense cytoplasm and multinucleated. The nuclei of the giant cells were only half the size of those found in roots of infected tomato plants. Normal nematode growth and development followed giant cell formation. Females deposited eggs into a gelatinous egg mass within the tuber, and a necrotic ring formed around the female after eggs had been produced. Second-stage juveniles hatched, migrated, and re-infected other areas of the tuber. No males were observed from the tuber.  相似文献   

12.
Praecocilenchus rhaphidophorus n. gen., n. sp. is described as a new endoparasitic aphelenchoid nematode parasitizing adults of the palm weevil, Rhynchophorus bilineatus (Montrouzier). P. rhaphidophorus is unusual in that juveniles develop to maturity within the female uterus and thin, needle-shaped crystals form in the intestines of mature parasitic females. Hundreds of parasitic female nematodes were found in the body cavity of infected hosts. The role of this parasite as a biological control agent of Rhynchophorus weevils is discussed.  相似文献   

13.
Various concentrations of the nematode Heterorhabditis bacteriophora were added to dishes containing second, third, and fourth larval instars of the mosquito, Culex pipiens, respectively. The infective stage nematodes were ingested by the mosquito larvae, they then penetrated through the alimentary tract in the neck region and entered the hemocoel. A melanization reaction killed many invading nematodes, but heavier concentrations overwhelmed the hosts' defense reaction and 100% mortality of third- and fourth-instar larvae was achieved using between 170 and 200 nematodes per host. Death was either due to the nematode releasing cells of the symbiotic bacterium, Xenorhabdus luminescens, into the hemocoel or to foreign bacteria (mostly Pseudomonas aeruginosa), which were introduced by the penetrating nematodes. The potential use of this nematode as a biological control agent of larval culicine mosquito is discussed.  相似文献   

14.
Handlinger J. H. and Rothwell T. L. W. 1981. Studies of the responses of basophil and eosinophil leucocytes and mast cells to the nematode Trichostrongylus colubriformis: comparison of cell populations in parasite resistant and susceptible guinea-pigs. Internationaljournal for Parasitology11: 67–70. Basophil and eosinophil leucocytes and mast cells in T. colubriformis resistant and susceptible guinea-pigs were compared. There were significantly more circulating and small intestinal eosinophils in the resistant guinea-pigs. Intestinal eosinophils increased in both groups following infection with T. colubriformis but after 10 days the count in susceptible animals had only reached the pre-infection count in the resistant group. Pre-infection intestinal mast cell counts in the two groups were similar. Mast cell counts in susceptible guinea-pigs did not change during the period of observation but almost doubled within seven days of infection in the resistant animals.  相似文献   

15.
We investigated the three-dimensional ultrastructure of feeding tubes and the surrounding region in giant cells induced in rose balsam (Impatiens balsamina L.) roots by the root-knot nematode Meloidogyne incognita, using osmium maceration coupled with field emission scanning electron microscopy (FE-SEM). In the roots of 35-day-old galled rose balsam plants, adult nematodes induced the formation of giant cells containing feeding tubes and numerous organelles, including tubular endoplasmic reticulum (ER), cisternal ER, and mitochondria. The feeding tubes were surrounded by fine tubular structures (20–50 nm in diameter), which were in turn surrounded by tubular ER (approximately 120 nm in diameter). The termini of the fine tubular structures appeared to be connected to the surface of the feeding tubes, suggesting that the fine tubular structures were continuous with narrow channels in the feeding tubes. The tubular ER arose from cisternal ER. Large bundles of tubular ER were present near the feeding tube, in the centers of the giant cells, and in the peripheral regions of the giant cells, such as cell wall ingrowths, while smaller bundles of tubular ER formed networks in the giant cells. These observations suggest that tubular ER functions as vascular bundles in giant cells, facilitating the transport of nutrients. We identified capsule-shaped structures (30 μm in diameter) in the giant cells that consisted of smooth, repeatedly branched ER tubules wrapped in several layers of cisternal ER. We propose that lipids and steroids are synthesized at the smooth branched ER and stored in these capsules until needed by the nematode.  相似文献   

16.
The root-knot nematode Meloidogyne incognita is an obligate endoparasite of plant roots and stimulates elaborate modifications of selected root vascular cells to form giant cells for feeding. An Arabidopsis thaliana endoglucanase (Atcel1) promoter is activated in giant cells that were formed in Atcel1::UidA transgenic tobacco and Arabidopsis plants. Activity of the full-length Atcel1 promoter was detected in root and shoot elongation zones and in the lateral root primordia. Different 5’ and internal deletions of regions of the 1,673 bp Atcel1 promoter were each fused to the UidA reporter gene and transformed in tobacco, and roots of the transformants were inoculated with M. incognita to assay for GUS expression in giant cells and noninfected plant tissues. Comparison of the Atcel1 promoter deletion constructs showed that the region between −1,673 and −1,171 (fragment 1) was essential for Atcel1 promoter activity in giant cells and roots. Fragment 1 alone, however, was not sufficient for Atcel1 expression in giant cells or roots, suggesting that cis-acting elements in fragment 1 may function in consort with other elements within the Atcel1 promoter. Root-knot nematodes and giant cells developed normally within roots of Arabidopsis that expressed a functional antisense construct to Atcel1, suggesting that a functional redundancy in endoglucanase activity may represent another level of regulatory control of cell wall-modifying activity within nematode feeding cells.  相似文献   

17.
Root-knot nematodes are biotrophic parasites that invade the root apex of host plants and migrate towards the vascular cylinder where they induce the differentiation of root cells into hypertrophied multinucleated giant cells. Giant cells are part of the permanent feeding site required for nematode development into the adult stage. To date, a repertoire of candidate effectors potentially secreted by the nematode into the plant tissues to promote infection has been identified. However, the precise role of these candidate effectors during root invasion or during giant cell induction and maintenance remains largely unknown. Primarily, the identification of the destination of nematode effectors within plant cell compartment(s) is crucial to decipher their actual functions. We analyzed the fine localization in root tissues of five nematode effectors throughout the migratory and sedentary phases of parasitism using an adapted immunocytochemical method that preserves host and pathogen tissues. We showed that secretion of effectors from the amphids or the oesophageal glands is tightly regulated during the course of infection. The analyzed effectors accumulated in the root tissues along the nematode migratory path and along the cell wall of giant cells, showing the apoplasm as an important destination compartment for these effectors during migration and feeding cell formation.Key words: plant pathogen, effector, immunocytochemistry, root-knot nematode, secretion, plant apoplasm  相似文献   

18.
Histopathogenesis of galls induced by Meloidogyne naasi in wheat roots was studied. Large numbers of larvae penetrated wheat root tips within 24 hr; larvae migrated both inter- and intracellularly, causing cortical hypertrophy. Giant cells were formed in the stele around the head of each nematode within 4 to 5 days. Initial pathological alterations in giant cell formation consisted of hypertrophy of protophloem and protoxylem cells, their nuclei and nucleoli. Giant ceils contained 2 to 8 agglomerated multinucleolate nuclei. Synchronous mitotic divisions were first observed 9 days after inoculation. After 21 days, giant cells became highly vacuolate. Observations 40 days after inoculation revealed a complete degeneration of cell contents in many giant cells but their thick walls remained intact. Abnormal xylem completely surrounded the degenerated or partially degenerated giant cells.  相似文献   

19.
Living and freeze-killed natural and laboratory hosts, with different susceptibility to entomopathogenic nematodes, were exposed to the larvae of Steinernema affine and Steinernema kraussei in two different experimental arenas (Eppendorf tubes, Petri dishes), and the success of the colonisation and eventual progeny production were observed. Both nematodes were able to colonise both living and dead larvae of Galleria mellonella (Lepidoptera) and adult Blatella germanica (Blattodea) even though the progeny production in dead hosts was lower on average. Living carabid beetles, Poecilus cupreus, and elaterid larvae (Coleoptera) were resistant to the infection, however, both nematodes were able to colonise and multiply in several dead P. cupreus and in a majority of dead elaterid larvae. By scavenging, EPNs can utilise cadavers of insects that are naturally resistant to EPN infection, and so broaden their host range.  相似文献   

20.
The entomogenous nematode Neoaplectana carpocapsae and its associated bacterium, Xenorhabdus nematophilus, could not infect the pupal stage of the tachinid Compsilura concinnata through the puparium. N. carpocapsae had an adverse effect on 1-, 2- and 3-day-old C. concinnata larvae within the armyworm host in petri dish tests. All 1-day-old larvae treated with nematodes died in their hosts, whereas 61% and 69% of 2- and 3-day-old larvae treated with nematodes, respectively, died. However, the survivors developed to adults. Nine to thirty-seven percent of adult tachinids which emerged from nematode-treated soil (50 nematodes/cm²) were infected with N. carpocapsae. The nematode adversely affects C. concinnata directly by the frank infection of the tachinid and indirectly by causing the premature death of the host which results in tachinid death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号