首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Members of the TGFbeta superfamily of signalling molecules play important roles in mesendoderm induction and dorsoventral patterning of the vertebrate embryo. We cloned three intracellular mediators of TGFbeta signalling, smad1, 2 and 5, from the zebrafish. The three smad genes are expressed ubiquitously at the onset of gastrulation. The pattern of expression becomes progressively restricted during somitogenesis suggesting that at later stages not only the distribution of the TGFbeta signal but also that of the intracellular smad signal transducer determine the regionally restricted effects of TGFbeta signalling. Forced expression of smad1 leads to an expansion of blood cells resembling the phenotype of moderately ventralized zebrafish mutants. In contrast to Smad1, neither Smad2 nor Smad5 caused a detectable effect when expressed as full-length molecules suggesting that these latter two Smads are more dependent on activation by the cognate TGFbeta ligands. N-terminal truncated Smad2 dorsalized embryos, in agreement with a role downstream of dorsalizing TGFbeta members such as Nodals. In contrast to the C-terminal MH2 domain of Smad2, the C-terminal region of Smad1 and Smad5 lead to pleiotropic effects in embryos giving rize to both dorsalized and ventralized characteristics in injected embryos. Analysis of truncated zebrafish Smad1 in Xenopus embryos supports the notion that the C-terminal domain of smad1 is both a hypomorph and antimorph which can act as activator or inhibitor depending on the region of expression in the embryo. These results indicate a specific function of the MH1 domain of Smad1 and 5 for activity of the molecules.  相似文献   

2.
3.
Smad2 and Smad3, two essential nuclear effectors of transforming growth factor (Tgf)-β signals, have been found to be implicated in mesoderm and endoderm development in vertebrate embryos. However, their roles in the induction and patterning of the neuroectoderm are not well established. In this study, we show that interference with Smad2/3 activities in zebrafish embryos, by injecting dnsmad3b mRNA encoding a dominant negative Smad3b mutant, inhibits the expression of the early neural markers sox2 and sox3 at the onset of gastrulation and results in reduction of the anterior neuroectodermal marker otx2 as well as the posterior neuroectodermal marker hoxb1b during late gastrulation, suggesting a role of Smad2/3 activities in neural induction. Conversely, excess Smad2/3 activities, caused by injecting smad3b mRNA, lead to an enhancement of sox2 and sox3 expression in the ventral domains but an inhibition of their expression in the dorsalmost region at early stages. Overexpression of smad3b also causes ventral expansion of the otx2 and hoxb1b expression domains accompanied with rostral shift of the hoxb1b domain at late gastrulation stages. Collectively, these data indicate that Smad2/3 activities are required for neural induction and neuroectodermal posteriorization in zebrafish. Knockdown of chordin partially inhibits effect of smad3b overexpression on neural induction, implying that Smad2/3 exert their effect on neural induction in part by regulating the expression of Bmp antagonists. Furthermore, down-regulation or up-regulation of Smad2/3 activities in MZoep mutant embryos, which lack the organizer and mesendodermal tissues due to deficiency of Nodal signaling, still affects induction and patterning of the neuroectoderm, suggesting that Smad2/3 activities are implicated in neural development in the absence of the organizer and mesendodermal tissues. We additionally demonstrate that Smad2/3 activities cooperate with Wnt and Fgf signals in neural development. Thus, Smad2/3 activities play important roles not only in mesendodermal development but also in neural development during early vertebrate embryogenesis.  相似文献   

4.
Nodals are signaling factors of the transforming growth factor-beta (TGFbeta) superfamily with a key role in vertebrate development. They control a variety of cell fate decisions required for the establishment of the embryonic body plan. We have identified two highly conserved transmembrane proteins, Nicalin and Nomo (Nodal modulator, previously known as pM5), as novel antagonists of Nodal signaling. Nicalin is distantly related to Nicastrin, a component of the Alzheimer's disease-associated gamma-secretase, and forms a complex with Nomo. Ectopic expression of both proteins in zebrafish embryos causes cyclopia, a phenotype that can arise from a defect in mesendoderm patterning mediated by the Nodal signaling pathway. Accordingly, downregulation of Nomo resulted in an increase in anterior axial mesendoderm and the development of an enlarged hatching gland. Inhibition of Nodal signaling by ectopic expression of Lefty was rescued by reducing Nomo levels. Furthermore, Nodal- as well as Activin-induced signaling was inhibited by Nicalin and Nomo in a cell-based reporter assay. Our data demonstrate that the Nicalin/Nomo complex antagonizes Nodal signaling during mesendodermal patterning in zebrafish.  相似文献   

5.
6.
Nodal signals, a subclass of the TGFbeta superfamily of secreted factors, induce formation of mesoderm and endoderm in vertebrate embryos. We have examined the possible dorsoventral and animal-vegetal patterning roles for Nodal signals by using mutations in two zebrafish nodal-related genes, squint and cyclops, to manipulate genetically the levels and timing of Nodal activity. squint mutants lack dorsal mesendodermal gene expression at the late blastula stage, and fate mapping and gene expression studies in sqt(-/-); cyc(+/+) and sqt(-/-); cyc(+/-) mutants show that some dorsal marginal cells inappropriately form hindbrain and spinal cord instead of dorsal mesendodermal derivatives. The effects on ventrolateral mesendoderm are less severe, although the endoderm is reduced and muscle precursors are located nearer to the margin than in wild type. Our results support a role for Nodal signals in patterning the mesendoderm along the animal-vegetal axis and indicate that dorsal and ventrolateral mesoderm require different levels of squint and cyclops function. Dorsal marginal cells were not transformed toward more lateral fates in either sqt(-/-); cyc(+/-) or sqt(-/-); cyc(+/+) embryos, arguing against a role for the graded action of Nodal signals in dorsoventral patterning of the mesendoderm. Differential regulation of the cyclops gene in these cells contributes to the different requirements for nodal-related gene function in these cells. Dorsal expression of cyclops requires Nodal-dependent autoregulation, whereas other factors induce cyclops expression in ventrolateral cells. In addition, the differential timing of dorsal mesendoderm induction in squint and cyclops mutants suggests that dorsal marginal cells can respond to Nodal signals at stages ranging from the mid-blastula through the mid-gastrula.  相似文献   

7.
8.
9.
Prechordal mesendoderm is formed in response to Nodal and maternal beta-Catenin signaling and is regulated by signals from anterior endoderm and chordamesoderm. Prechordal mesendodermal cells are involved in neural induction and in anteroposterior and dorsoventral neural patterning. Inhibitors of Wnt and BMP growth factors secreted by prechordal mesendoderm mediate neural induction and anteroposterior and dorsoventral patterning, whereas SHH and TGF betas mediate dorsoventral patterning.  相似文献   

10.
11.
The vertebrate body plan arises during gastrulation, when morphogenetic movements form the ectoderm, mesoderm, and endoderm. In zebrafish, mesoderm and endoderm derive from the marginal region of the late blastula, and cells located nearer the animal pole form the ectoderm [1]. Analysis in mouse, Xenopus, and zebrafish has demonstrated that Nodal-related proteins, a subclass of the TGF-beta superfamily, are essential for mesendoderm development [2], but previous mutational studies have not established whether Nodal-related signals control fate specification, morphogenetic movements, or survival of mesendodermal precursors. Here, we report that Nodal-related signals are required to allocate marginal cells to mesendodermal fates in the zebrafish embryo. In double mutants for the zebrafish nodal-related genes squint (sqt) and cyclops (cyc) [3] [4] [5], dorsal marginal cells adopt neural fates, whereas in wild-type embryos, cells at this position form endoderm and axial mesoderm. Involution movements characteristic of developing mesendoderm are also blocked in the absence of Nodal signaling. Because it has been proposed [6] that inhibition of Nodal-related signals promotes the development of anterior neural fates, we also examined anteroposterior organization of the neural tube in sqt;cyc mutants. Anterior trunk spinal cord is absent in sqt;cyc mutants, despite the presence of more anterior and posterior neural fates. These results demonstrate that nodal-related genes are required for the allocation of dorsal marginal cells to mesendodermal fates and for anteroposterior patterning of the neural tube.  相似文献   

12.
Signaling by members of the TGFbeta superfamily is thought to be transduced by Smad proteins. Here, we describe a zebrafish mutant in smad5, designated somitabun (sbn). The dominant maternal and zygotic effect of the sbntc24 mutation is caused by a change in a single amino acid in the L3 loop of Smad5 protein which transforms Smad5 into an antimorphic version, inhibiting wild-type Smad5 and related Smad proteins. sbn mutant embryos are strongly dorsalized, similarly to mutants in Bmp2b, its putative upstream signal. Double mutant analyses and RNA injection experiments show that sbn and bmp2b interact and that sbn acts downstream of Bmp2b signaling to mediate Bmp2b autoregulation during early dorsoventral (D-V) pattern formation. Comparison of early marker gene expression patterns, chimera analyses and rescue experiments involving temporally controlled misexpression of bmp or smad in mutant embryos reveal three phases of D-V patterning: an early sbn- and bmp2b-independent phase when a coarse initial D-V pattern is set up, an intermediate sbn- and bmp2b-dependent phase during which the putative morphogenetic Bmp2/4 gradient is established, and a later sbn-independent phase during gastrulation when the Bmp2/4 gradient is interpreted and cell fates are specified.  相似文献   

13.
刘昭廷  魏奭  王强 《遗传》2012,34(9):1153-1158
丝裂原活化蛋白激酶磷酸酶-2(MKP-2/DUSP4)具有酪氨酸磷酸酶和丝氨酸/苏氨酸磷酸酶活性, 可以作用于MAPKs(Mitogen-activated protein kinases)底物, 使其去磷酸化。但dusp4在脊椎动物胚胎发育中的功能还所知甚少。为深入了解dusp4在发育中的作用, 文章首先检测了其在斑马鱼胚胎的表达。通过整胚原位杂交实验, 发现dusp4是斑马鱼母源表达的基因, 并且随着发育的进行, 在原肠早期特异表达在中内胚层区域。进一步的实验表明, Nodal信号对dusp4的表达至关重要。过表达Nodal信号的配体sqt、dusp4的表达水平明显升高, 而在缺失Nodal信号的突变体MZoep中, 几乎检测不到dusp4的表达。此外, 文章利用反义核苷酸Morpholino (MO)敲降dusp4的表达, 中内胚层标识基因gsc、sox17和sox32的表达水平显著升高, 而过表达dusp4对中内胚层的形成没有明显的影响, 表明dusp4对中内胚层形成的抑制作用是必需的, 但不是充分的, 可能还有其他未被鉴定的协同作用因子。以上研究结果表明, dusp4基因的表达受到Nodal信号调控, 在原肠期具有抑制中内胚层形成的作用。  相似文献   

14.
Nodal signaling: developmental roles and regulation   总被引:8,自引:0,他引:8  
Nodal-related ligands of the transforming growth factor-beta (TGFbeta) superfamily play central roles in patterning the early embryo during the induction of mesoderm and endoderm and the specification of left-right asymmetry. Additional roles for this pathway in the maintenance of embryonic stem cell pluripotency and in carcinogenesis have been uncovered more recently. Consistent with its crucial developmental functions, Nodal signaling is tightly regulated by diverse mechanisms including the control of ligand processing, utilization of co-receptors, expression of soluble antagonists, as well as positive- and negative-feedback activities.  相似文献   

15.
The location, timing and intensity of Nodal signalling are all critical for proper patterning of the vertebrate embryo. Genetic evidence from mouse and zebrafish indicates that EGF-CFC family members are essential for Nodal ligands to signal. However, the Xenopus EGF-CFC, FRL1, has been implicated in Wnt signalling and in activation of Erk MAP kinase. Here, we identify two additional Xenopus EGF-CFCs, XCR2 and XCR3. We have focused on the role of XCR1/FRL1 and XCR3, which are both expressed at gastrula stages when Nodal signalling is active. We demonstrate spatial and temporal regulation of XCR1 protein expression, whereas XCR3 appears to be expressed ubiquitously. Using gain and loss of function approaches, we show that XCR1 and XCR3 are required for Nodal-related ligands to signal during early Xenopus development. Moreover, different Nodal-related ligands require different XCRs to signal. When both XCR1 and XCR3 are knocked down, activation of the Nodal intracellular signal transducer, Smad2, is severely inhibited and neither gastrulation nor mesendoderm formation occurs. Together our results indicate that the XCRs are important for modulation of the timing and intensity of Nodal signalling in Xenopus embryos.  相似文献   

16.
Zebrafish with defective Nodal signaling have a phenotype analogous to the fatal human birth defect anencephaly, which is caused by an open anterior neural tube. Previous work in our laboratory found that anterior open neural tube phenotypes in Nodal signaling mutants were caused by lack of mesendodermal/mesodermal tissues. Defects in these mutants are already apparent at neural plate stage, before the neuroepithelium starts to fold into a tube. Consistent with this, we found that the requirement for Nodal signaling maps to mid‐late blastula stages. This timing correlates with the timing of prechordal plate mesendoderm and anterior mesoderm induction, suggesting these tissues act to promote neurulation. To further identify tissues important for neurulation, we took advantage of the variable phenotypes in Nodal signaling‐deficient sqt mutant and Lefty1overexpressing embryos. Statistical analysis indicated a strong, positive correlation between a closed neural tube and presence of several mesendoderm/mesoderm‐derived tissues (hatching glands, cephalic paraxial mesoderm, notochord, and head muscles). However, the neural tube was closed in a subset of embryos that lacked any one of these tissues. This suggests that several types of Nodal‐induced mesendodermal/mesodermal precursors are competent to promote neurulation. genesis 54:3–18, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
Mesendoderm formation and left-right patterning during vertebrate development depend upon selected members of the transforming growth factor beta superfamily, particularly Nodal and Nodal-related ligands. Two type I serine/threonine kinase receptors have been identified for Nodal, ALK4 and ALK7. Mouse embryos lacking ALK4 fail to produce mesendoderm and die shortly after gastrulation, resembling the phenotype of Nodal knockout mice. Whether ALK4 contributes to left-right patterning is still unknown. Here we report the generation and initial characterization of mice lacking ALK7. Homozygous mutant mice were born at the expected frequency and remained viable and fertile. Viability at weaning was not different from that of the wild type in ALK7(-/-); Nodal(+/-) and ALK7(-/-); ALK4(+/-) compound mutants. ALK7 and ALK4 were highly expressed in interdigital regions of the developing limb bud. However, ALK7 mutant mice displayed no skeletal abnormalities or limb malformations. None of the left-right patterning abnormalities and organogenesis defects identified in mice carrying mutations in Nodal or in genes encoding ActRIIA and ActRIIB coreceptors, including heart malformations, pulmonary isomerism, right-sided gut, and spleen hypoplasia, were observed in mice lacking ALK7. Finally, the histological organization of the cerebellum, cortex, and hippocampus, all sites of significant ALK7 expression in the rodent brain, appeared normal in ALK7 mutant mice. We conclude that ALK7 is not an essential mediator of Nodal signaling during mesendoderm formation and left-right patterning in the mouse but may instead mediate other activities of Nodal and related ligands in the development or function of particular tissues and organs.  相似文献   

18.
19.
During gastrulation, germ layers are formed as prospective mesodermal and endodermal cells internalize and come to underlie the ectoderm [1-9]. Despite the pivotal role of gastrulation in animal development, the cellular interactions underlying this process are poorly understood. In zebrafish, mesoderm and endoderm formation requires the Nodal signals Cyclops and Squint and their cofactor One-eyed pinhead (Oep) [10-14]. We found that marginal cells in maternal-zygotic oep (MZoep) mutants do not internalize during gastrulation and acquire neural and tail fates at the expense of head and trunk mesendoderm. The lack of internalization in MZoep embryos and the cell-autonomous requirement for oep in Nodal signaling enabled us to test whether internalization can be achieved by individual cells or whether it depends on interactions within a group of cells. We found that individual MZoep mutant cells transplanted to the margin of wild-type blastula embryos initially internalize with their neighbors but are unable to contribute to the mesendoderm. In the reciprocal experiment, single wild-type cells transplanted to the margin of MZoep mutant embryos autonomously internalize and can express the mesendodermal markers axial/foxA2 and sox17. These results suggest that internalization and mesendoderm formation in zebrafish can be attained autonomously by single cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号