首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Initiation of flocculation ability of Saccharomyces cerevisiae MPY1 cells was observed at the moment the cells stop dividing because of nitrogen limitation. A shift in concentration of the limiting nutrient resulted in a corresponding shift in cell division and initiation of flocculence. Other limitations also led to initiation of flocculence, with magnesium limitation as the exception. Magnesium-limited S. cerevisiae cells did not flocculate at any stage of growth. Cell surface hydrophobicity was found to be strongly correlated with the ability of the yeast cells to flocculate. Hydrophobicity sharply increased at the end of the logarithmic growth phase, shortly before initiation of flocculation ability. Treatments of cells which resulted in a decrease in hydrophobicity also yielded a decrease in flocculation ability. Similarly, the presence of polycations increased both hydrophobicity and the ability to flocculate. Magnesium-limited cells were found to be strongly affected in cell surface hydrophobicity. A proteinaceous cell surface factor(s) was identified as a flocculin. This heat-stable component had a strong emulsifying activity, and appears to be involved in both cell surface hydrophobicity and in flocculation ability of the yeast cells.  相似文献   

2.
Initiation of flocculation ability of Saccharomyces cerevisiae MPY1 cells was observed at the moment the cells stop dividing because of nitrogen limitation. A shift in concentration of the limiting nutrient resulted in a corresponding shift in cell division and initiation of flocculence. Other limitations also led to initiation of flocculence, with magnesium limitation as the exception. Magnesium-limited S. cerevisiae cells did not flocculate at any stage of growth. Cell surface hydrophobicity was found to be strongly correlated with the ability of the yeast cells to flocculate. Hydrophobicity sharply increased at the end of the logarithmic growth phase, shortly before initiation of flocculation ability. Treatments of cells which resulted in a decrease in hydrophobicity also yielded a decrease in flocculation ability. Similarly, the presence of polycations increased both hydrophobicity and the ability to flocculate. Magnesium-limited cells were found to be strongly affected in cell surface hydrophobicity. A proteinaceous cell surface factor(s) was identified as a flocculin. This heat-stable component had a strong emulsifying activity, and appears to be involved in both cell surface hydrophobicity and in flocculation ability of the yeast cells.  相似文献   

3.
Saccharomyces cerevisiae cells possess a remarkable capacity to adhere to other yeast cells, which is called flocculation. Flocculation is defined as the phenomenon wherein yeast cells adhere in clumps and sediment rapidly from the medium in which they are suspended. These cell-cell interactions are mediated by a class of specific cell wall proteins, called flocculins, that stick out of the cell walls of flocculent cells. The N-terminal part of the three-domain protein is responsible for carbohydrate binding. We studied the N-terminal domain of the Flo1 protein (N-Flo1p), which is the most important flocculin responsible for flocculation of yeast cells. It was shown that this domain is both O and N glycosylated and is structurally composed mainly of β-sheets. The binding of N-Flo1p to D-mannose, α-methyl-D-mannoside, various dimannoses, and mannan confirmed that the N-terminal domain of Flo1p is indeed responsible for the sugar-binding activity of the protein. Moreover, fluorescence spectroscopy data suggest that N-Flo1p contains two mannose carbohydrate binding sites with different affinities. The carbohydrate dissociation constants show that the affinity of N-Flo1p for mono- and dimannoses is in the millimolar range for the binding site with low affinity and in the micromolar range for the binding site with high affinity. The high-affinity binding site has a higher affinity for low-molecular-weight (low-MW) mannose carbohydrates and no affinity for mannan. However, mannan as well as low-MW mannose carbohydrates can bind to the low-affinity binding site. These results extend the cellular flocculation model on the molecular level.  相似文献   

4.
The lectin-like theory suggest that yeast flocculation is mediated by an aggregating lectinic factor. In this study we isolated an agglutinating factor, which corresponds to lectin, from whole cells by treating the flocculent wild-type Saccharomyces cerevisiae NCYC 625 strain and its weakly flocculent mutant [rho degrees ] with EDTA and two non-ionic surfactants (Hecameg and HTAC). The dialysed crude extracts obtained in this way agglutinated erythrocytes and this hemagglutination was specifically inhibited by mannose and mannose derivatives. However, SDS-PAGE profiles showed that the three reagents had different effects on the yeast cells. The non-ionic surfactants appeared to be the most efficient, as their extracts possessed the highest specific agglutinating activity. The products released by the wild-type strain presented a higher specific agglutinating activity than those released by the [rho degrees ] mutant. Purification of the agglutinating factor from extracts of both strains by affinity chromatography revealed two active bands of relative mass of 26 and 47 kDa on SDS-PAGE. Mass spectrometry analysis by MALDI-TOF, identified a 26 kDa band as the triose phosphate isomerase (TPI) whereas a 47 kDa band was identical to enolase. Edman degradation showed that the N-terminal sequences of these proteins were similar to TPI and enolase, respectively. The difference in the flocculation behaviour of the two strains is due to changes in the protein composition of the cell wall and in the protein structure involved in cell-cell recognition.  相似文献   

5.
6.
7.
AIMS: To identify the nutrients that can trigger the loss of flocculation under growth conditions in an ale-brewing strain, Saccharomyces cerevisiae NCYC 1195. METHODS AND RESULTS: Flocculation was evaluated using the method of Soares, E.V. and Vroman, A. [Journal of Applied Microbiology (2003) 95, 325]. Yeast growth with metabolizable carbon sources (glucose, fructose, galactose, maltose or sucrose) at 2% (w/v), induced the loss of flocculation in yeast that had previously been allowed to flocculate. The yeast remained flocculent when transferred to a medium containing the required nutrients for yeast growth and a sole nonmetabolizable carbon source (lactose). Transfer of flocculent yeast into a growth medium with ethanol (4% v/v), as the sole carbon source did not induce the loss of flocculation. Even the addition of glucose (2% w/v) or glucose and antimycin A (0.1 mg l(-1)) to this culture did not bring about loss of flocculation. Cycloheximide addition (15 mg l(-1)) to glucose-growing cells stopped flocculation loss. CONCLUSIONS: Carbohydrates were the nutrients responsible for stimulating the loss of flocculation in flocculent yeast cells transferred to growing conditions. The glucose-induced loss of flocculation required de novo protein synthesis. Ethanol prevented glucose-induced loss of flocculation. This protective effect of ethanol was independent of the respiratory function of the yeast. SIGNIFICANCE AND IMPACT OF THE STUDY: This work contributes to the elucidation of the role of nutrients in the control of the flocculation cycle in NewFlo phenotype yeast strains.  相似文献   

8.
Co-flocculation between cells of beer yeast IFO 2018, a flocculent strain, and non-flocculent strains was investigated by means of a chemical modification method. Treatment with periodate deprived non-flocculent cells, but not flocculent cells, of the ability to co-flocculate. Treatment with mercaptoethanol or photo-irradiation in the presence of methylene blue deprived flocculent cells, but not non-flocculent cells, of the co-flocculating ability. Mercaptoethanol-treated or photoirradiated flocculent cells (beer yeast IFO 2018) co-flocculated with periodate-treated flocculent cells, but periodate-treated cells subsequently subjected to mercaptoethanol treatment or photoirradiation neither flocculated by themselves nor co-flocculated with other cells. Thus, it is likely that both protein and carbohydrate components of the yeast cell surface play important roles in the mutual recognition and intercellular interaction involved in flocculation. It is strongly suggested that the essential carbohydrate which is widely distributed among Saccharomyces species is the mannan fraction on the cell wall, and that a flocculent yeast strain produces surface protein component(s) which recognize and bind the mannan component of adjacent cells.  相似文献   

9.
A Strain of host yeast YF207, which is a tryptophan auxotroph and shows strong flocculation ability, was obtained from SaccharomYces diastaticus ATCC60712 and S. cerevisiae W303-1B by tetrad analysis. The plasmid pGA11, which is a multicopy plasmid for cell-surface expression of the Rhyzopus oryzae glucoamylase/alpha-agglutinin fusion protein, was then introduced into this flocculent yeast strain (YF207/pGA11). Yeast YF207/pGA11 grew rapidly under aerobic condition (dissolved oxygen 2.0 ppm), using soluble starch. The harvested cells were used for batch fermentation of soluble starch to ethanol under anaerobic condition and showed high ethanol production rates (0.71 g h(-1) l(-1)) without a time lag, because glucoamylase was immobilized on the yeast cell surface. During repeated utilization of cells for fermentation, YF207/pGA11 maintained high ethanol production rates over 300 h. Moreover, in fed-batch fermentation with YF207/pGA11 for approximately 120 h, the ethanol concentration reached up to 50 g l(-1). In conclusion, flocculent yeast cells displaying cell-surface glucoamylase are considered to be very effective for the direct fermentation of soluble starch to ethanol.  相似文献   

10.
Flocculent yeast Saccharomyces cerevisiae YF234 (MATa ura3–52 trp1Δ2 his ade 2–1 can1–100 sta1 FLO8) cells overexpressing glyoxalase I and having strong flocculation ability were permeabilized with isopropyl alcohol and ethanol under various conditions. The treatment with 40% isopropyl alcohol significantly improves the initial reaction rates of recombinant flocculent yeast cells. Moreover, the reactivity of permeabilized flocculent yeast cells was similar to that of dispersed cells with EDTA. On the other hand, the flocculation ability of yeast cells was not affected by the treatment with alcohol solutions of various concentrations and treatment time length. Therefore, the recombinant flocculent yeast cells permeabilized with alcohol are very effective whole cell biocatalysts.  相似文献   

11.
The brewer’s yeast genome encodes a ‘Flo’ flocculin family responsible for flocculation. Controlled floc formation or flocculation at the end of fermentation is of great importance in the brewing industry since it is a cost-effective and environmental-friendly technique to separate yeast cells from the final beer. FLO genes have the notable capacity to evolve and diverge many times faster than other genes. In actual practice, this genetic variability may directly alter the flocculin structure, which in turn may affect the flocculation onset and/or strength in an uncontrolled manner. Here, 16 ale and lager yeast strains from different breweries, one laboratory Saccharomyces cerevisiae and one reference Saccharomyces pastorianus strain, with divergent flocculation strengths, were selected and screened for characteristic FLO gene sequences. Most of the strains could be distinguished by a typical pattern of these FLO gene markers. The FLO1 and FLO10 markers were only present in five out of the 18 yeast strains, while the FLO9 marker was ubiquitous in all the tested strains. Surprisingly, three strongly flocculating ale yeast strains in this screening also share a typical ‘lager’ yeast FLO gene marker. Further analysis revealed that a complete Lg-FLO1 allele was present in these ale yeasts. Taken together, this explicit genetic variation between flocculation genes hampers attempts to understand and control the flocculation behavior in industrial brewer’s yeasts.  相似文献   

12.
During cultivation of a flocculent yeast, Saccharomyces cerevisiae 1001, two cell fractions, flocs and free cells, appeared in the medium. Free cells contained cells with a normal ability to flocculate, less flocculent cells and not-flocculent cells. When the non-flocculent cells and not-flocculent cells. When the non-flocculent cell fraction from the postexponential phase of growth was collected and used as an inoculum, the culture showed synchronous growth. The floc forming ability of the yeast cells from this culture increased gradually with the number of divisions.  相似文献   

13.
Flocculation is an attractive property for Saccaromyces cerevisiae, which plays important roles in fermentation industry and environmental remediation. The process of flocculation is mediated by a family of cell surface flocculins. As one member of flocculins, Flo1 is characterized by four families of repeats (designated as repeat units A, B, C and D) in the central domain. It is generally accepted that variation of repeat unit A in length in Flo1 influences the degree of flocculation or specificity for sugar recognization. However, no reports were observed for other repeat units. Here, we compared the flocculation ability and its sensitivity to environmental factors between yeast strain YSF1 carrying the intact FLO1 gene and yeast strains carrying the derived forms of FLO1 with partial or complete deletion of repeats in unit C. No obvious differences in flocculation ability and specificity of carbohydrate recognition were observed among these yeast strains, which indicates the truncated flocculins can stride across the cell wall and cluster the N-terminal domain on the surface of yeast cells as the intact Flo1 thereby improving intercellular binding. However, yeast strains with the truncated flocculins required more mannose to inhibit completely the flocculation, displayed broad tolerance of flocculation to pH fluctuation, and the fewer the repeats in unit C, the stronger adaptability of flocculation to pH change, which was not relevant to the position of deletion. This suggests that more stable active conformation is obtained for flocculin by deletion the repeat unit C in the central domain of Flo1, which was validated further by the higher hydrophobicity on the surface of cells of YSF1c with complete deletion of unit C under neutral and alkaline conditions and the stabilization of GFP conformation by fusion with flocculin with complete deletion of unit C in the central domain.  相似文献   

14.
A stable mutant flocculent yeast strain of Saccharomyces cerevisiae KRM-1 was isolated during repeated-batch ethanol fermentation using kitchen refuse as the medium. The mechanism of flocculation and interaction with the medium was investigated. According to sugar inhibition assay, it was found that the mutant flocculent strain was a NewFlo phenotype. Flocculation was completely inhibited by protease, proteinase K and partially reduced by treatments with carbohydrate-hydrolyzing enzymes. Flocculation ability showed no difference for pH 3.0–6.0. Furthermore, the mutant flocculent yeast provided repeated-batch cultivations employing cell recycles by flocculation over 10 rounds of cultivation for the production of ethanol from kitchen refuse medium, resulting in relatively high productivity averaging 8.25 g/L/h over 10 batches and with a maximal of 10.08 g/L/h in the final batch. Cell recycle by flocculation was fast and convenient, and could therefore be applicable for industrial-scale ethanol production.  相似文献   

15.
AIMS: To examine the role of the nutrients on the onset of flocculation in an ale-brewing strain, Saccharomyces cerevisiae NCYC 1195. METHODS AND RESULTS: Flocculation was evaluated using the method of Soares, E.V. and Vroman, A. [Journal of Applied Microbiology (2003) 95, 325]. For cells grown in chemically defined medium (yeast nitrogen base with glucose) or in rich medium (containing yeast extract, peptone and fermentable sugars: fructose or maltose), the onset of flocculation occurred after the end of exponential respiro-fermentative phase of growth being coincident with the attainment of the lower level of carbon source in the culture medium. Cells, in exponential respiro-fermentative phase of growth, transferred to a glucose-containing medium without nitrogen source, developed a flocculent phenotype, while these carbon source starved cells, in the presence of all other nutrients that support growth, did not flocculate. In addition, cells in exponential phase of growth, under catabolite repression, when transferred to a medium containing 0.2% (w/v) of fermentable sugar (fructose or maltose) or 2% (v/v) ethanol, showed a rapid triggering of flocculation, while when incubated in 2% (v/v) glycerol did not develop a flocculent phenotype. CONCLUSIONS: The onset of flocculation occurs when a low sugar and/or nitrogen concentration is reached in culture media. The triggering of flocculation is an energetic dependent process influenced by the carbon source metabolism. The presence of external nitrogen source is not necessary for developing a flocculent phenotype. SIGNIFICANCE AND IMPACT OF THE STUDY: This work contributes to the elucidation of the role of nutrients on the onset of flocculation in NewFlo phenotype yeast strains. This information might be useful to the brewing industry, in the control of yeast flocculation, as the time when the onset of flocculation occurs can determine the fermentation performance and the beer quality.  相似文献   

16.
Liu N  Wang D  Wang ZY  He XP  Zhang B 《FEMS yeast research》2007,7(8):1362-1370
Two NewFlo-type flocculent transformants Saccharomyces cerevisiae YTS-S and YTS-L were obtained from a partial yeast genomic library. Even though both of the transformants displayed the same flocculation phenotype, they represented different physiological characteristics during detailed investigation. Analysis of the two transformants YTS-L and YTS-S confirmed the presence of FLONL and FLONS genes, respectively. The 3396-bp ORF of FLONS encoded a protein of 1132 amino acids. Meanwhile, the presence of a 1686-bp ORF encoding a 562-amino acid protein was revealed in FLONL. Both FLONL and FLONS showed high identity to FLO1 gene. Aligned with the intact FLO1 gene, FLONS lost two internal repeated regions, whereas one repeated sequence was inserted into the middle of the FLONL gene. All of the altered regions could be found in the middle repetitive sequence of the FLO1 gene. The results indicate that FLONL and FLONS are both derived forms of the FLO1 gene. Genetic variability triggered by tandem repeats in FLO1 gene is believed to be responsible for the differential phenotypic properties of the yeast strains YTS-S and YTS-L.  相似文献   

17.
The floc-forming ability of flocculent strains of Kloeckera apiculata, isolated from musts, was tested for susceptibility to proteinase and sugar treatments. Three different flocculation phenotypes were discriminated by protease digestion, whereas the inhibition of flocculation by sugars distinguished two definite patterns: one mechanism of flocculation involved a galactose-specific protein and the other a broad-specificity lectin. SEM and TEM observation of the cell surface of two different Kloeckera strains revealed fine fibrils and a diffuse structure at the point of contact in one strain, and thick masses of mucus on the cell wall of the other strain.  相似文献   

18.
Region of Flo1 Proteins Responsible for Sugar Recognition   总被引:13,自引:0,他引:13       下载免费PDF全文
Yeast flocculation is a phenomenon which is believed to result from an interaction between a lectin-like protein and a mannose chain located on the yeast cell surface. The FLO1 gene, which encodes a cell wall protein, is considered to play an important role in yeast flocculation, which is inhibited by mannose but not by glucose (mannose-specific flocculation). A new homologue of FLO1, named Lg-FLO1, was isolated from a flocculent bottom-fermenting yeast strain in which flocculation is inhibited by both mannose and glucose (mannose/glucose-specific flocculation). In order to confirm that both FLO1 and Lg-FLO1 are involved in the yeast flocculation phenomenon, the FLO1 gene in the mannose-specific flocculation strain was replaced by the Lg-FLO1 gene. The transformant in which the Lg-FLO1 gene was incorporated showed the same flocculation phenotype as the mannose/glucose-specific flocculation strain, suggesting that the FLO1 and Lg-FLO1 genes encode mannose-specific and mannose/glucose-specific lectin-like proteins, respectively. Moreover, the sugar recognition sites for these sugars were identified by expressing chimeric FLO1 and Lg-FLO1 genes. It was found that the region from amino acid 196 to amino acid 240 of both gene products is important for flocculation phenotypes. Further mutational analysis of this region suggested that Thr-202 in the Lg-Flo1 protein and Trp-228 in the Flo1 protein are involved in sugar recognition.  相似文献   

19.
Abstract: The problem of understanding the recognition and specific interactions in a population of yeast flocculating cells is discussed. The biochemistry, physiology and genetics of flocculation is briefly reviewed. Yeast flocculation requires the expression of a specific protein (lectin) on flocculent cells, and carbohydrate (receptors) on neighbouring cells. Adhesion experiments performed with cells whose flocculation is repressed by growth conditions, indicating that the inhibition of flocculation is due to inhibition or inactivation of 'lectin-like' component. Additionally, using adhesion experiments, it is demonstrated that cells of non-flocculent strain interact by establishing a true bond with flocculent cells rather than by entrapment inside the floc matrix. As phenotypic expression of flocculation, for several strains, is shown to be repressed, modulated or induced by modifying growth conditions, the constitutiveness and inducibility of flocculation are also discussed.  相似文献   

20.
We have evaluated the induction of the flocculent phenotype of Kloeckera apiculata by glucose mc1 and propose a pathway involved in carbohydrate flocculation induction. Pulses of glucose were given to cells growing in glucose-poor medium (2 g l(-1)) and the flocculation percentage was measured. To elucidate the mechanism involved in flocculation induction, cycloheximide was injected into the cultures 120 min before the glucose pulse. 2,4-Dinitrophenol or cAMP was added to the media instead, or simultaneously with glucose, while a protein kinase A (PKA) inhibitor was added 30 min before the glucose pulse. With 20 and 50 g l(-1) glucose pulse, the yeast flocculation percentage arises to 55 and 65%, respectively. The quantity of proteins and the reflocculating capacity of a lectinic protein extract from the yeast cell wall increase as the concentration of glucose pulse was higher. Cycloheximide prevented the glucose-induced flocculation, while cAMP or 2,4-dinitrophenol increased it 4- and 5-fold, respectively. PKA inhibitor completely prevented the glucose induction flocculation. The flocculent phenotype of K. apiculata mc1 was induced by glucose and the mechanism seems to imply de novo protein (lectin) synthesis via the PKA transduction pathway. This work contributes to the elucidation of the mechanism involved in flocculation induction by glucose of a non-Saccharomyces wine yeast, K. apiculata, which has not been reported. The induction of flocculation by glucose could be a biotechnological tool for the early removal of the indigenous microorganisms from the grape must before the inoculation of a selected starter strain to conduct the alcohol fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号