首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antarctic marine organisms are considered to have extremely limited ability to respond to environmental temperature change. However, here we show that the Antarctic notothenioid fish Pagothenia borchgrevinki is an exception to this theory. P. borchgrevinki was able to acclimate its resting metabolic rate and resting ventilation frequency after a 5°C rise in temperature. Acute exposure to 4°C resulted in an elevation in metabolic rate (57.8 ± 4.79 mg O2 kg−1 h−1) and resting ventilation rate (40.38 ± 1.61 breaths min−1) compared with fish at −1°C (metabolic rate 34.45 ± 3.12 mg O2 kg−1 h−1; ventilation rate 29.88 ± 3.72 breaths min−1). However, after a 1-month acclimation period, there was no significant difference in the metabolic rate (cold fish 29.52 ± 3.01; warm fish 31.13 ± 2.30 mg O2 kg−1 h−1), or the resting ventilation rate (cold fish 28.75 ± 0.98; warm fish 34.25 ± 2.28 breaths min−1) of cold and warm acclimated fish. Acclimation changes to the rate of oxygen consumption following exhaustive exercise were complex. The pattern of oxygen consumption during recovery from exhaustive exercise was not significantly different in either cold or warm acclimated fish.  相似文献   

2.
Drinking in Antarctic fishes   总被引:1,自引:0,他引:1  
David Petzel 《Polar Biology》2005,28(10):763-768
Drinking rates have never been measured in Antarctic fish. Drinking rates were measured in four species of notothenioid fish, including a hemoglobinless icefish, found in the near-freezing waters of the Ross Sea of the Southern Ocean. All of the fish, with the exception of the icefish, had low drinking rates and high serum osmolalities relative to temperate seawater fish. The icefish had significantly higher drinking rates and serum osmolalities relative to the Antarctic fishes containing hemoglobin, including Trematomus bernacchii. Warm acclimation of T. bernacchii, from −1.5°C to +4°C for 4 weeks, significantly increased their drinking rates 4.6-fold, significantly decreased their serum and intestinal osmolality by 11% and 12%, respectively, relative to cold-acclimated fish. These results indicate that increased drinking rates in Antarctic fish at elevated temperatures are involved in maintaining a lower serum osmolality.  相似文献   

3.
 The initiation of sperm motility in a noncopulatory marine cottid fish, Gymnocanthus herzensteini, was examined. The spermatozoa, which were immotile in seminal plasma, initiated motility at osmolalities of more than 500 mOsm kg−1 in NaCl solution and 400 mOsm kg−1 in KCl and mannitol solutions, indicating that the initiation of sperm motility depends on changes in external osmolality, in contrast with that of the sperm of other marine cottid fish, which are motile in seminal plasma. This study revealed that there are plural manner of initiation of sperm motility in marine cottid fish, which are oviparous but include both copulatory and noncopulatory modes. Received: May 24, 2001 / Revised: December 19, 2001 / Accepted: January 8, 2002  相似文献   

4.
Two species of Antarctic fish were stressed by moving them from seawater at −1 °C to seawater at 10 °C and holding them for a period of 10 min. The active cryopelagic species Pagothenia borchgrevinki maintained heart rate while in the benthic species Trematomus bernacchii there was an increase in heart rate. Blood pressure did not change in either species. Both species released catecholamines into the circulation as a consequence of the stress. P. borchgrevinki released the greater amounts, having mean plasma concentrations of 177 ± 54 nmol · l−1 noradrenaline and 263 ± 131 nmol · l−1 adrenaline at 10 min. Plasma noradrenaline concentrations rose to 47 ± 14 nmol · l−1 and adrenaline to 73 ± 28 nmol · l−1 in T. bernacchii. Blood from P. borchgrevinki was tonometered in the presence of isoprenaline. A fall in extracellular pH suggests the presence of a Na+/H+ antiporter on the red cell membrane, the first demonstration of this in an Antarctic fish. Treatment with the β-adrenergic antagonist drug sotalol inhibited swelling of red blood cells taken from temperature-stressed P. borchgrevinki, suggesting that the antiporter responds to endogenous catecholamines. Accepted: 22 January 1998  相似文献   

5.
Groups of juvenile tench (7.02 ± 0.28 g) were reared under four different light regimes; blue light, red light (80 Wm−2 12L:12D photoperiod) white light (912 ± 210 lux, 80 Wm−2, 12L:12D photoperiod) and no light (0 lux) (0L:24D). Visibility of fish out of shelters was used as an indicator of activity and was monitored by video recording. Blood plasma cortisol concentrations were also measured. Fish under blue or white light were significantly less active during the photophase than those under red or no light (P < 0.01). Red light produced similar activity patterns to fish receiving 24 h darkness. Plasma cortisol concentrations were also significantly influenced (P < 0.05) with the fish under white light having the highest plasma cortisol concentration (317 ± 62 ng cm−3) compared to fish in the dark treatment (106 ± 36 ng cm−3). Thus, the provision of coloured light filters increases activity in juvenile tench and may reduce their intrinsic stress level.  相似文献   

6.
In 2005 and 2006, adult sockeye salmon (Oncorhynchus nerka) were captured en route to spawning grounds and placed in either a slow (∼ 0.1 m·s−1) or fast (∼0.4 m·s−1) water velocity treatment for 18 days in order to assess how migrational energy depletion during the final stages of maturation affected physiological condition and survival. Fish in the fast treatment utilized more energy than the slow treatment in 2005 (0.91 MJ kg−1 vs. 0.43 MJ kg−1; P = 0.010), and 2006 (0.72 MJ kg−1 vs. 0.37 MJ kg−1; P = 0.021). Non-treatment fish captured upon arrival at spawning grounds showed energy levels intermediate to the two treatments in 2005 and lower than both in 2006, suggesting that energy use during the treatments were within levels normally experienced by this population. No differences in survival were found between treatments (P > 0.05), although females had lower survival than males in both years (both P < 0.01). After 18 days, surviving fish from the fast treatment showed signs of elevated physiological stress relative to fish from the slow treatment. Specifically, plasma osmolality was lower in fast fish in 2005 (P < 0.001), as was plasma chloride in both years (both P < 0.02). In 2006, plasma lactate was higher (P = 0.014) in fast fish. Within the ranges of energetic depletion that were examined here, a more energy-intensive migration can have a substantial influence on the physiological condition and stress of adult sockeye salmon, but not on survival.  相似文献   

7.
Most teleost fish reduce heart rate when exposed to acute hypoxia. This hypoxic bradycardia has been characterised for many fish species, but it remains uncertain whether this reflex contributes to the maintenance of oxygen uptake in hypoxia. Here we describe the effects of inhibiting the bradycardia on oxygen consumption (MO2), standard metabolic rate (SMR) and the critical oxygen partial pressure for regulation of SMR in hypoxia (Pcrit) in European eels Anguilla anguilla (mean ± SEM mass 528 ± 36 g; n = 14). Eels were instrumented with a Transonic flow probe around the ventral aorta to measure cardiac output (Q) and heart rate (f H). MO2 was then measured by intermittent closed respirometry during sequential exposure to various levels of increasing hypoxia, to determine Pcrit. Each fish was studied before and after abolition of reflex bradycardia by intraperitoneal injection of the muscarinic antagonist atropine (5 mg kg−1). In the untreated eels, f H fell from 39.0 ± 4.3 min−1 in normoxia to 14.8 ± 5.2 min−1 at the deepest level of hypoxia (2 kPa), and this was associated with a decline in Q, from 7.5 ± 0.8 mL min−1 kg−1 to 3.3 ± 0.7 mL min−1 kg−1 in normoxia versus deepest hypoxia, respectively. Atropine had no effect on SMR, which was 16.0 ± 1.8 μmol O2 kg−1 min−1 in control versus 16.8 ± 0.8 μmol O2 kg−1 min−1 following treatment with atropine. Atropine also had no significant effect on normoxic f H or Q in the eel, but completely abolished the bradycardia and associated decline in Q during progressive hypoxia. This pharmacological inhibition of the cardiac responses to hypoxia was, however, without affect on Pcrit, which was 11.7 ± 1.3 versus 12.5 ± 1.5 kPa in control versus atropinised eels, respectively. These results indicate, therefore, that reflex bradycardia does not contribute to maintenance of MO2 and regulation of SMR by the European eel in hypoxia.  相似文献   

8.
Activity concentrations of the selected radionuclides 40K, 226Ra and 232Th were measured in surface soil samples collected from 38 cities in the southwest region of Nigeria by means of gamma spectroscopy with a high-purity germanium detector. Measured activity concentration values of 40K varied from 34.9 ± 4.4 to 1,358.6 ± 28.5 Bq kg−1 (given on a dry mass (DM) basis) with a mean value of 286.5 ± 308.5 Bq kg−1; that of 226Ra varied from 9.3 ± 3.7 to 198.1 ± 13.8 Bq kg−1 with a mean value of 54.5 Bq kg−1 and a standard deviation of 38.7 Bq kg−1, while that of 232Th varied from 5.4 ± 1.1 to 502.0 ± 16.5 Bq kg−1 with a mean value of 91.1 Bq kg−1 and standard deviation of 100.9 Bq kg−1. The mean activity concentration values obtained for 226Ra and 232Th are greater than the world average values reported by the United Nations Scientific Committee on Effects of Atomic Radiation for areas of normal background radiation. Radiological indices were estimated for the radiation/health hazards of the natural radioactivity of all soil samples. Estimated absorbed dose rates in air varied from 12.42 ± 2.25 to 451.33 ± 19.06 nGy h−1, annual outdoor effective dose rates from 0.015 ± 0.003 to 0.554 ± 0.023 mSv year−1, internal hazard index from 0.10 ± 0.03 to 3.02 ± 0.16, external hazard index from 0.07 ± 0.01 to 2.60 ± 0.11, representative level index from 0.19 ± 0.03 to 6.84 ± 0.29, activity index from 0.09 ± 0.02 to 3.42 ± 0.15, and radium equivalent activity from 26.95 ± 5.04 to 963.15 ± 41.87 Bq kg−1. Only the mean value of the representative level index exceeds the limit for areas of normal background radiation. All other indices show mean values that are lower than the recommended limits.  相似文献   

9.
Synopsis Blood samples from cannulated young adult (2.5–15 kg) white sturgeon, acclimated to San Francisco Bay water (24 ppt) had plasma values of 248.8 ± 13.5 mOsm kg−1 H2O, [Na+] = 125 ± 8.0 mEq 1−1, [K+] = 2.6 ± 0.8 mEq 1−1 and [CL] = 122 ± 3.0 mEq 1−1. Freshwater acclimated sturgeon had an osmolality of 236 ± 7, [Na+] = 131.6 + 4.4, [K+] = 2.5 ± 0.7 and [CL] = 110.6 ± 3.6. Freshwater acclimated fish gradually exposed to sea water (increase of 5 ppt h−1) had higher plasma osmolalities than did the bay water acclimated fish. These young adult sturgeon are able to tolerate transfer from fresh water to sea water as well as gradual transfer from sea water to fresh water. Plasma electrolytes in transferred fish are regulated, but tend to differ from long term acclimated fish at the same salinities. There is a gradual increase in the upper salinity tolerance (abrupt transfer) of juvenile white sturgeon with weight: 5–10 ppt for 0.4–0.9 g fish, 10–15 ppt for 0.7–1.8 g fish, and 15 ppt for 4.9–50.0 g fish. The ability of juveniles to regulate plasma osmolality is limited. The young adult fish are able to tolerate higher salinities (35 ppt) than juvenile sturgeon but probably are also characterized by low activity of the necessary ion exchange mechanisms in the gills which permit rapid adjustment of blood electrolytes with graduate change in external salinity.  相似文献   

10.
S. Reeves  A. McMinn  A. Martin 《Polar Biology》2011,34(7):1019-1032
While global climate change in polar regions is expected to cause significant warming, the annual cycle of light and dark will remain unchanged. Cultures of three species of Antarctic sea ice diatoms, Fragilariopsis cylindrus (Grunow) Krieger, Thalassiosira antarctica Comber and Entomoneis kjellmanii (P.T. Cleve) Poulin and Cardinal, were incubated in the dark and exposed to differing temperatures. Maximum dark survival times varied between 30 and 60 days. Photosynthetic parameters, photosynthetic efficiency (α), maximum quantum yield (Fv/Fm), maximum relative electron transport rate (rETRmax) and non-photochemical quenching (NPQ), showed that dark exposure had a significant impact on photoacclimation. In contrast, elevated temperatures had a relatively minor impact on photosynthetic functioning during the dark exposure period but had a considerable impact on dark survival with minimal dark survival times reduced to only 7 days when exposed to 10°C. Recovery of maximum quantum yield of fluorescence (Fv/Fm) was not significantly impacted by temperature, species or dark exposure length. Recovery rates of Fv/Fm ranged from −5.06E−7 ± 2.71E−7 s−1 to 1.36E−5 ± 1.53E−5 s−1 for monthly experiments and from −9.63E−7 ± 7.71E−7 s−1 to 2.65E−5 ± 2.97E−5 s−1 for weekly experiments. NPQ recovery was greater and more consistent than Fv/Fm recovery, ranging between 5.74E−7 ± 8.11E−7 s−1 to 7.50E−3 ± 7.1E−4 s−1. The concentration of chl-a and monosaccharides remained relatively constant in both experiments. These results suggest that there will probably be little effect on Antarctic microalgae with increasing water temperatures during the Antarctic winter.  相似文献   

11.
All embryonic and fetal amniotes possess a ductus(i) arteriosus(i) that allows blood to bypass the pulmonary circulation and the non-functional lungs. The central hemodynamic of embryonic reptiles are unique, given the additional systemic aorta that allows pulmonary circulatory bypass, the left aorta (LAo). The LAo exits in the right ventricle or ‘pulmonary side’ of reptilian hearts in both embryos and adults, but its functional significance in ovo is unknown. This study investigated the role of the LAo in embryonic American alligators by surgically occluding the LAo and measuring oxygen consumption and, in addition, measured hemodynamic responses to hypoxia in embryonic alligators. We measured systemic cardiac output and primary chorioallantoic membrane (CAM) artery blood flow for normoxic and hypoxic-incubated (10% O2) American alligator embryos (Alligator mississippiensis). Chronic blood flow (1–124 h) in the primary CAM artery for hypoxic-incubated embryos (92 ± 26 ml min−1 kg−1) was elevated when compared with normoxic-incubated embryos (29 ± 14 ml min−1 kg−1, N = 6; P = 0.039). For hypoxic-incubated embryos, acute LAo blood flow (49.6 ± 24.4 ml min−1 kg−1) was equivalent to the combined flow of the three systemic great vessels that arise from the left ventricle, the right aorta, common carotid and subclavian arteries (43.6 ± 21.5 ml min−1 kg−1, N = 5). Similarly, for normoxic-incubated embryos, LAo blood flow (27.3 ± 6.6 ml min−1 kg−1) did not statistically differ from the other three vessels (18.4 ± 4.9 ml min−1 kg−1, N = 5). This study contains the first direct test of LAo function and the first measurements of blood flow in an embryonic reptile. These data support the hypotheses that embryonic alligators utilize the LAo to divert a significant amount of right ventricular blood into the systemic circulation, and that CAM blood flow increases following chronic hypoxic conditions. However, surgical occlusion of the LAo did not affect egg [(V)\dot]\textO2, \dot{V}_{{\text{O}}_{2}}, supporting the hypothesis that the LAo of reptiles is not critical to maintain in ovo oxygen consumption.  相似文献   

12.
13.
Acarbose is a clinically useful drug for the treatment of type II, insulin-independent diabetes as a hypoglycemic agent. An acarbose-overproducing strain ZJB-08196, indentified as Actinoplanes utahensis, was able to produce 4,210 mg l−1 of acarbose at 591 mOsm kg−1 with the optimized conditions at bench scale. Shake flask fermentation showed that maltose, glycerol and monosodium glutamate were supportive for acarbose production; soybean meal had higher bioavailability than corn steep liquor. Moreover, acarbose formation was not parallel with mycelial growth and the pattern of acarbose production by A. utahensis ZJB-08196 was the type of mixed-growth associated.  相似文献   

14.
Significant increases in heat tolerance (time of survival at 14°C) were observed for some, but not all, species of notothenioid fishes collected from McMurdo Sound, Antarctica (77°51′S) following acclimation to 4°C. The increase in thermal tolerance was rapid in Trematomus bernacchii, developing within 1–2 days of acclimation to 4°C. Long-term (6–8 weeks) acclimation to 4°C led to greater heat tolerance in Trematomus pennellii than in T. bernacchii. Unlike its demersal congeners, the cryopelagic notothenioid Pagothenia borchgrevinki did not increase heat tolerance during warm acclimation. A deep-living zoarcid fish, Lycodichthys dearborni, also failed to increase heat tolerance, but survived significantly (> threefold) longer at 14°C than the notothenioids.  相似文献   

15.
This study examined the distribution pattern of aquaporin-2 (AQP2), relative medullary thickness (RMT) and urine properties in the bottlenose dolphin Tursiops truncatus and Baird’s beaked whale Berardius bairdii. Immunohistochemical studies revealed that AQP2 was localized in the collecting tubules/ducts of both species’ renicules, as in terrestrial mammals. The collecting ducts with AQP2 were thinner and arranged more densely in the dolphin than in the whale. RMT values in the renicule were moderate in both species, but were significantly higher in the dolphin (6.0 ± 0.9) than the whale (4.9 ± 0.7). Urine of the bottlenose dolphin is comparatively concentrated (osmolality: 1715.7 ± 279.4 mOsm kg−1, Na+: 490.1 ± 87.9 mmol l−1, Cl: 402.7 ± 79.6 mmol l−1, K+: 80.7 ± 25.8 mmol l−1, urea nitrogen: 703.5 ± 253.9 mmol l−1), while urine of the dead Baird’s beaked whale is less concentrated (osmolality: 837.5 ± 293.8 mOsm kg−1, Na+: 192.9 ± 81.5 mmol l−1, Cl: 159.9 ± 71.4 mmol l−1, K+: 44.3 ± 29.5 mmol l−1, urea nitrogen: 270.7 ± 120.3 mmol l−1). These data suggest it is possible that the differences in these renal morphological features may be related in some way to the difference in urine composition between the species, although further studies are necessary. M. Suzuki and N. Endo are equal contributors to this study.  相似文献   

16.
The adjustments in thermal physiology and energetics were investigated in male desert hamsters (Phodopus roborovskii) which were acclimated to 5°C for 4 weeks. Mean core body temperature in cold acclimated animals decreased by 0.21°C compared with controls. Further analysis revealed that the decrease mainly occurred in the scotophase, while in the photophase core body temperature remained constant during the whole cold acclimation. Thermogenic capacity, represented by resting metabolic rate and nonshivering thermogenesis increased in cold acclimated hamsters from initial values of 1.38 ± 0.05 and 5.32 ± 0.30 to 1.77 ± 0.08 and 8.79 ± 0.31 mlO2 g−1 h−1, respectively. After cold acclimation, desert hamsters maintained a relative stable body mass of 21.7 ± 0.1 g very similar to the controls kept at 23°C (21.8 ± 0.1 g). The mean values of food intake and digestible energy (metabolisable energy) in cold acclimated hamsters were 5.3 ± 0.1 g day−1 and 76.3 ± 0.9 kJ day−1 (74.8 ± 0.9), respectively, which were significantly elevated by 76.7 and 80.4% compared to that in control group. The apparent digestibility was 81.0 ± 0.3% in cold acclimated animals which was also higher than the 79.7 ± 0.2% observed in controls. This increase corresponded with adaptive adjustments in morphology of digestive tracts with 20.2 and 36.8% increases in total length and wet mass, respectively. Body fat mass and serum leptin levels in cold acclimated hamsters decreased by 40.7 and 67.1%, respectively. The wheel running turns and the onset of wheel running remained unchanged. Our study indicated that desert hamsters remained very active during cold acclimation and displayed adaptive changes in thermal physiology and energy metabolism, such as enhanced thermogenic and energy processing capacities.  相似文献   

17.
This study investigated the influence of mound-building termites on soil particle dynamics on the land surface and in soil-forming processes by examining the amount of soil particles in mound structures of Macrotermes bellicosus in a highly weathered Ultisol of tropical savanna. Soil particle turnover via the mounds was estimated using particle stock data and soil turnover data from previous studies. A 4-ha study plot with six mounds of relatively uniform shape and size was investigated. Soil mass constituting the mounds was 6,166 ± 1,581 kg mound−1 within which the mound wall and nest body accounted for 5,002 ± 1,289 and 1,164 ± 293 kg, respectively. The mound wall contained a significantly larger amount of clay (252 ± 9.97 g kg−1) balanced with a lower sand content (676 ± 26.5 g kg−1) than in the adjacent surface (Ap1) horizon, (46.4 ± 12.8 g clay kg−1; 866 ± 83.2 g sand kg−1); the nest body had much higher clay content (559 ± 51.0 g kg−1) but less sand (285 ± 79.2 g kg−1) than the mound wall. As a result, the mounds of M. bellicosus accumulated clay of 2,874 ± 781 kg ha−1 (corresponding to 2.52% of clay stock in the Ap1 horizon) along with an estimated clay turnover rate of 169 kg ha−1 year−1. These findings suggest a positive feedback effect from termite mound-building activity on soil particle dynamics in tropical savanna ecosystems: M. bellicosus preferentially use subsoil material for mound construction, resulting in relocation of illuvial clay in the subsoil to the land surface where clay eluviation from the surface soil and its illuviation in the subsoil are major soil-forming processes.  相似文献   

18.
Previous studies have shown that Senegalese sole is partially euryhaline in the juvenile phase, being able to adapt to a wide range of salinities in a short-time period, due to changes at the osmoregulatory and metabolic level. This study aimed to assess the effects of acclimation of sole to a wide range of salinities, with a special emphasis on the role of plasma amino acids during this process. Sole juveniles were acclimated for 2 weeks to different salinities: 5, 15, 25, 38, and 55 g L−1. Plasma levels of cortisol, glucose, osmolality, and free amino acids were assessed at the end. Changes in plasma levels of cortisol, glucose, and amino acids indicate that fish reared at 5 and 55 g L−1 were facing extra energy costs. Amino acids seem to play an important role during salinity acclimation, either as energy sources or as important osmolytes for cell volume regulation.  相似文献   

19.
Lake sturgeon, Acipenser fulvescens, are considered threatened or endangered throughout most of their North American Range. Current hatchery rearing for re-stocking programs utilise conventional methods with little to no understanding of the relationship between rearing conditions and the development of the hypothalamic-pituitary-interrenal (HPI) stress axis. In the present study we examined the effects of substrate type and temperature on the development of the HPI stress axis in prolarval and larval lake sturgeon. Lake sturgeon raised over either gravel or no substrate did not consistently show an increase in whole body cortisol at the prolarval stage. However, after the onset of exogenous feeding a consistent increase in whole body cortisol following a stress was evident. Lake sturgeon larvae raised in gravel substrate demonstrated a sustained increase in whole body cortisol for at least 240 min post stress whereas whole body cortisol in larvae raised in no substrate returned to baseline within 240 min post stress. Lake sturgeon larvae raised at 9, 12 and 15°C exhibited markedly different cortisol responses with baseline whole body cortisol being, 38.6 ± 3, 5.67 ± 0.41 and 25.38 ± 2.84 ng.g−1 respectively. Furthermore, the chase induced increases in whole body cortisol at the larval stage were significantly different for each temperature treatment. These experiments demonstrate that physical environment has a significant impact on the development of the HPI stress axis in lake sturgeon.  相似文献   

20.
Many Antarctic notothenioid species endemic to the Seasonal Pack-ice Zone have converged on adult blood serum freezing points that are several tenths of a degree above the freezing point of seawater. While these fishes share high adult serum freezing points, the development of their freeze avoidance during ontogeny has not been studied. We investigated this in wild caught juveniles of one such species, Chaenocephalus aceratus (family Channichthyidae), using blood serum antifreeze activity as a proxy for their freeze avoidance. Juvenile serum antifreeze activity was significantly below that of adults through the oldest year 2+ specimens collected. This increased at an estimated rate of 0.368 × 10−3 ± 0.405 × 10−4°C day−1 which, if sustained, would leave C. aceratus below their adult serum antifreeze activity levels of 0.57 ± 0.08°C until 4.2 years after hatching. Underlying the 2.7-fold increase in their serum antifreeze activity from late year 0+ juveniles to adults was an even greater 10.4-fold increase in the concentration of their serum antifreeze glycopeptides, which increased proportionally across all of their serum AFGP size isoforms. With insufficient antifreeze activity to avoid freezing in the ice-laden surface waters, both adult and juvenile C. aceratus are most likely restricted to the year round ice-free waters where a metastable supercooled state can be maintained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号