首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Allopolyploid speciation is likely the predominant mode of sympatric speciation in plants. The Sphagnum subsecundum complex includes six species in North America. Three have haploid gametophytes, and three are thought to have diploid gametophytes. Microsatellite analyses indicated that some plants of S. inundatum and S. lescurii are heterozygous at most loci, but others have only one allele at each locus. Flow cytometry and Feulgen staining showed that heterozygous plants have twice the genome size as plants with one allele per locus; thus, microsatellite patterns can be used to survey the distribution and abundance of haploid and diploid gametophytes. Microsatellite analyses also revealed that S. carolinianum is consistently diploid, but S. lescurii and S. inundatum include both haploid and diploid populations. The frequency of diploid plants in S. lescurii increases with latitude. In an analysis of one population of S. lescurii, both cytotypes co-occurred but were genetically differentiated with no evidence of interbreeding. The degree of genetic differentiation showed that the diploids were not derived from simple genome duplication of the local haploids. Heterozygosity appears to be fixed or nearly so in diploids, strongly suggesting that although morphologically indistinguishable from the haploids, they are derived by allopolyploidy.  相似文献   

2.
Haploid hybrid gametophytes are often present at low frequencies in sympatric populations of Sphagnum capillifolium and Sphagnum quinquefarium. We used intersimple sequence repeat (ISSR) markers and polymerase chain reaction-restriction fragment length polymorphism of the trnL(UAA) intron of the chloroplast genome to reveal the nuclear and chloroplast composition of mature hybrid gametophytes from natural populations and of gametophytes derived from spores of hybrid sporophytes collected in nature. Asymmetrical nuclear inheritance was found in the progeny of the hybrid sporophytes, indicating that only spores with a low level of recombination of parental genomes were viable. A similarly skewed nuclear composition was found among the naturally occurring hybrid gametophytes. All hybrid genomes contained a larger proportion of S. capillifolium ISSR markers, combined with only two to five S. quinquefarium markers together with a chloroplast haplotype derived from S. quinquefarium. In this way, a pattern resembling introgression is created within a single generation. Some individuals possessed nuclear genomes typical for S. capillifolium in combination with the chloroplast haplotype of S. quinquefarium, possibly indicating backcrossing. Our results indicate that hybridization between S. capillifolium and S. quinquefarium is relatively common, but the resistance of large parts of the genome against heterospecific genes maintains the genetic distinctness of the species. Further evolutionary and phylogenetic consequences of restricted interspecific gene exchange are discussed.  相似文献   

3.
We explored the reproductive modes of Ulva intestinalis in the inner part of the Baltic Sea during three consecutive years by using five microsatellite loci to estimate the relative abundance of diploid sporophytes and haploid gametophytes. Our results suggest that both diploid sporophytes and haploid gametophytes occur regularly in the Baltic Sea. The ratio of haploid to diploid individuals changes with seasons. Sporophytes are more abundant than gametophytes throughout the year, but the proportion of haploids increases from 10% in early summer to 35% in September. The over-wintering takes primarily place as diploid spores released by sporophytes. The sporophytes appear to reproduce both sexually and asexually in the Baltic Sea, since clones were found for this life phase. The fraction of individuals which belonged to an apparent diploid clone was higher in spring (62%) than in autumn (33%). We also found evidence for asexual clones in haploid gametophytes. The presence of both diploid and haploid individuals and the pattern of genetic and genotypic diversity provide evidence of sexual reproduction in the Baltic Sea. Thus the sporophytes and gametophytes do not function as two reproductively separate units. Compared with many other algal species with a reduced reproductive cycle in low salinity, U. intestinalis differs by having a multitude of reproductive modes also in the brackish water Baltic Sea, which can in part explain the dynamic propagation and high adaptability of the species.  相似文献   

4.
《Aquatic Botany》2011,94(4):244-249
We explored the reproductive modes of Ulva intestinalis in the inner part of the Baltic Sea during three consecutive years by using five microsatellite loci to estimate the relative abundance of diploid sporophytes and haploid gametophytes. Our results suggest that both diploid sporophytes and haploid gametophytes occur regularly in the Baltic Sea. The ratio of haploid to diploid individuals changes with seasons. Sporophytes are more abundant than gametophytes throughout the year, but the proportion of haploids increases from 10% in early summer to 35% in September. The over-wintering takes primarily place as diploid spores released by sporophytes. The sporophytes appear to reproduce both sexually and asexually in the Baltic Sea, since clones were found for this life phase. The fraction of individuals which belonged to an apparent diploid clone was higher in spring (62%) than in autumn (33%). We also found evidence for asexual clones in haploid gametophytes. The presence of both diploid and haploid individuals and the pattern of genetic and genotypic diversity provide evidence of sexual reproduction in the Baltic Sea. Thus the sporophytes and gametophytes do not function as two reproductively separate units. Compared with many other algal species with a reduced reproductive cycle in low salinity, U. intestinalis differs by having a multitude of reproductive modes also in the brackish water Baltic Sea, which can in part explain the dynamic propagation and high adaptability of the species.  相似文献   

5.
This paper documents the occurrence of allotriploidy (having three differentiated genomes) in gametophytes of two Southern Hemisphere Sphagnum species ( S. australe, S . falcatulum ). The pattern of microsatellite alleles indicates that both species are composed of a complex of allodiploid and allotriploid gametophytes, with the latter resulting from two allopolyploidization events. No haploid ( n  =  x ) gametophytes were found for either species. The ploidal levels suggested by the pattern of microsatellite alleles were confirmed by flow cytometry and Feulgen DNA image densitometry. For both S. australe and S. falcatulum , the respective allodiploid plants (or their ancestors) are one of the parent species of the allotriploid plants. This is the first report of triploidy in Sphagnum gametophytes occurring in nature and also the first report of the presence of three differentiated genomes in any bryophyte. It is also the first report of intersectional allopolyploidy in Sphagnum , with S. australe appearing to have parental species from Sphagnum sections Rigida and Sphagnum, and S. falcatulum having parental species from Sphagnum sections Cuspidata and Subsecunda . In both species, the allotriploid cytotypes were the most prevalent cytotype on the South Island of New Zealand. The pattern of microsatellite alleles shows the presence of two genetically distinct populations of allodiploid S. australe , possibly indicating multiple origins of polyploidy for that allodiploid cytotype. Morphological evidence is also highly indicative of recurrent polyploidy in the allotriploid cytotype of S. falcatulum . Allopolyploidy has clearly played a major evolutionary role in these two Southern Hemisphere taxa. This study, in conjunction with other recent research, indicates that allopolyploidy is a common, if not the predominant, form of polyploidy in Sphagnum .  相似文献   

6.
Parthenogenetic sporophytes were obtained from three strains of Laminaria japonica Areschoug. These sporophytes grew to maturity in the sea, producine spores that all grew into female gametophytes. These female gametophytes gave rise to another generation of parthenogenetic sporophytes during the next year, so that by the year 1990 parthenogenetic sporophytes had been cultivated for 12, 9, and 7 generations, respectively, for the three strains. When female gametophytes from parthenogenetic sporophytes were combined with normal male gametophytes, normal sporophytes that reproduced and gave rise to both female and male gametophytes were obtained. The parthenogenetic sporophytes were shorter and narrower than the normal sporophytes of the same strain. Chromosome counts on mature sporophytes showed that normal sporophytes (from fertilized eggs) were diploid (2n = approximately 40) and that the spores they produced were haploid (n = approximately 20), while nuclei from both somatic and sporangial cells in parthenogenetic sporophytes were haploid. All gametophytes were haploid. Young sporophytes derived from cultures with both female and male gametophytes were diploid, while young, sporophytes obtained from female gametophytes from parthenogenetic sporophytes had haploid, diploid, or polyploidy chromosome numbers. Polyploidy was associated with abnormal cell shapes. The presence of haploid parthenogenetic sporophytes should be use in breeding kelp strains with useful characteristics, since the sporophyte phenotype is expressed from a haploid genotype which can be more readily selected.  相似文献   

7.
Land plants possess a multicellular diploid stage (sporophyte) that begins development while attached to a multicellular haploid progenitor (gametophyte). Although the closest algal relatives of land plants lack a multicellular sporophyte, they do produce a zygote that grows while attached to the maternal gametophyte. The diploid offspring shares one haploid set of genes with the haploid mother that supplies it with resources and a paternal haploid complement that is not shared with the mother. Sexual conflict can arise within the diploid offspring because the offspring's maternal genome will be transmitted in its entirety to all other sexual and asexual offspring that the mother may produce, but the offspring's paternally derived genes may be absent from these other offspring. Thus, the selective forces favouring the evolution of genomic imprinting may have been present from the origin of modern land plants. In bryophytes, where gametophytes are long-lived and capable of multiple bouts of asexual and sexual reproduction, we predict strong sexual conflict over allocation to sporophytes. Female gametophytes of pteridophytes produce a single sporophyte and often lack means of asexual reproduction. Therefore, sexual conflict is predicted to be attenuated. Finally, we explore similarities among models of mate choice, offspring choice and segregation distortion.  相似文献   

8.
Secondary hybrid zones are not uncommon in Dactylorhiza, but knowledge of ecological and evolutionary consequences of hybridization are scarce. Here, we assess interploidal gene flow and introgression in a hybrid zone between diploid Dactylorhiza incarnata ssp. cruenta (2n = 2x = 40) and its putative allotetraploid derivative D. lapponica (2n = 4x = 80). Photometric quantification of DNA content and morphology confirmed that triploids are abundant in sympatric populations in our study area. Allozyme segregation patterns in D. lapponica supported an allopolyploid origin, although unbalanced genotypes suggested rare pairings between homoeologous chromosomes. Photometric data and chromosome counts suggest backcrossing between the triploid hybrid and D. lapponica, and hence some hybrid fertility. Triploids are morphologically more similar to the tetraploids than the diploids, maybe owing to the hybrid origin of both triploids and tetraploids. The diploids and tetraploids were not more similar in the parapatric populations compared to when they occur in allopatry. This indicates that backcrossing rarely leads to introgression, or alternatively that allopatric populations are not isolated enough to prevent influx of pollen from the other species. Despite some evidence of backcrossing, our study gives few indications that widespread hybridization entails local breakdown of species boundaries. Rather, the hybrid zone may be a transient phenomenon due to intensive mowing, resulting in the opening of habitats and hence bringing the parental species into close contact.  相似文献   

9.
This report deals with an unusual mode of mitochondrial gene introgression between Cobitis hankugensis (C. sinensis) and C. longicorpus which is mediated by a unisexual hybridogenetic system of diploid-triploid C. hankugensis-longicorpus complex. Mitochondrial DNA sequences of 3329-3330bp encompassing from upstream ND6 to 12S rDNA indicated that mitochondrial genomes from the diploid hybrids, triploid hybrids, and their parental species are almost identical. Because triploid hybrids produce haploid ova with C. hankugensis chromosome set, normal diploid C. hankugensis regenerates upon insemination with C. hankugensis sperm. If the hybrid carries C. longicorpus mitochondrial genome, the regenerated C. hankugensis is a nucleo-cytoplasmic hybrid, thus accomplishing the unusual mode of mitochondrial gene introgression.  相似文献   

10.
Allopolyploidy is probably the most extensively studied mode of plant speciation and allopolyploid species appear to be common in the mosses (Bryophyta). The Sphagnum subsecundum complex includes species known to be gametophytically haploid or diploid, and it has been proposed that the diploids (i.e., with tetraploid sporophytes) are allopolyploids. Nucleotide sequence and microsatellite variation among haploids and diploids from Newfoundland and Scandinavia indicate that (1) the diploids exhibit fixed or nearly fixed heterozygosity at the majority of loci sampled, and are clearly allopolyploids, (2) diploids originated independently in North America and Europe, (3) the European diploids appear to have the haploid species, S. subsecundum, as the maternal parent based on shared chloroplast DNA haplotypes, (4) the North American diploids do not have the chloroplast DNA of any sampled haploid, (5) both North American and European diploids share nucleotide and microsatellite similarities with S. subsecundum, (6) the diploids harbor more nucleotide and microsatellite diversity than the haploids, and (7) diploids exhibit higher levels of linkage disequilibrium among microsatellite loci. An experiment demonstrates significant artifactual recombination between interspecific DNAs coamplified by PCR, which may be a complicating factor in the interpretation of sequence-based analyses of allopolyploids.  相似文献   

11.
The endemic Iberian minnow Squalius alburnoides is a complex of fishes of hybrid origin including both males and females with distinct ploidy levels and varying proportions of the parental genomes. In this paper we demonstrated that in contrast to many vertebrate hybrid lineages the sperm of triploid hybrid males of S. alburnoides is viable and fully functional. Flow cytometry and analysis of sequences of a fragment of the beta-actin nuclear gene applied to progenitors and offspring evidenced that these males produced their sperm clonally, as already described for diploid hybrids. The presence of different types of fertile males (nonhybrid diploids with normal meiosis and both diploid and triploid hybrids) coupled with hybridogenetic meiosis in females endows this vertebrate complex with a high level of independence from other species and contributes to maintain its genetic variability.  相似文献   

12.
Several complexes of species in Sphagnum (peat mosses) originated through hybridization and allopolyploidy, suggesting that these processes have played a major evolutionary role in this genus. The Sphagnum subsecundum complex includes gametophytically haploid and diploid species in North America. Analyses of 12 microsatellite loci and sequences from two plastid DNA markers show that the evolutionary history of this group is substantially more complex than previously thought. Two taxonomic species, Sphagnum lescurii and Sphagnum inundatum, include both haploid and diploid populations. Within each ploidal level, S. lescurii and S. inundatum are not genetically differentiated. The diploid taxa show patterns of fixed heterozygosity for the microsatellite markers, consistent with an allopolyploid origin. Diploid S. lescurii is an allopolyploid between haploid S. lescurii and (haploid) S. subsecundum. Sphagnum carolinianum is an allopolyploid between haploid S. lescurii and an unknown parent. We detected homoploid hybridization between the haploids Sphagnum contortum and S. subsecundum. Finally, we report three samples of diploid Sphagnum platyphyllum (otherwise haploid) that have an allopolyploid origin involving north‐eastern haploid S. platyphyllum and an unidentified taxon. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 135–151.  相似文献   

13.
Epistatic genetic variance for quantitative traits may play an important role in evolution, but detecting epistasis in diploid organisms is difficult and requires complex breeding programs and very large sample sizes. We develop a model for detecting epistasis in organisms with a free-living haploid stage in their life cycles. We show that epistasis is indicated by greater variance among families of haploid progeny derived from individual diploids than among clonally replicated haploid sibs from the same sporophyte. Simulations show that the power to detect epistasis is linearly related to the number of sporophytes and the number of haploids per sporophyte in the dataset. We illustrate the model with data from growth variation among gametophytes of the moss, Ceratodon purpureus. The experiment failed to detect epistatic variance for biomass production, although there was evidence of additive variance.  相似文献   

14.
Why mating types exist at all is subject to much debate. Among hypotheses, mating types evolved to control organelle transmission during sexual reproduction, or to prevent inbreeding or same-clone mating. Here I review data from a diversity of taxa (including ciliates, algae, slime molds, ascomycetes, and basidiomycetes) to show that the structure and function of mating types run counter the above hypotheses. I argue instead for a key role in triggering developmental switches. Genomes must fulfill a diversity of alternative programs along the sexual cycle. As a haploid gametophyte, an individual may grow vegetatively (through haploid mitoses), or initiate gametogenesis and mating. As a diploid sporophyte, similarly, it may grow vegetatively (through diploid mitoses) or initiate meiosis and sporulation. Only diploid sporophytes (and not haploid gametophytes) should switch on the meiotic program. Similarly, only haploid gametophytes (not sporophytes) should switch on gametogenesis and mating. And they should only do so when other gametophytes are ready to do the same in the neighborhood. As argued here, mating types have evolved primarily to switch on the right program at the right moment.  相似文献   

15.
The resurgence of haploids in higher plants   总被引:5,自引:0,他引:5  
The life cycle of plants proceeds via alternating generations of sporophytes and gametophytes. The dominant and most obvious life form of higher plants is the free-living sporophyte. The sporophyte is the product of fertilization of male and female gametes and contains a set of chromosomes from each parent; its genomic constitution is 2n. Chromosome reduction at meiosis means cells of the gametophytes carry half the sporophytic complement of chromosomes (n). Plant haploid research began with the discovery that sporophytes can be produced in higher plants carrying the gametic chromosome number (n instead of 2n) and that their chromosome number can subsequently be doubled up by colchicine treatment. Recent technological innovations, greater understanding of underlying control mechanisms and an expansion of end-user applications has brought about a resurgence of interest in haploids in higher plants.  相似文献   

16.
We aimed to study the importance of hybridization between two cryptic species of the genus Ectocarpus, a group of filamentous algae with haploid–diploid life cycles that include the principal genetic model organism for the brown algae. In haploid–diploid species, the genetic structure of the two phases of the life cycle can be analysed separately in natural populations. Such life cycles provide a unique opportunity to estimate the frequency of hybrid genotypes in diploid sporophytes and meiotic recombinant genotypes in haploid gametophytes allowing the effects of reproductive barriers preventing fertilization or preventing meiosis to be untangle. The level of hybridization between E. siliculosus and E. crouaniorum was quantified along the European coast. Clonal cultures (568 diploid, 336 haploid) isolated from field samples were genotyped using cytoplasmic and nuclear markers to estimate the frequency of hybrid genotypes in diploids and recombinant haploids. We identified admixed individuals using microsatellite loci, classical assignment methods and a newly developed Bayesian method (XPloidAssignment), which allows the analysis of populations that exhibit variations in ploidy level. Over all populations, the level of hybridization was estimated at 8.7%. Hybrids were exclusively observed in sympatric populations. More than 98% of hybrids were diploids (40% of which showed signs of aneuploidy) with a high frequency of rare alleles. The near absence of haploid recombinant hybrids demonstrates that the reproductive barriers are mostly postzygotic and suggests that abnormal chromosome segregation during meiosis following hybridization of species with different genome sizes could be a major cause of interspecific incompatibility in this system.  相似文献   

17.
The diploid sporophyte of the phycomycetous fungus Allomyces arbuscula bears two types of sporangia: thin-walled, colorless, ephemeral zoosporangia (ZS) and thick-walled, dark-brown, resistant sporangia (RS). Normal wild-type cultures (strain Portugal IE) under standard conditions produce approximately 90% of their total sporangia as RS. These RS give the cultures a dark-brown color. A mutant was induced with UV irradiation in which the ratio of ZS to RS was shifted so that only 20% of the total sporangia are RS. These cultures are a pale, tan color. Hybrids between the mutants and wild-types produce ca. 65% RS and are also intermediate in the color of the culture. Meiotic segregation in the RS of the hybrid sporophytes gives gametophytes half of which when selfed produce mutant sporophytes and half of which produce wild-type sporophytes. The shift from RS to ZS formation is thus considered to be the result of a one-gene mutation at a locus ‘R.’ The haploid gametophytes of wild-type strains have in addition to male and female gametangia a small number (2-4%) of RS. In mutant gametophytes the percent RS has dropped to 0.1-0.2%. The proposed genotypes at the ‘R’ locus in Allomyces arbuscula are: wild-type sporophytes (RR), hybrid sporophytes (Rr), mutant sporophytes (rr), wild-type gametophytes (R) and mutant gametophytes (r).  相似文献   

18.
Osmunda regalis sporophytes form haploid spores which develop into functionally hermaphroditic gametophytes. The self-fertilization of such gametophytes results in zygotes which are completely homozygous. Spore samples collected from sporophytes in natural populations were used to establish gametophyte cultures. The majority of these gametophytes were unable to form viable embryos when only self-fertilization was possible. Controlled selfing and crossing experiments revealed that the inability of these homozygous embryos to develop normally is attributable to the presence of recessive lethals. To account for this genetic load, an hypothesis is proposed integrating the morphology and ecology of the gametophyte generation with the polyploid genetic system of the sporophyte generation.  相似文献   

19.
Destombe  Christophe  Godin  José  Nocher  Marc  Richerd  Sophie  Valero  Myriam 《Hydrobiologia》1993,260(1):131-137
This study tests the responses of juvenile gametophytes and tetrasporophytes (holdfast stage) of the isomorphic alga Gracilaria verrucosa under different environmental conditions.Estimations of survival and growth of holdfasts of haploid and diploid juvenile individuals were performed in natural sea-water and artificial culture medium, and under stringent conditions using lead as a toxin and ultra violet radiation as a mutagen. Results indicate that (i) holdfasts of haploid juveniles grow better than diploids in non-optimal medium conditions; (ii) holdfasts of diploid juveniles have a better tolerance to lead than haploids; and (iii) slight advantage of holdfasts of diploid juveniles grow better than haploids under U.V. radiation.  相似文献   

20.
In the Hymenoptera, males develop as haploids from unfertilized eggs and females develop as diploids from fertilized eggs. In species with complementary sex determination (CSD), however, diploid males develop from zygotes that are homozygous at a highly polymorphic sex locus or loci. We investigated mating behavior and reproduction of diploid males of the parasitoid wasp Cotesia vestalis (C. plutellae), for which we recently demonstrated CSD. We show that the behavior of diploid males of C. vestalis is similar to that of haploid males, when measured as the proportion of males that display wing fanning, and the proportion of males that mount a female. Approximately 29% of diploid males sired daughters, showing their ability to produce viable sperm that can fertilize eggs. Females mated to diploid males produced all-male offspring more frequently (71%) than females mated to haploid males (27%). Daughter-producing females that had mated to diploid males produced more male-biased sex ratios than females mated to haploid males. All daughters of diploid males were triploid and sterile. Three triploid sons were also found among the offspring of diploid males. It has been suggested that this scenario, that is, diploid males mating with females and constraining them to the production of haploid sons, has a large negative impact on population growth rate and secondary sex ratio. Selection for adaptations to reduce diploid male production in natural populations is therefore likely to be strong. We discuss different scenarios that may reduce the sex determination load in C. vestalis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号