首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution and colocalization of nitric oxide synthase and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-diaphorase) was investigated in the adrenal gland of developing, adult and aging rats with the use of immunohistochemical and histochemical techniques. Nitric oxide synthase-immunoreactive neurons within the adrenal gland were found from the 20th day of gestation onwards. During early development the neurons were found as small clusters of smaller-size cells compared to those observed in the adult gland. Their number reached that of adult level by the 4th day after birth, and in the glands from aging rats a 28.6% increase was observed. Whilst no immunofluorescence was seen in chromaffin cells during early development, some cells from glands of aging rats showed nitric oxide synthase-immunoreactivity with varying intensity. The immunoreactive neurons from postnatal rat adrenals were also positive for NADPH-diaphorase, whilst those in prenatal rats were negative or lightly stained. Nitric oxide synthase-immunoreactive nerve fibres were present in all adrenal glands examined from the 16th day of gestation onwards. A considerable degree of variation in the distribution of immunoreactive fibres both in medulla and outer region of cortex at the different age groups was observed and described. Most, but not all, nitric oxide synthase-immunoreactive nerve fibres also showed NADPH-diaphorase staining.  相似文献   

2.
Immunohistochemistry has been used to demonstrate tyrosine hydroxylase (TH), dopamine--hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT), neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) immunoreactivities, and acetylcholinesterase (AChE) activity was demonstrated in rat adrenal glands. The TH, DBH, NPY and VIP immunoreactivities and AChE activity were observed in both the large ganglion cells and the small chromaffin cells whereas PNMT immunoreactivity was found only in chromaffin cells, and not in ganglion cells. Most intraadrenal ganglion cells showed NPY immunoreactivity and a few were VIP immunoreactive. Numerous NPY-immunoreactive ganglion cells were also immunoreactive for TH and DBH; these cells were localized as single cells or groups of several cells in the adrenal cortex and medulla. Use of serial sections, or double and triple staining techniques, showed that all TH- and DBH-immunoreactive ganglion cells also showed NPY immunoreactivity, whereas some NPY-immunoreactive ganglion cells were TH and DBH immunonegative. NPY-immunoreactive ganglion cells showed no VIP immunoreactivity. AChE activity was seen in VIP-immunopositive and VIP-immunonegative ganglion cells. These results suggest that ganglion cells containing noradrenaline and NPY, or NPY only, or VIP and acetylcholine occur in the rat adrenal gland; they may project within the adrenal gland or to other target organs. TH, DBH, NPY, and VIP were colocalized in numerous immunoreactive nerve fibres, which were distributed in the superficial adrenal cortex, while TH-, DBH- and NPY-immunoreactive ganglion cells and nerve fibres were different from VIP-immunoreactive ganglion cells and nerve fibres in the medulla. This suggests that the immunoreactive nerve fibres in the superficial cortex may be mainly extrinsic in origin and may be different from those in the medulla.  相似文献   

3.
Summary Protein kinase c--like immunoreactivity was studied in the adrenal gland of adult rats and at different pre- and postnatal stages of development (E17-P21) with an antibody specific to both the 21 and - subtypes of the kinase. In the adult rat adrenal gland, the immunoreactivity was seen in numerous nerve fibres in the adrenal medulla both in bundles and individually forming occasionally dense networks around chromaffin cell groups. Several protein kinase c--immunoreactive fibres were also observed transversing the adrenal cortex towards the medulla. No remaining immunoreactive fibres two weeks after transection of the splanchnic nerve could be seen; nor was any immunoreactivity observed in the chromaffin cells of the adrenal medulla or in the cortical cells, but some faintly immunoreactive ganglion cells were detected in the adrenal medulla. The amount and distribution of protein kinase c--like immunoreactivity in the fetal and developing adrenals was very similar to that seen in the adrenal glands of adult rats. On the basis of its localization, the -subtype of protein kinase c does not appear to be directly involved in the release of catecholamines from the adrenal medulla, but it might have a role in the regulation of neurotransmitter release from preganglionic cholinergic neurons.  相似文献   

4.
GAWK is a recently discovered peptide isolated from extracts of human pituitary gland and subsequently shown to be identical to sequence 420-493 of human chromogranin B. The distribution of this peptide was studied in human gut, pancreas, adrenal and pituitary glands using antisera to two portions of the 74 amino acid peptide (sequences 1-17 and 20-38). In addition, the co-existence of GAWK immunoreactivity with other peptides and chromogranin B was investigated using comparative immunocytochemistry. In the gut, GAWK was localised mainly to serotonin-containing cells of the mucosal epithelium, where electron microscopy showed it to be stored in typical electron-dense (250 nm diameter) granules, and to a moderate population of nerve fibres in the gut wall. Considerable quantities of GAWK-like immunoreactivity were measured in the gut, up to 36.3 +/- 18 pmol GAWK 1-17/g wet weight of tissue (mean +/- SEM) and 12.4 +/- 2.9 pmol GAWK 20-38/g. Chromatography of gut extracts revealed several GAWK-like immunoreactive peaks. GAWK-like immunoreactivity was also detected in endocrine cells of pancreas, pituitary gland and adrenal medulla, where the highest concentrations of GAWK-like immunoreactivity were measured (GAWK 1-17 2071.8 +/- 873.2 and GAWK 20-38 1292.7 +/- 542.7 pmol/g). Endocrine cells containing GAWK-like immunoreactivity were found also to be immunoreactive for chromogranin B. Our results define a discrete distribution of GAWK immunoreactivity in human endocrine cells and nerves and provide morphological support for the postulated precursor-product relationship between chromogranin B and GAWK. Details of the functions of this peptide are awaited.  相似文献   

5.
Nitric oxide (NO) acts as an intercellular messenger molecule in the nervous system. In the adrenal gland sympathetic preganglionic fibers innervating the medulla, as well as intrinsic neural ganglion cells, contain nitric oxide synthase (NOS). Nitric oxide stimulates the soluble enzyme guanylate cyclase forming cyclic GMP (cGMP). Using sodium nitroprusside (SNP) as nitric oxide donor we have studied the putative target cells for nitric oxide in the rat adrenal gland, both in vivo and in vitro. The guinea pig and a few mouse adrenal glands were studied after SNP perfusion for comparison. Our results show that after vascular perfusion with a high concentration (3 mM) of SNP both noradrenaline and adrenaline chromaffin cells express cGMP-like immunoreactivity in all three species. After incubation of rat adrenal slices with SNP primarily the noradrenaline chromaffin cells are cGMP-positive. In contrast, detectable levels of cGMP-like immunoreactivity were not found in neuronal ganglion cells. In the adrenal cortex cGMP-like immunoreactivity was seen in blood vessel walls, in small cells with processes forming a reticular network, at least partly presumably representing endothelial cells, as well as in some presumable nerve terminals. These findings support the view that chromaffin cells, especially the noradrenergic ones and blood vessels, are targets for nitric oxide in the adrenal gland.  相似文献   

6.
Somatostatin-like immunoreactivity was detected within the adrenal gland of the cat using specific monoclonal antibodies. Immunohistochemical studies demonstrated a few somatostatin-immunoreactive nerve fibers within the adrenal medulla. In addition, a large population of chromaffin cells in the cat adrenal medulla displayed intense somatostatin-like immunoreactivity. Similar cells were not observed in rat or guinea pig adrenal glands, although they were found in human material. The somatostatin-positive cells in the cat adrenal medulla often possessed short immunoreactive processes similar to those seen in somatostatin-immunoreactive paracrine cells of the gut. Characterization of the somatostatin-like immunoreactivity of the cat adrenal by high performance liquid chromatography and radioimmunoassay indicated that somatostatin-28 may account for over 90% of the observed immunoreactivity. It is suggested that somatostatin-28 may have a paracrine or endocrine role in the feline adrenal medulla.  相似文献   

7.
Chromogranin A is a highly acidic protein that is found in the secretory granules of many endocrine and neuronal cells. To localize bovine cell populations involved in chromogranin A biosynthesis, the distribution of the mRNA encoding this protein was determined with in situ hybridization histochemistry. In the adrenal gland, the mRNA was found in the chromaffin cells of the medulla but was absent from the cortex. The distribution of the mRNA in the medulla was uneven; cells located at the periphery were more heavily labeled than those in the center of the gland. Because the adrenal medulla is composed of several cell types, the chromogranin A-containing cells were further characterized for the presence of neuropeptide and adrenergic markers. Adjacent sections were examined for the mRNAs encoding enkephalin and phenylethanolamine N-methyltransferase (PNMT), the enzyme that catalyzes the formation of epinephrine from norepinephrine. Both mRNAs were present in a narrow band of cells at the periphery of the medulla. However, in contrast to the distribution of chromogranin A mRNA, the enkephalin and PNMT mRNAs were detected in only a small number of cells in the inner medullary region. The difference in the distribution of the enkephalin and PNMT mRNAs from that of chromogranin A suggests that the expression of these genes is differentially regulated. In addition to the adrenal gland, chromogranin A mRNA is expressed by many other tissues. In the parathyroid gland, which is rich in the mRNA but exhibits little chromogranin A-like immunoreactivity, the message was present in most cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Summary Somatostatin-like immunoreactivity was detected within the adrenal gland of the rat using specific monoclonal antibodies. Immunohistochemical studies demonstrated a few somatostatin-immunoreactive nerve fibers within the adrenal medulla. In addition, a large population of chromaffin cells in the cat adrenal medulla displayed intense somatostatin-like immunoreactivity. Similar cells were not observed in rat or guinea pig adrenal glands, although they were found in human material. The somatostatin-positive cells in the cat adrenal medulla often possessed short immunoreactive processes similar to those seen in somatostatin-immunoreactive paracrine cells of the gut. Characterization of the somatostatin-like immunoreactivity of the cat adrenal by high performance liquid chromatography and radioimmunoassay indicated that somatostatin-28 may account for over 90% of the observed immunoreactivity. It is suggested that somatostatin-28 may have a paracrine or endocrine role in the feline adrenal medulla.  相似文献   

9.
Summary GAWK is a recently discovered peptide isolated from extracts of human pituitary gland and subsequently shown to be identical to sequence 420–493 of human chromogranin B. The distribution of this peptide was studied in human gut, pancreas, adrenal and pituitary glands using antisera to two portions of the 74 amino acid peptide (sequences 1–17 and 20–38). In addition, the co-existence of GAWK immunoreactivity with other peptides and chromogranin B was investigated using comparative immunocytochemistry.In the gut, GAWK was localised mainly to serotonin-containing cells of the mucosal epithelium, where electron microscopy showed it to be stored in typical electron-dense (250 nm diameter) granules, and to a moderate population of nerve fibres in the gut wall. Considerable quantities of GAWK-like immunoreactivity were measured in the gut, up to 36.3±18 pmol GAWK 1–17/g wet weight of tissue (mean±SEM) and 12.4±2.9 pmol GAWK 20–38/g. Chromatography of gut extracts revealed several GAWK-like immunoreactive peaks. GAWK-like immunoreactivity was also detected in endocrine cells of pancreas, pituitary gland and adrenal medulla, where the highest concentrations of GAWK-like immunoreactivity were measured (GAWK 1–17 2071.8±873.2 and GAWK 20–38 1292.7±542.7 pmol/g). Endocrine cells containing GAWK-like immunoreactivity were found also to be immunoreactive for chromogranin B.Our results define a discrete distribution of GAWK immunoreactivity in human endocrine cells and nerves and provide morphological support for the postulated precursor-product relationship between chromogranin B and GAWK. Details of the functions of this peptide are awaited.  相似文献   

10.
Summary The present immunohistochemical study reveals that a small number of chromaffin cells in the rat adrenal medulla exhibit CGRP-like immunoreactivity. All CGRP-immunoreactive cells were found to be chromaffin cells without noradrenaline fluorescence; from combined immunohistochemistry and fluorescence histochemistry we suggest that these are adrenaline cells. In addition, all CGRP-immunoreactive cells simultaneously exhibited NPY-like immunoreactivity. CGRP-chromaffin cells were characterized by abundant chromaffin granules with round cores in which the immunoreactive material was densely localized. These findings suggest the co-existence of CGRP, NPY and adrenaline within the chromaffin granules in a substantial number of chromaffin cells.Thicker and thinner nerve bundles, which included CGRP-immunoreactive nerve fibers, with or without varicosities, penetrated the adrenal capsule. Most of them passed through the cortex and entered the medulla directly, whereas others were distributed in subcapsular regions and among the cortical cells of the zona glomerulosa. Here the CGRP-fibers were in close contact with cortical cells. A few of the fibers supplying the cortex extended further into the medulla. The CGRP-immunoreactive fibers in the medulla were traced among and within small clusters of chromaffin cells and around ganglion cells. The CGRP-fibers were directly apposed to both CGRP-positive and negative chromaffin cells, as well as to ganglion cells. Immunoreactive fibers, which could not be found close to blood vessels, were characterized by the presence of numerous small clear vesicles mixed with a few large granular vesicles. The immunoreactive material was localized in the large granular vesicles and also in the axoplasm. Since no ganglion cells with CGRP-like immunoreactivity were found in the adrenal gland, the CGRP-fibers are regarded as extrinsic in origin. In double-immunofluorescence staining for CGRP and SP, all the SP-immunoreactive fibers corresponded to CGRP-immunoreactive ones in the adrenal gland. This suggests that CGRP-positive fibers in the adrenal gland may be derived from the spinal ganglia, as has been demonstrated with regard to the SP-nerve fibers.  相似文献   

11.
Chromogranin A (secretory protein-I) is an acidic sulfated glycoprotein found in secretory granules of most endocrine and neuroendocrine cells. In the parathyroid it is co-stored and secreted with parathormone in response to hypocalcemia. Differences in post-translational modifications have been reported between chromogranin A from the bovine adrenal and porcine parathyroid glands. The former has been reported to be sulfated mainly on oligosaccharide residues and apparently includes a proteoglycan form, whereas the latter was previously reported to be tyrosine sulfated with little of the proteoglycan form present. Here we have directly compared 35SO4-labeled parathyroid chromogranin A from the pig and the cow to determine if these reported differences were tissue or species specific. We find that the chromogranin A secreted by the bovine gland contains a proteoglycan form, whereas that from the porcine gland does not. Moreover, chromogranin A of both species is primarily sulfated on oligosaccharide residues with little if any tyrosine sulfate detected. Differences were detected in the structure of sulfated O-linked oligosaccharides in bovine and porcine parathyroid chromogranin A.  相似文献   

12.
Distribution of P2X receptors in the rat adrenal gland   总被引:4,自引:0,他引:4  
The distribution of each of the seven subtypes of ATP-gated P2X receptors was investigated in the adrenal gland of rat utilizing immunohistochemical techniques with specific polyclonal antibodies to unique peptide sequences of P2X1-7 receptors. A small number of chromaffin cells showed positive immunoreaction for P2X5 and P2X7, with the relative occurrence of P2X7-immunoreactive chromaffin cells exceeding that of P2X5. The preganglionic nerve fibres that form terminal plexuses around some chromaffin cells showed P2X1 immunoreactivity. Intrinsic adrenal neurones were observed to be positively stained for P2X2 and P2X3 receptors. P2X2 immunoreactivity occurred in several neurones found singly or in groups in the medulla, while only a small number of neurones were immunoreactive for P2X3. Adrenal cortical cells were positively immunostained for P2X4-7. Immunoreactivity for P2X4 was confined to the cells of the zona reticularis, while P2X5-7 immunoreactivities occurred in cells of the zona fasciculata. The relative occurrence of immunoreactive cortical cells of the zona fasciculata was highest for P2X6, followed by P2X7 and then P2X5. The smooth muscle of some capsular and subcapsular blood vessels showed P2X2 immunoreactivity. The specific and widespread distribution of P2X receptor subtypes in the adrenal gland suggests a significant role for purine signalling in the physiology of the rat adrenal gland.  相似文献   

13.
We studied the spatial and temporal pattern of basic fibroblast growth factor (bFGF) immunoreactivity in the rat adrenal gland during postnatal development. In the cortex the glomerulosa zone reveals a strong anti-bFGF immunoreactivity at all developmental ages studied. In the fasciculata zone the high number of anti-bFGF immunoreactive cells in the first week decreases during the second and third week. The late developing reticularis zone shows only few anti-bFGF labeled cells at all postnatal ages. This distributional pattern of bFGF immunoreactivity matches that of mitotic activity in the rat adrenal cortex strengthening the role of bFGF as an autocrine growth factor for adrenocortical cells. In the medulla anti-bFGF positive chromaffin cells become detectable at postnatal day (P) 8 and increase in number during the second and third week. In the adult rat the staining intensity of the chromaffin cells was higher than at P18. In the adult medulla bFGF colocalizes with noradrenaline suggesting its presence in a chromaffin cell subpopulation. In accordance with previous results the role of the chromaffin cell bFGF as a neurotrophic factor for preganglionic sympathetic neurons is discussed.  相似文献   

14.
Summary We studied the spatial and temporal pattern of basic fibroblast growth factor (bFGF) immunoreactivity in the rat adrenal gland during postnatal development. In the cortex the glomerulosa zone reveals a strong anti-bFGF immunoreactivity at all developmental ages studied. In the fasciculata zone the high number of anti-bFGF immunoreactive cells in the first week decreases during the second and third week. The late developing reticularis zone shows only few anti-bFGF labeled cells at all postnatal ages. This distributional pattern of bFGF immunoreactivity matches that of mitotic activity in the rat adrenal cortex strengthening the role of bFGF as an autocrine growth factor for adrenocortical cells. In the medulla anti-bFGF positive chromaffin cells become detectable at postnatal day (P) 8 and increase in number during the second and third week. In the adult rat the staining intensity of the chromaffin cells was higher than at P18. In the adult medulla bFGF colocalizes with noradrenaline suggesting its presence in a chromaffin cell subpopulation. In accordance with previous results the role of the chromaffin cell bFGF as a neurotrophic factor for preganglionic sympathetic neurons is discussed.  相似文献   

15.
Gamma-aminobutyric acid (GABA) immunoreactivity was revealed by immunocytochemistry in the mouse adrenal gland at the light and electron microscopic levels. Groups of weakly or faintly GABA immunoreactive chromaffin cells were often seen in the adrenal medulla. By means of immunohistochemistry combined with fluorescent microscopy, these GABA immunoreactive chromaffin cells showed noradrenaline fluorescence. The immunoreaction product was seen mainly in the granular cores of these noradrenaline cells. These results suggest the co-existence of GABA and noradrenaline within the chromaffin granules. Sometimes thick or thin bundles of GABA immunoreactive nerve fibers with or without varicosities were found running through the cortex directly into the medulla. In the medulla, GABA immunoreactive varicose nerve fibers were numerous and were often in close contact with small adrenaline cells and large ganglion cells; a few, however, surrounded clusters of the noradrenaline cells, where membrane specializations were formed. Single GABA immunoreactive nerve fibers, and thin or thick bundles of the immunoreactive varicose nerve fibers ran along the blood vessels in the medulla. The immunoreaction deposits were observed diffusely in the axoplasm and in small agranular vesicles of the GABA immunoreactive nerve fibers. Since no ganglion cells with GABA immunoreactivity were found in the adrenal gland, the GABA immunoreactive nerve fibers are regarded as extrinsic in origin.  相似文献   

16.
We have localized at light and electron-microscopic level the growth-associated protein GAP-43 in adrenal gland using single and double labelling immunocytochemistry. Clusters of GAP-43-immunofluorescent chromaffin cells and many immunofluorescent fibres were observed in the medulla. GAP-43-immunoreactive fibres also formed a plexus under the capsule, crossed the cortex and ramified in the zona reticulata. Double labelled sections showed the coexpression of GAP-43 with a subpopulation of tyrosine hydroxylase-and of dopamine--hydroxylase-immunoreactive chromaffin cells. Dual colour immunofluorescence for GAP-43 and calcitonin gene-related peptide (CGRP) revealed that some of the GAP-43-immunoreactive fibres also express CGRP. Pre-embedding electron microscopy showed GAP-43 immunoreactivity associated with the plasma membranes and cytoplasm of noradrenaline-producing chromaffin cells, and with processes of nonmyelin-forming Schwann cells. Immunoreactive unmyelinated axons and terminals were also observed. The immunostained terminals made symmetrical synaptic contacts with chromaffin cells. Immunoreactive unmyelinated fibres and small terminals were present in the cortex. Our results show that GAP-43 is expressed in noradrenergic chromaffin cells and in various types of nerve fibres that innervate the adrenal. Likely origins for these fibres include preganglionic sympathetic fibres which innervate chromaffin cells, postganglionic sympathetic fibres in the cortex, and CGRP containing sensory fibres.  相似文献   

17.
Macrophages are widely distributed in lymphohaemopoietic and many other mammalian tissues, where they are mainly involved in host defence mechanisms, phagocytosis, wound repair, and secretion of growth factors. Increasing evidence suggests that secretory products of macrophages can influence adrenal gland functions. In the present study, we have used specific antibodies to ED1 (cytoplasmic antigen), ED2 (membrane antigen), ED8 (membrane antigen), and OX-6 (MHC class II/membrane antigen) as markers for macrophages to examine their distribution within the adult rat adrenal gland. ED2 and OX-6 recognize distinct subpopulations of adrenal gland macrophages, whereas macrophages immunoreactive (-ir) for ED1 and ED8 could not be detected. OX-6-ir macrophages were most numerous in the cortical reticularis and glomerulosa zones, while only few cells were found in the zona fasciculata and in the adrenal medulla. Macrophages immunoreactive for ED2 were restricted to the adrenal medulla. The majority of these macrophages were associated with vascular sinuses or chromaffin cells. By double-immunolabelling we found that most of ED2-ir medullary macrophages contain neurotrophin-4 (NT-4)-like ir. Attempts to clarify whether macrophages take up NT-4 from NT-4-ir chromaffin cells indicated that medullary macrophages are immunonegative for chromogranin A and neuropeptide Y, two major secretory products of chromaffin cells. In situ hybridizations and immunofluorescence showed expression of the neurotrophin receptor TrkA, but not TrkB in the adrenal medulla. In vitro studies indicated that NT-4, similar to nerve growth factor, can induce c-fos-ir in chromaffin cells. We conclude that chromaffin cells are putative targets for adrenal medullary NT-4, whose functions remain to be clarified.  相似文献   

18.
Immunohistochemical investigation of the post-translational processing of chromogranin A (CgA) to generate WE-14 in the sympathoadrenal cell lineage of the developing porcine fetus (F) detected intense CgA and weak WE-14 immunoreactivity in migrating neuroblast cells of the diffuse sympathetic ganglia adjacent to the dorsal aorta and projecting toward the cortical mass at F24-27. F37-42; WE-14 immunoreactivity was detected in chromaffinoblasts at the periphery of the developing cortex and at F54-56 days gestation WE-14 immunoreactivity was detected in a large population of central medullary cells. From F74 to F76 days and thereafter the number of cells exhibiting intense WE-14 immunostaining decreased, and the majority of chromaffin cells exhibited uniform weak WE-14 immunostaining. At postnatal day 1 (P1) intense WE-14 immunoreactivity was primarily confined to clusters of chromaffin cells with weak immunostaining in the general population. The transitory neuroblasts, chromaffinoblasts, and maturing chromaffin cell population exhibited uniform intense CgA immunostaining through gestation and after birth. Additional observations detected intense CgA and WE-14 immunostaining in extrachromaffin tissue at P1 and in neuronal-like cells in vessels of the aortic arch at F37. This study has demonstrated that CgA is post-translationally processed to generate WE-14 during early fetal development in the migrating progenitor cells of the porcine sympathoadrenal lineage.  相似文献   

19.
Granin-family proteins, including chromogranin A and secretogranin III, are sorted to the secretory granules in neuroendocrine cells. We previously demonstrated that secretogranin III binds chromogranin A and targets it to the secretory granules in pituitary corticotrope-derived AtT-20 cells. However, secretogranin III has not been identified in adrenal chromaffin and PC12 cells, where chromogranin A is correctly sorted to the secretory granules. In this study, low levels of a large and noncleaved secretogranin III have been identified in PC12 cells and rat adrenal glands. Although the secretogranin III expression was limited in PC12 cells, when the FLAG-tagged secretogranin III lacking the secretory granule membrane-binding domain was expressed excessively, hemagglutinin-tagged chromogranin A was unable to target to the secretory granules at the tips and shifted to the constitutive secretory pathway. Secretogranin III was able to bind the aggregated form of chromogranin A, suggesting that a small quantity of secretogranin III is enough to carry a large quantity of chromogranin A. Furthermore, secretogranin III bound adrenomedullin, a major peptide hormone in chromaffin cells. Indeed, small interfering RNA-directed secretogranin III depletion impaired intracellular retention of chromogranin A and adrenomedullin, suggesting that they are constitutively released to the medium. We suggest that the sorting function of secretogranin III for chromogranin A is common in PC12 and chromaffin cells as well as in other endocrine cells, and a small amount of secretogranin III is able to sort chromogranin A aggregates together with adrenomedullin to secretory granules.  相似文献   

20.
 The ontogenetic expression of chromogranin A (CgA) and its derived peptides, WE-14 and pancreastatin (PST), was studied in the rat neuroendocrine system employing immunohistochemical analysis of fetal and neonatal specimens from 12.5-day embryos (E12.5), to 42-day postnatal (P42) rats. CgA immunostaining was first detected in endocrine cells of the pancreas, stomach, intestine, adrenal gland and thyroid at E13.5, E14.5, E15.5, E15.5 and E18.5, respectively. PST-like immunoreactivity was detected in endocrine cells of the pancreas at E13.5, stomach, intestine at E15.5, adrenal gland at E17.5 and thyroid at E18.5. WE-14 immunoreactivity was first observed in the immature pancreas at E15.5, mucosal cells of the stomach at E15.5, scattered chromaffin cells in the immature adrenal gland and mucosal cells of the intestine at E17.5 and thyroid parafollicular cells at E18.5. These data confirm that the translation of the CgA gene is regulated differentially in various neuroendocrine tissues and, moreover, suggests that the posttranslational processing of the molecule is developmentally controlled. Accepted: 18 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号