共查询到20条相似文献,搜索用时 15 毫秒
1.
The genome of Caenorhabditis elegans encodes five genes with homology to known alpha1,3 fucosyltransferases (alpha1,3FTs), but their expression and functions are poorly understood. Here we report the molecular cloning and characterization of these C. elegans alpha1,3FTs (CEFT-1 through -5). The open-reading frame for each enzyme predicts a type II transmembrane protein and multiple potential N-glycosylation sites. We prepared recombinant epitope-tagged forms of each CEFT and found that they had unusual acceptor specificity, cation requirements, and temperature sensitivity. CEFT-1 acted on the N-glycan pentasaccharide core acceptor to generate Manalpha1-3(Manalpha1-6)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-Asn. In contrast, CEFT-2 did not act on the pentasaccharide acceptor, but instead utilized a LacdiNAc acceptor to generate GalNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4Glc, which is a novel activity. CEFT-3 utilized a LacNAc acceptor to generate Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4Glc without requiring cations. CEFT-4 was similar to CEFT-3, but its activity was enhanced by some divalent cations. Recombinant CEFT-5 was well expressed, but did not act on available acceptors. Each CEFT was optimally active at room temperature and rapidly lost activity at 37 degrees C. Promoter analysis showed that CEFT-1 is expressed in C. elegans eggs and adults, but its expression was restricted to a few neuronal cells at the head and tail. We prepared deletion mutants for each enzyme for phenotypic analysis. While loss of CEFT-1 correlated with loss of pentasaccharide core activity and core alpha1,3-fucosylated glycans in worms, loss of other enzymes did not correlate with any phenotypic changes. These results suggest that each of the alpha1,3FTs in C. elegans has unique specificity and expression patterns. 相似文献
2.
Here we report the discovery of a unique fucosyltransferase (FT) in Caenorhabditis elegans. In studying the activities of FTs in extracts of adult C. elegans, we detected activity toward the unusual disaccharide acceptors Galbeta1-4Xyl-R and Galbeta1-6GlcNAc-R to generate products with the general structure Fucalpha1-2Galbeta1-R. We identified a gene encoding a unique alpha1,2FT (designated CE2FT-1), which contains an open reading frame encoding a predicted protein of 355 amino acids with the type 2 topology and domain structure typical of other glycosyltransferases. The predicted cDNA for CE2FT-1 has very low identity (5-10%) at the amino acid level to alpha1,2FT sequences in humans, rabbits, and mice. Recombinant CE2FT-1 expressed in human 293T cells has high alpha1,2FT activity toward the simple acceptor Galbeta-O-phenyl acceptor to generate Fucalpha1-2Galbeta-R, which in this respect resembles mammalian alpha1,2FTs. However, CE2FT-1 is otherwise completely different from known alpha1,2FTs in its acceptor specificity, since it is unable to fucosylate either Galbeta1-4Glcbeta-R or free lactose and prefers the unusual acceptors Galbeta1-4Xylbeta-R and Galbeta1-6GlcNAc-R. Promoter analysis of the CE2FT-1 gene using green fluorescent protein reporter constructs demonstrates that CE2FT-1 is expressed in single cells of early stage embryos and exclusively in the 20 intestinal cells of L(1)-L(4) and adult worms. These and other results suggest that multiple fucosyltransferase genes in C. elegans may encode enzymes with unique activities, expression, and developmental roles. 相似文献
3.
4.
Denise V. Clark Dinar S. Suleman Karen A. Beckenbach Erin J. Gilchrist David L. Baillie 《Molecular genetics and genomics : MGG》1995,247(3):367-378
We describe the molecular analysis of the dpy20 gene in Caenorhabditis elegans. Isolation of genomic sequences was facilitated by the availability of a mutation that resulted from insertion of a Tc1 transposable element into the dpy-20 gene. The Tc1 insertion site in the m474:: Tc1 allele was identified and was found to lie within the coding region of dpy-20. Three revertants (two wild-type and one partial revertant) resulted from the excision of this Tc1 element. Genomic dpy-20 clones were isolated from a library of wild-type DNA and were found to lie just to the left of the unc-22 locus on the physical map, compatible with the position of dpy-20 on the genetic map. Cosmid DNA containing the dpy-20 gene was successfully used to rescue the mutant phenotype of animals homozygous for another dpy-20 allele, e1282ts. Sequence analysis of the putative dpy-20 homologue in Caenorhabditis briggsae was performed to confirm identification of the coding regions of the C. elegans gene and to identify conserved regulatory regions. Sequence analysis of dpy-20 revealed that it was not similar to other genes encoding known cuticle components such as collagen or cuticulin. The dpy-20 gene product, therefore, identifies a previously unknown type of protein that may be directly or indirectly involved in cuticle function. Northern blot analysis showed that dpy-20 is expressed predominantly in the second larval stage and that the mRNA is not at all abundant. Data from temperature shift studies using the temperature-sensitive allele e1282ts showed that the sensitive period also occurs at approximately the second larval stage. Therefore, expression of dpy-20 mRNA and function of the DPY-20 protein are closely linked temporally. 相似文献
5.
6.
Rajalingam D Kacer D Prudovsky I Kumar TK 《Biochemical and biophysical research communications》2007,360(3):604-608
Interleukin-1 alpha (IL-1alpha) regulates a wide range of important cellular processes. In this study for the first time, we report the cloning, expression, biophysical, and biological characterization of the human interleukin-1alpha. Human IL-1alpha has been expressed in Escherichia coli in high yields ( approximately 4mg per liter of the bacterial culture). The protein was purified to homogeneity ( approximately 98% purity) using affinity chromatography and size exclusion chromatography. Results of the steady-state fluorescence and 2D NMR experiments show that the recombinant IL-1alpha is in a folded conformation. Far-UV circular dichroism (CD) data suggest that IL-1alpha is an all beta-sheet protein with a beta-barrel architecture. Isothermal titration calorimetry (ITC) experiments show that the recombinant IL-1alpha binds strongly (K(d) approximately 5.6 x 10(-7) M) to S100A13, a calcium binding protein that chaperones the in vivo release of IL-1alpha into the extracellular compartment. Recombinant IL-1alpha was observed to exhibit strong cytostatic effect on human umbilical vascular endothelial cells. The findings of the present study not only pave way for an in-depth structural investigation of the molecular mechanism(s) underlying the non-classical release of IL-1alpha but also provide avenues for the rational design of potent inhibitors against IL-1alpha mediated pathogenesis. 相似文献
7.
Choline kinase is the first enzymatic step in the CDP-choline pathway for phosphatidylcholine biosynthesis. The genome of the nematode, Caenorhabditis elegans, contains seven genes that appear likely to encode choline and/or ethanolamine kinases. We cloned five and expressed four of these genes, and purified or partially purified three of the encoded enzymes. All expressed proteins had choline kinase activity; those that most closely resemble the mammalian choline kinases were the most active. CKA-2, a very active form, was purified to near homogeneity. The K(m) values for CKA-2 were 1.6 and 2.4 mM for choline and ATP, respectively, and k(cat) was 74 s(-1). CKA-2 was predominantly a homodimer as assessed by glycerol gradient sedimentation and dynamic light scattering. CKB-2, which was less similar to mammalian choline kinases, had K(m) values for choline and ATP of 13 and 0.7 mM, and k(cat) was 3.8 s(-1). Both of these highly purified enzymes required magnesium, had very alkaline pH optima, and were much more active with choline as substrate than with ethanolamine. These results provide a foundation for future studies on the structure and function of choline kinases, as well as studies on the genetic analysis of the function of the multiple isoforms in this organism. 相似文献
8.
Purification, characterization, and cDNA cloning of a novel metallothionein-like, cadmium-binding protein from Caenorhabditis elegans 总被引:2,自引:0,他引:2
Caenorhabditis elegans adapted for survival in high concentrations of Cd(II) express a heavy metal binding protein designated C. elegans metallothionein-like protein or MT-Ce. This protein was purified to homogeneity and characterized. MT-Ce binds 6 mol of Cd(II)/mol protein. The sequence of 39 amino-terminal residues in MT-Ce was determined. A radiolabeled 41-mer oligonucleotide, designed from the partial MT-Ce sequence, was used in conjunction with sucrose gradient centrifugation to obtain size-fractionated poly(A+) RNA enriched in MT-Ce sequences. Subsequently, cloned cDNAs, corresponding to MT-Ce mRNA sequences, were isolated from a lambda ZapII cDNA library prepared from the enriched template mRNA. cDNA and protein sequence analysis revealed that MT-Ce comprises 62 amino acid residues and has a predicted Mr of 6462. Seventeen of the 18 Cys residues in the nematode cadmium-binding protein are included in Cys-X-Cys and X-Cys-Cys-X motifs that are characteristic of mammalian metallothioneins (MTs). However, the resemblance of MT-Ce to mammalian MTs is superficial. The amino acid sequence of MT-Ce is unique, and neither its putative alpha and beta domains nor its Cys residues can be readily aligned with the corresponding regions of other eukaryotic MTs. This suggests that MT-Ce is an example of convergent evolution. The MT-Ce mRNA level in nematodes that were selected and grown with Cd(II) concentrations that are lethal for wild-type worms, was 55-fold higher than the level of MT-Ce mRNA in wild-type C. elegans. Comparison of the sequences of MT-Ce cDNAs revealed the occurrence of two types of MT-Ce mRNA. Each contains an identical coding region, but the cDNAs diverge markedly in their 5'-untranslated regions. This suggests the possibilities of regulation by alternative splicing and/or the presence of multiple MT-Ce genes encoding a single protein, but controlled by different regulatory elements. 相似文献
9.
10.
A Caenorhabditis elegans lambda ZAP cDNA library was screened using a fragment amplified from highly conserved regions of the mammalian and Drosophila elongation factor 2 (EF-2). Two types of cDNA clones were obtained, corresponding to two mRNA species with 3'-untranslated regions of 60 and 115 nucleotides, both encoding identical polypeptides. Sequence analysis of these clones and comparisons with hamster and Drosophila EF-2 sequences suggests that they encode C. elegans EF-2. Clone pCef6A, encoding the entire C. elegans EF-2 mRNA sequence including 45 nucleotides of 5'-untranslated region, contains a 2,556-bp open reading frame which predicts a polypeptide of 852 amino acid residues (Mr 94,564). The deduced amino acid sequence is greater than 80% identical to that of mammalian and Drosophila EF-2. Conserved sequence segments shared among a variety of GTP-binding proteins are found in the amino-terminal region. The carboxy-terminal half contains segments unique to EF-2 and its prokaryotic homolog, EF-G, as well as the histidyl residue which is ADP-ribosylated by diphtheria toxin. The C. elegans protein contains a 12-amino-acid insertion between positions 90 and 100, and a 13-amino-acid deletion between positions 237 and 260, relative to hamster EF-2. Partial sequencing of a genomic clone encoding the entire C. elegans EF-2 gene (named eft-2) has so far revealed two introns of 48 and 44 bp following codons Gln-191 and Gln-250, respectively. Southern and Northern blot analyses indicate that eft-2 is a single-copy gene and encodes a 3-kb mRNA species which is present throughout nematode development. 相似文献
11.
Molecular characterization of a novel RhoGAP, RRC-1 of the nematode Caenorhabditis elegans 总被引:1,自引:0,他引:1
Delawary M Nakazawa T Tezuka T Sawa M Iino Y Takenawa T Yamamoto T 《Biochemical and biophysical research communications》2007,357(2):377-382
The GTPase-activating proteins for Rho family GTPases (RhoGAP) transduce diverse intracellular signals by negatively regulating Rho family GTPase-mediated pathways. In this study, we have cloned and characterized a novel RhoGAP for Rac1 and Cdc42, termed RRC-1, from Caenorhabditis elegans. RRC-1 was highly homologous to mammalian p250GAP and promoted GTP hydrolysis of Rac1 and Cdc42 in cells. The rrc-1 mRNA was expressed in all life stages. Using an RRC-1::GFP fusion protein, we found that RRC-1 was localized to the coelomocytes, excretory cell, GLR cells, and uterine-seam cell in adult worms. These data contribute toward understanding the roles of Rho family GTPases in C. elegans. 相似文献
12.
Kozhemyako VB Rebrikov DV Lukyanov SA Bogdanova EA Marin A Mazur AK Kovalchuk SN Agafonova EV Sova VV Elyakova LA Rasskazov VA 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2004,137(2):169-178
cDNA encoding the endo-1,3-beta-d-glucanase from Spisula sachalinensis (LIV) was amplified by PCR using oligonucleotides deduced from the N-terminal end peptide sequence. Predicted enzyme structure consists of 444 amino acids with a signal sequence. The mature enzyme has 316 amino acids and its deduced amino acid sequence coincides completely with the N-terminal end (38 amino acids) of the beta-1,3-glucanase (LIV) isolated from the mollusk. The enzyme sequence from Val 121 to Met 441 reveals closest homology with Pacifastacus leniusculus lipopolysaccharide- and beta-1,3-glucan-binding protein and with coelomic cytolytic factors from Lumbricus terrestris. The mollusk glucanase also shows 36% identity and 56% similarity with beta-1,3-glucanase of the sea urchin Strongylocentrotus purpuratus. It is generally considered that invertebrate glucanase-like proteins containing the bacterial glucanase motif have evolved from an ancient beta-1,3-glucanase gene, but most of them lost their glucanase activity in the course of evolution and retained only the glucan-binding activity. A more detailed evaluation of the protein folding elicited very interesting relationships between the active site of LIV and other enzymes, which hydrolyze native glucans. 相似文献
13.
Aoki H Sato S Takanami T Ishihara T Katsura I Takahashi H Higashitani A 《Molecular & general genetics : MGG》2000,264(1-2):119-126
An ATM-like gene was identified in the genome of Caenorhabditis elegans. The putative product of the gene, termed Ce-atl-1 (C. elegans ATM-like 1) consists of 2514 amino acid residues. The C-terminal sequence, which contains a PI-3 kinase-like domain, showed good homology with the products of the gene MEC1/ESR1 from budding yeast, the rad3+ gene of fission yeast and mammalian ATM (ataxia-telangiectasia and rad3+ related) genes. The results of RNA-mediated interference indicated that the major phenotype associated with repression of Ce-atl-1 was lethality (approximately 50-80%) during early embryogenesis. Among the surviving progeny, males (XO animals) arose at a high frequency (2-30%). In addition, 5% of oocyte chromosomes demonstrated aneuploidy due to a defect in pre-meiotic chromosomal segregation. Gene expression analyses indicated that Ce-atl-1 mRNA was expressed in all larval stages and that its level increased about fivefold in the adult stage. The adult expression level was decreased in the glp-4 mutant, which is defective in germ line proliferation. Ce-atl-1 was strongly expressed in both the mitotic and meiotic cells of adult gonads. In summary, Ce-atl-1 appears to be important for early embryogenesis, and loss of its function results in a defect in chromosome segregation, similar to what has been observed for AT-related proteins. 相似文献
14.
A common terminal structure in glycans from animal glycoproteins and glycolipids is the lactosamine sequence Gal(beta)4GlcNAc-R (LacNAc or LN). An alternative sequence that occurs in vertebrate as well as in invertebrate glycoconjugates is GalNAc(beta)4GlcNAc-R (LacdiNAc or LDN). Whereas genes encoding beta4GalTs responsible for LN synthesis have been reported, the beta4GalNAcT(s) responsible for LDN synthesis has not been identified. Here we report the identification of a gene from Caenorhabditis elegans encoding a UDP-GalNAc:GlcNAc(beta)-R beta1,4-N-acetylgalactosaminyltransferase (Ce(beta)4GalNAcT) that synthesizes the LDN structure. Ce(beta)4GalNAcT is a member of the beta4GalT family, and its cDNA is predicted to encode a 383-amino acid type 2 membrane glycoprotein. A soluble, epitope-tagged recombinant form of Ce(beta)4GalNAcT expressed in CHO-Lec8 cells was active using UDP-GalNAc, but not UDP-Gal, as a donor toward a variety of acceptor substrates containing terminal beta-linked GlcNAc in both N- and O-glycan type structures. The LDN structure of the product was verified by co-chromatography with authentic standards and (1)H NMR spectroscopy. Moreover, Chinese hamster ovary CHO-Lec8 and CHO-Lec2 cells expressing Ce(beta)4GalNAcT acquired LDN determinants on endogenous glycoprotein N-glycans, demonstrating that the enzyme is active in mammalian cells as an authentic beta4GalNAcT. The identification and availability of this novel enzyme should enhance our understanding of the structure and function of LDN-containing glycoconjugates. 相似文献
15.
Stachybotrys elegans is a mycoparasite of the soilborne plant pathogenic fungus Rhizoctonia solani. The mycoparasitic activity of S. elegans is correlated with the production of cell wall degrading enzymes such as chitinases. This report details the cloning by RACE-PCR and characterization of a full-length cDNA clone, sechi44, that appears to encode an extracellular endochitinase. An analysis of the sechi44 sequence indicates that this gene contains a 1269-bp ORF and encodes a 423-aa polypeptide. The SECHI44 protein has a calculated molecular weight of 44.1kDa and pI of 5.53. Since the SECHI44 protein also appears to encode a signal peptide, an extracellular location for the corresponding protein is predicted. Comparison of SECHI44 sequence with known sequences of fungal endochitinases revealed that SECHI44 is grouped with endochitinases from other mycoparasites. Real-time quantitative RT-PCR analysis showed an elevated level of expression of sechi44 (21-fold) in chitin-rich (induced) as compared to no-carbon (non-induced) culture conditions. In dual culture, the temporal expression of sechi44 increased after 2 days of contact with R. solani, reaching a 10-fold increase after 9 days, followed by a decrease to basic expression level at 12 days. Interestingly, inhibition of sechi44 expression was observed when S. elegans hyphae were in close proximity with R. solani hyphae. 相似文献
16.
We have cloned a novel cell-surface protein designated SPAP1a for SH2 domain-containing phosphatase anchor protein 1a. SPAP1a belongs to the group of type I transmembrane proteins. Its extracellular domain contains a single immunoglobulin-like domain, and its intracellular segment has two immunoreceptor tyrosine-based inhibition motifs (ITIMs). We also identified two alternatively spliced products that were named SPAP1b and SPAP1c. SPAP1b contains a short intracellular part without ITIMs, while SPAP1c lacks the transmembrane segment and represents a potential soluble protein. Sequence alignment with the genomic database revealed that the SPAP1 gene contains seven exons and is localized at chromosome 1q21. PCR analyses demonstrated that SPAP1a mRNA is specifically expressed in human hematopoietic tissues including spleen, peripheral blood, and bone marrow, and it may be restricted to expression in B cells. Recombinant SPAP1a is tyrosine phosphorylated in cells upon pervanadate stimulation and tyrosine-phosphorylated SPAP1a recruits the SH2 domain containing phosphatase SHP-1, but not SHP-2. As a specific anchor protein of SHP-1, SPAP1a may have an important role in hematopoietic cell signaling. 相似文献
17.
18.
19.
20.
GDP-dissociation inhibitors (GDIs) form one of the classes of regulatory proteins that modulate the cycling of the Ras superfamily of GTPases between active GTP-bound and inactive GDP-bound states. We report here the characterization of the Caenorhabditis elegans RhoGDI (CeRhoGDI) as part of our investigations into Rho-GTPase signalling pathways that are involved in nematode development. CeRhoGDI is a 23-kDa protein that is localized predominantly in the cytosol. CeRhoGDI interacts only with the lipid-modified forms of C. elegans Rho-GTPases, CeRhoA, CeRac1 and Cdc42Ce, in vitro and is able to solubilize the membrane-bound forms of these GTPases. CeRhoGDI recognizes the GTPases in both GTP- and GDP-bound forms; hence it inhibits both the guanine-nucleotide dissociation and GTP-hydrolysis activities. The inhibitory activity towards the GTP-bound GTPases is weak compared with that towards GDP-bound GTPases. CeRhoGDI is expressed throughout development and is highly expressed in marginal and vulval epithelial cells, in sperm cells and spicules. Taken together, our results suggest that CeRhoGDI may be involved in specific morphogenetic events mediated by the C. elegans Rho-GTPases. 相似文献