首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variation in mitochondrial DNA (mtDNA) structure among chinook salmon Oncorhynchus tschawytscha Walbaum populations from Kamchatka was inferred from restriction length polymorphism analysis using eight restriction endonucleases. The nucleotide sequence variation in three amplified mtDNA regions was examined at seven polymorphic restriction sites in 579 fish from 13 localities. Based on the frequencies of 11 combined haplotypes and the number of nucleotide substitutions, the among-and within-population variation was estimated. The heterogeneity test showed highly significant differences among all the populations. The estimated maximum time of independent divergence of the asian chinook salmon populations, whose differences was about 0.02% nucleotide substitutions, did not exceed 10 000–20 000 years. Apparently, the retreat of the late Pleistocene glacier triggered spreading, recolonization, and formation of the present-day pattern of the species subdivision into structural components.  相似文献   

2.
The genetic relationships between two Finno-Ugric-speaking populations, the Finns and the Finnish Saami (Lapps), were studied by using PCR for six nuclear-DNA marker loci, mitochondrial restriction-site polymorphism, and sequence variation of a 360-bp segment of the mitochondrial control region. The allele frequencies of each of the nuclear-DNA marker loci and the frequencies of mtDNA restriction haplotypes were significantly different between the populations. The Saami showed exceptionally low variation in their mtDNA restriction sites. The 9-bp deletion common in East Asian populations was not observed, nor did the haplotype data fit into the haplogroup categorization of Torroni et al. The average number of nucleotide substitutions from the mtDNA haplotype data indicated that the Finnish Saami may be closer to the Finns than to the other reference populations, whereas nuclear DNA suggested that the Finns are more closely related to the European reference populations than to the Finnish Saami. The similarity of the Finns to the other Europeans was even more pronounced according to the sequence data. We were unable to distinguish between the Finns and either the Swiss or Sardinian reference populations, whereas the Finnish Saami clearly stood apart. The Finnish Saami are distinct from other Circumarctic populations, although two of the lineages found among the Saami showed closer relationship to the Circumarctic than to the European lineages. The sequence data indicated an exceptionally high divergence for the Saami mtDNA control lineages. The distribution of the pairwise nucleotide differences in the Saami suggested that this population has not experienced an expansion similar to what was indicated for the Finns and the reference populations.  相似文献   

3.
Both original and colonizer populations of Drosophila buzzatii have been analyzed for mtDNA restriction polymorphisms. Most of the mtDNA nucleotide variation in original populations of NW Argentina can be explained by intrapopulation diversity and only a small fraction can be accounted for by between-population diversity. Similar results are obtained using either the estimated number of nucleotide substitutions per site or considering each restriction site as a locus. Colonizer populations of the Iberian Peninsula are monomorphic and show only the most common haplotype from the original populations. Under the infinite island model and assuming that populations are in equilibrium, fixation indices indicate enough gene flow to explain why the populations are not structured. Yet, the possibility exists that populations have not reached an equilibrium after a founder event at the end of the last Pleistocene glaciation. Tajima's test suggests that directional selection and/or a recent bottleneck could explain the present mtDNA differentiation. Considering the significant population structure found for the chromosomal and some allozyme polymorphisms, the among- population uniformity for mtDNA variability argues in favor of the chromosomal and some allozyme polymorphisms being adaptive.   相似文献   

4.
We have analyzed nucleotide sequence variation in an approximately 900-base pair region of the human mitochondrial DNA molecule encompassing the heavy strand origin of replication and the D-loop. Our analysis has focused on nucleotide sequences available from seven humans. Average nucleotide diversity among the sequences is 1.7%, several-fold higher than estimates from restriction endonuclease site variation in mtDNA from these individuals and previously reported for other humans. This disparity is consistent with the rapidly evolving nature of this noncoding region. However, several instances of convergent or parallel gain and loss of restriction sites due to multiple substitutions were observed. In addition, other results suggest that restriction site (as well as pairwise sequence) comparisons may underestimate the total number of substitutions that have occurred since the divergence of two mtDNA sequences from a common ancestral sequence, even at low levels of divergence. This emphasizes the importance of recognizing the large standard errors associated with estimates of sequence variability, particularly when constructing phylogenies among closely related sequences. Analysis of the observed number and direction of substitutions revealed several significant biases, most notably a strand dependence of substitution type and a 32-fold bias favoring transitions over transversions. The results also revealed a significantly nonrandom distribution of nucleotide substitutions and sequence length variation. Significantly more multiple substitutions were observed than expected for these closely related sequences under the assumption of uniform rates of substitution. The bias for transitions has resulted in predominantly convergent or parallel changes among the observed multiple substitutions. There is no convincing evidence that recombination has contributed to the mtDNA sequence diversity we have observed.  相似文献   

5.
Summary The mitochondrial DNA (mtDNA) from 120 Japanese was analysed with 15 restriction enzymes that recognize six base pairs, of which 11 enzymes showed at least one atypical cleavage pattern. Digestion patterns with HincII and HaeII were highly polymorphic. The observed restriction enzyme morphs were classified into 22 types of distinct cleavage patterns. By pairwise comparison of each restriction type, the average number of nucleotide substitutions per nucleotide site () was estimated at 0.00417, which agreed with the values obtained from other human populations in previous studies. There were 11 site gains, of which seven were transitions and four were transversions. Phylogenetic analysis of the present data suggested that the Japanese population conceals a considerably high degree of mtDNA diversity.  相似文献   

6.
We describe a rapid and sensitive method for the detection of population-specific genetic markers in mitochondrial DNA (mtDNA) and the use of such markers to analyse population structure of marine turtles. A series of oligonucleotide primers specific for the amplification of the mtDNA control region in Cheloniid turtles were designed from preliminary sequence data. Using two of these primers, a 384–385-bp sequence was amplified from the 5′ portion of the mtDNA control region of 15 green turtles Chelonia mydas from 12 different Indo-Pacific rookeries. Fourteen of the 15 individuals, including some with identical whole-genome restriction fragment patterns, had sequences that differed by one or more base substitutions. Analysis of sequence variation among individuals identified a total of 41 nucleotide substitutions and a 1-bp insertion/deletion. Comparison with evidence from whole-genome restriction enzyme analysis of the same individuals indicated that this portion of the control region is evolving approximately eight times faster than the average rate and that the sequence analysis detected approximately one fifth of the total variation present in the genome. Restriction enzyme analysis of amplified products from an additional 256 individuals revealed significant geographic structuring in the distribution of mtDNA genotypes among five of the 10 rookeries surveyed extensively. Additional geographic structuring of genotypes was identified through denaturing gradient gel electrophoresis (DGGE) of amplified products. Only two of the 10 rookeries surveyed could not be differentiated, indicating that the Indo-Pacific C. mydas include a number of genetically differentiated populations, with minimal female-mediated gene flow among them. Important applications for genetic markers in the conservation and management of marine turtles include the identification of appropriate demographic units for research and management (i.e. genetically discrete populations) and assessment of the composition of feeding and harvested populations.  相似文献   

7.
We used the polymerase chain reaction (PCR) and direct DNA sequencing to study genetic variation within and among populations of Atlantic cod, Gadus morhua , in the western North Atlantic. In a 307 bp region of the mitochondrial cytochrome b gene, 24 variable nucleotide positions define 24 genotypes, which differ by from one to six nucleotide substitutions. Greenland cod ( G. ogac ) differs from the most similar G. morhua genotype by an additional 12 nucleotide substitutions. Silent transitions dominate both intra- and interspecific comparisons, however four nucleotide substitutions within morhua result in amino acid replacements. Direct sequencing of DNA reveals substantially more of the genetic variation that exists within and between species than do previous indirect methods based on restriction fragment length polymorphisms, and thus has far greater potential to quantify such differences as may exist among fish stocks. Preliminary experiments also indicate that automation of DNA sequencing provides an efficient, rapid, and accurate means for detection of genetic variation in natural populations offish.  相似文献   

8.
Mitochondrial DNA (mtDNA) sequence variation was examined in Finns, Swedes and Tuscans by PCR amplification and restriction analysis. About 99% of the mtDNAs were subsumed within 10 mtDNA haplogroups (H, I, J, K, M, T, U, V, W, and X) suggesting that the identified haplogroups could encompass virtually all European mtDNAs. Because both hypervariable segments of the mtDNA control region were previously sequenced in the Tuscan samples, the mtDNA haplogroups and control region sequences could be compared. Using a combination of haplogroup-specific restriction site changes and control region nucleotide substitutions, the distribution of the haplogroups was surveyed through the published restriction site polymorphism and control region sequence data of Caucasoids. This supported the conclusion that most haplogroups observed in Europe are Caucasoid-specific, and that at least some of them occur at varying frequencies in different Caucasoid populations. The classification of almost all European mtDNA variation in a number of well defined haplogroups could provide additional insights about the origin and relationships of Caucasoid populations and the process of human colonization of Europe, and is valuable for the definition of the role played by mtDNA backgrounds in the expression of pathological mtDNA mutations  相似文献   

9.
Examining the pattern of nucleotide substitution for the control region of mitochondrial DNA (mtDNA) in humans and chimpanzees, we developed a new mathematical method for estimating the number of transitional and transversional substitutions per site, as well as the total number of nucleotide substitutions. In this method, excess transitions, unequal nucleotide frequencies, and variation of substitution rate among different sites are all taken into account. Application of this method to human and chimpanzee data suggested that the transition/transversion ratio for the entire control region was approximately 15 and nearly the same for the two species. The 95% confidence interval of the age of the common ancestral mtDNA was estimated to be 80,000-480,000 years in humans and 0.57-2.72 Myr in common chimpanzees.   相似文献   

10.
An analysis of patterns of cleavage of mtDNA by restriction endonucleases was performed for nine individuals from the Philippine population of native cattle. MtDNA polymorphisms were detected in the restriction patterns generated by the following six enzymes,BamHI,BglII,EcoRV,HindIII,PstI, andScaI. The restriction patterns showing polymorphisms were distributed nonrandomly among the nine individuals examined from the Philippine population of native cattle, indicating the existence of two separate types of mtDNA. These two types of mtDNA are very different from each other, at the level of subspecies. Since the native Philippine cattle are considered to represent an admixture of European and Indian cattle, the two types of mtDNA must be derived from the mtDNAs of both varieties. The polymorphic sites in mtDNA have been located on a restriction map, and the nucleotide substitutions at some of the sites have also been estimated.  相似文献   

11.
Pink salmon Oncorhynchus gorbuscha from odd and even year generations in rivers of Sakhalin Island, Kuril Island, Kamchatka Peninsula, and Alaska were investigated with five informative restriction endonucleases for mtDNA variation. The odd and even generations from the same rivers of South Sakhalin differed greatly. The time of divergence between the two broodlines was estimated at 0.9-1.1 Myr. The variability of mtDNA in odd year generations was higher than in even year generations and may have been due to' founder' and/or' bottleneck' effects. The differences among river populations within the Sakhalin region in 1991-1993 were not significant and this confirms the highly migratory nature of pink compared with other Pacific salmon. The mtDNA samples revealed statistically significant differences between regions. The northern populations (Kamchatka, Alaska) were less diverse in number and frequency of haplotypes than the southern populations (Sakhalin). This suggests that pink salmon originated in the Sakhalin-Kuril region and that a founder effect during the spread of this species may have restricted the mtDNA variability in other regions.  相似文献   

12.
In the present study, mitochondrial DNA polymerase chain reaction‐restriction fragment length polymorphism (PCR‐RFLP) assay was used to assess the phylogenetic and phylogeographic relationships among 27 brown trout Salmo trutta populations from Turkey. The complete NADH 5/6 region and a second segment comprising the cytochrome b gene and D‐loop of mtDNA amplified by PCR were digested with six and five restriction enzymes, respectively. A total of 27 haplotypes were observed and divided into three major phylogenetic assemblages, namely Danubian (DA), Adriatic (AD) and a newly proposed Tigris (TI) lineage. The timing of the net nucleotide divergence between the major lineages along with the geological history of Turkey suggested pre‐Pleistocene isolation of the Turkish brown trout and provided evidence that Turkey could be considered as a centre of diversification for these lineages. The average haplotype diversity (0·1397) and the nucleotide diversity (0·000416) within populations were low in comparison to the observed interpopulation nucleotide diversity (0·021266). PCR‐RFLP analysis showed that most of the mtDNA sequence variation found in the Turkish brown trout populations was imputable to differences among lineages. On the other hand, there was also an obvious relationship between geographical distribution of the populations and their clustering. The present study showed that brown trout populations from Turkey are highly divergent and mainly have a unique genetic profile that could be used for conservation and management purposes.  相似文献   

13.
Restriction fragment length polymorphism (RFLP) analysis of mitochondrial DNA (mtDNA) was used to examine genetic variation and population structure of screwworm flies in four populations from São Paulo State, Brazil. The total DNA of 405 individuals was digested with 15 restriction endonucleases and probed with five clonedHindIII fragments representing the entire mitochondrial genome ofCochliomyia hominivorax. The survey revealed that four enzymes (HaeIII,HindIII,MspI, andPvuII) were suitable to detect mtDNA variation among all populations. Based on the fragment patterns obtained for these four enzymes, a total of 15 haplotypes in combination was detected. Heteroplasmic individuals for thePvuII pattern were obtained in one of the populations. The estimated average for nucleotide sequence divergence (δ) was 0.92%. The cladogram of the geographical distribution among the observed haplotypes suggests that the sampled screwworms probably belong to a single evolutionary lineage with populations interconnected by reduced gene flow.  相似文献   

14.
Mitochondrial DNA (mtDNA) sequences are widely used for inferring the phylogenetic relationships among species. Clearly, the assumed model of nucleotide or amino acid substitution used should be as realistic as possible. Dependence among neighboring nucleotides in a codon complicates modeling of nucleotide substitutions in protein-encoding genes. It seems preferable to model amino acid substitution rather than nucleotide substitution. Therefore, we present a transition probability matrix of the general reversible Markov model of amino acid substitution for mtDNA-encoded proteins. The matrix is estimated by the maximum likelihood (ML) method from the complete sequence data of mtDNA from 20 vertebrate species. This matrix represents the substitution pattern of the mtDNA-encoded proteins and shows some differences from the matrix estimated from the nuclear-encoded proteins. The use of this matrix would be recommended in inferring trees from mtDNA-encoded protein sequences by the ML method. Received: 3 May 1995 / Accepted: 31 October 1995  相似文献   

15.
Nonneutral Mitochondrial DNA Variation in Humans and Chimpanzees   总被引:25,自引:4,他引:21       下载免费PDF全文
We sequenced the NADH dehydrogenase subunit 3 (ND3) gene from a sample of 61 humans, five common chimpanzees, and one gorilla to test whether patterns of mitochondrial DNA (mtDNA) variation are consistent with a neutral model of molecular evolution. Within humans and within chimpanzees, the ratio of replacement to silent nucleotide substitutions was higher than observed in comparisons between species, contrary to neutral expectations. To test the generality of this result, we reanalyzed published human RFLP data from the entire mitochondrial genome. Gains of restriction sites relative to a known human mtDNA sequence were used to infer unambiguous nucleotide substitutions. We also compared the complete mtDNA sequences of three humans. Both the RFLP data and the sequence data reveal a higher ratio of replacement to silent nucleotide substitutions within humans than is seen between species. This pattern is observed at most or all human mitochondrial genes and is inconsistent with a strictly neutral model. These data suggest that many mitochondrial protein polymorphisms are slightly deleterious, consistent with studies of human mitochondrial diseases.  相似文献   

16.
DNA Polymorphism Detectable by Restriction Endonucleases   总被引:67,自引:15,他引:67       下载免费PDF全文
Data on DNA polymorphisms detected by restriction endonucleases are rapidly accumulating. With the aim of analyzing these data, several different measures of nucleon (DNA segment) diversity within and between populations are proposed, and statistical methods for estimating these quantities are developed. These statistical methods are applicable to both nuclear and nonnuclear DNAs. When evolutionary change of nucleons occurs mainly by mutation and genetic drift, all the measures can be expressed in terms of the product of mutation rate per nucleon and effective population size. A method for estimating nucleotide diversity from nucleon diversity is also presented under certain assumptions. It is shown that DNA divergence between two populations can be studied either by the average number of restriction site differences or by the average number of nucleotide differences. In either case, a large number of different restriction enzymes should be used for studying phylogenetic relationships among related organisms, since the effect of stochastic factors on these quantities is very large. The statistical methods developed have been applied to data of Shah and Langley on mitochondrial (mt)DNA from Drosophila melanogaster, simulans and virilis. This application has suggested that the evolutionary change of mtDNA in higher animals occurs mainly by nucleotide substitution rather than by deletion and insertion. The evolutionary distances among the three species have also been estimated.  相似文献   

17.
Summary By using restriction endonuclease digestion patterns, the degree of intraspecific polymorphism of mitochondrial DNA in four diploid species of wheat and Aegilops, Ae. speltoides, Ae. longissima, Ae. squarrosa, and Triticum monococcum, was assessed. The outbreeding Ae. speltoides was found to possess the highest degree of variability, the mean number of nucleotide substitutions among conspecific individuals being 0.027 substitutions per nucleotide site. A very low degree of mtDNA variation was detected among Ae. longissima accessions, with most of the enzyme-probe combinations exhibiting uniform hybridization patterns. The mean number of substitutions among Ae. longissima individuals was 0.001 substitutions per nucleotide site. The domesticated diploid wheat T. monococcum var. monococcum and its conspecific variant T. monococcum var. boeoticum seem to lack mitochondrial DNA variability altogether. Thus, the restriction fragment pattern can be used as a characteristic identifier of the T. monococcum cytoplasmic genome. Similarly, Ae. squarrosa accessions were found to be genetically uniform. A higher degree of variation among accessions is observed when noncoding sequences are used as probes then when adjacent coding regions are used. Thus, while noncoding regions may contain regulatory functions, they are subject to less stringent functional constraints than protein-coding regions. Intraspecific variation in mitochondrial DNA correlates perfectly with the nuclear variability detected by using protein electrophoretic characters. This correlation indicates that both types of variation are selectively neutral and are affected only by the effective population size.  相似文献   

18.
选用14种限制性内切酶对分布在中国大陆部分地区的Drosophilaimmigrans果蝇种群的线粒体DNA(mtDNA)限制性片段长度多态性(RFLP)进行了分析。在6个地理种群的46个单雌系中仅检测到11种限制性类型。表征种群内均一程度的I值平均为0.833。衡量种群间等同程度的J值平均为0.797。在整个种群中只有16.8%(Gst)的变异是由种群间变异所引起的。说明分布在中国大陆部分地区的D.immigrans果蝇的遗传组成均一程度高,遗传多态程度低,遗传变异贫乏。由UPG法分析6个种群的净遗传距离,显示了分布在秦岭华阳种群(HY)的特殊性。推测D.immigrans果蝇扩散到云南的高海拔地区可能是较晚发生的事件。并推测中国大陆的D.immigrans种群比分布在中国台湾,日本的种群原始。  相似文献   

19.
Geographic Variation in Human Mitochondrial DNA from Papua New Guinea   总被引:34,自引:3,他引:31       下载免费PDF全文
High resolution mitochondrial DNA (mtDNA) restriction maps, consisting of an average of 370 sites per mtDNA map, were constructed for 119 people from 25 localities in Papua New Guinea (PNG). Comparison of these PNG restriction maps to published maps from Australian, Caucasian, Asian and African mtDNAs reveals that PNG has the lowest amount of mtDNA variation, and that PNG mtDNA lineages originated from Southeast Asia. The statistical significance of geographic structuring of populations with respect to mtDNA was assessed by comparing observed GST values to a distribution of GST values generated by random resampling of the data. These analyses show that there is significant structuring of mtDNA variation among worldwide populations, between highland and coastal PNG populations, and even between two highland PNG populations located approximately 200 km apart. However, coastal PNG populations are essentially panmictic, despite being spread over several hundred kilometers. Highland PNG populations also have more mtDNA variability and more mtDNA types represented per founding lineage than coastal PNG populations. All of these observations are consistent with a more ancient, restricted origin of highland PNG populations, internal isolation of highland PNG populations from one another and from coastal populations, and more recent and extensive population movements through coastal PNG. An apparent linguistic effect on PNG mtDNA variation disappeared when geography was taken into account. The high resolution technique for examining mtDNA variation, coupled with extensive geographic sampling within a single defined area, leads to an enhanced understanding of the influence of geography on mtDNA variation in human populations.  相似文献   

20.
猕猴属五个种mtDNA多态性研究   总被引:15,自引:2,他引:15  
本文以10种限制性内切酶研究猕猴属5个种(Macaca mulatta.M.nemestrina.M.assemensis.M.thibetana,M arctoides)线粒体DNA进化。在13个个体中,共检出8种限制性类型。恒河猴种内存在广泛的线粒休DNA限制性片段长度多态性(RFLP)。结合日本猴(M.fuscata)的有关资料,构建了猕猴属6个种的分子系统树,并给出各个种的分化时间。结果表明,这6个种可分成4个类群,熊猴和藏酋猴、恒河猴和日本猴之间的遗传距离较近,可分别划为同一类群,红面猴与其他5种猴的遗传距离最远,在系统发生上分离最早。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号