首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Role of the flaR gene in flagellar hook formation in Salmonella spp.   总被引:14,自引:11,他引:3       下载免费PDF全文
Flagellar filaments were reconstituted by polymerization with exogenously supplied flagellin monomers at the tips of normal hooks on Salmonella cells which were missing the filaments because of mutations in either the flaL or flaU gene or the flagellin genes H1 and H2. Reconstitution did not occur at the tips of polyhooks of the flaR mutant cells. Thus, the absence of flagellar filaments in the flaR mutant cells was probably caused by the inability of the polyhooks to work as polymerization nuclei for flagellin. A Phf+ mutant which produced polyhooks with flagellar filaments was isolated from a flaR polyhook mutant. Genetic analysis of the Phf+ mutant showed that it carried an intracistronic suppressor mutation of the original flaR mutation. This result indicated that the flaR gene regulates hook length and initiates flagellin formation.  相似文献   

2.
Summary We have examined Escherichia coli K12 flagellar mutants affected in each of 29 different loci for the synthesis of flagellin and hook subunit protein. Immune precipitation experiments were employed by treating cell extracts with antiserum against each protein. Flagellin was synthesized in mutants defective in genes flaS, flaT, flaU and flbC. The flaE and flaZ mutants produced small amounts of flagellin, while all the other mutants failed to produce any detectable amount of flagellin.Hook subunit protein was found in most mutants including those defective in genes flaA, flaB, flaC, flaD, flaE, flaG, flaH, flaL, flaM, flaN, flaO, flaP, flaQ, flaR, flaS, flaT, flaU, flaV, flaW, flaX, flaY, flaZ, flbA, flbC, flbD, and hag but not in mutants of flaK, flaI, and flbB. The results conform to the predictions made by our previous indirect gene fusion study (Komeda 1982).  相似文献   

3.
Incomplete flagellar structures were detected in osmotically shocked cells or membrane-associated fraction of many nonflagellate mutants of Salmonella typhimurium by electron microscopy. The predominant types of these structures in the mutants were cistron specific. The incomplete basal bodies were detected in flaFI, flaFIV, flaFVIII, and flaFIX mutants, the structure homologous to a basal body in flaFV mutants, the polyhook-basal body complex in flaR mutants, and the hook-basal body complex in flaL and flaU mutants. No structures homologous to flagellar bases or their parts were detected in the early-fla group nonflagellate mutants of flaAI, flaAII, flaAIII, flaB, flaC, flaD, flaE, flaFII, flaFIII, flaFVI, flaFVII, flaFX, flaK, and flaM. From these observations, a process of flagellar morphogenesis was postulated. The functions of the early-fla group are essential to the formation of S ring-M ring-rod complexes bound to the membrane. The completion of basal bodies requires succeeding functions of flaFI, flaFIV, flaFVIII, and flaFIX. Next, the formation of hooks attached to basal bodies proceeds by the function of flaFV and by flaR, which controls the hook length. Flagellar filaments appear at the tips of hooks because of the functions of flaL, flaU, and flagellin genes.  相似文献   

4.
5.
The length of flagellar hooks isolated from wild-type and mutant cells with various hook lengths were measured on electron micrographs. The length of the wild-type hook showed a narrow distribution with a peak (+/- standard deviation) at 55.0 +/- 5.9 nm, whereas fliK mutants (so-called polyhook mutants) showed a broad distribution of hook lengths ranging from 40 to 900 nm, strongly indicating that FliK is involved in hook length determination. Among pseudorevertants isolated from such polyhook mutants, fliK intragenic suppressors gave rise to polyhook filaments. However, intergenic suppressors mapping to flhB also gave rise to hooks of abnormal length, albeit they were much shorter than polyhooks. Furthermore, double mutations of flhB and flgK (the structural gene for hook-associated protein 1; HAP1) resulted in polyhooks, suggesting another way in which hook length can be affected. The roles of FliK, FlhB, and HAP1 in hook length determination are discussed.  相似文献   

6.
Genetic Analysis of Flagellar Mutants in Escherichia coli   总被引:37,自引:29,他引:8       下载免费PDF全文
Flagellar mutants in Escherichia coli were obtained by selection for resistance to the flagellotropic phage chi. F elements covering various regions of the E. coli genome were then constructed, and, on the basis of the ability of these elements to restore flagellar function, the mutations were assigned to three regions of the E. coli chromosome. Region I is between trp and gal; region II is between uvrC and aroD; and region III is between his and uvrC. F elements carrying flagellar mutations were constructed. Stable merodiploid strains with a flagellar defect on the exogenote and another on the endogenote were then prepared. These merodiploids yielded information on the complementation behavior of mutations in a given region. Region III was shown to include at least six cistrons, A, B, C, D, E, and F. Region II was shown to include at least four cistrons, G, H, I, and J. Examination of the phenotypes of the mutants revealed that those with lesions in cistron E of region III produce "polyhooks" and lesions in cistron F of region III result in loss of ability to produce flagellin. Mutants with lesions in cistron J of region II were entirely paralyzed (mot) mutants. Genetic analysis of flagellar mutations in region III suggested that the mutations located in cistrons A, B, C, and E are closely linked and mutations in cistrons D and F are closely linked.  相似文献   

7.
8.
A flagellum of Salmonella typhimurium and Escherichia coli consists of three structural parts, a basal body, a hook, and a filament. Because the fliK mutants produce elongated hooks, called polyhooks, lacking filament portions, the fliK gene product has been believed to be involved in both the determination of hook length and the initiation of the filament assembly. In the present study, we isolated two mutants from S. typhimurium which can form flagella even in the absence of the fliK gene product. Flagellar structures were fractionated from these suppressor mutants and inspected by electron microscopy. The suppressor mutants produced polyhook-filament complexes in the fliK mutant background, while they formed flagellar structures apparently indistinguishable from those of the wild-type strain in the fliK+ background. Genetic and sequence analyses of the suppressor mutations revealed that they are located near the 3'-end of the flhB gene, which has been believed to be involved in the early process of the basal body assembly. On the basis of these results, we discuss the mechanism of suppression of the fliK defects by the flhB mutations and propose a hypothesis on the export switching machinery of the flagellar proteins.  相似文献   

9.
10.
11.
Four mutants of Escherichia coli that are resistant to the flagellotropic phage chi, but are motile, were isolated. When they were observed in liquid culture bylight microscopy, one mutant exhibited circular movement and another tumbled at high frequency on the surface of a glass slide. The remaining two mutants moved normally. None of these mutants adsorbed the wild-type strain of chi. P1 transduction revealed that the mutation sites of these four mutants were more than 97% contransducible with a site in hag, the structural gene for flagellin. When flagellins of these mutants were chromatographed on a diethylaminoethyl-cellulose column, two eluted slower and one eluted slightly faster than the flagellin of the parental strain. The other flagellin eluted at the same position as that of the parent. Host range mutants of phage chi, which could infect these bacterial mutants, were isolated.  相似文献   

12.
The growth rate of flagellar hooks in Salmonella typhimurium was analyzed by computer-aided simulation of the length distributions of mutant hooks of uncontrolled length (polyhooks). The wild-type hook has a relatively well-controlled length, with an average of 55 nm and a standard deviation of 6 nm. Mutations in the fliK gene give rise to polyhooks. A histogram of the lengths of polyhooks from a fliK mutant shows a peak at 55 nm with a long monotonic tail extending out to 1 microm. To analyze the growth rate, we employed the population balance method. Regression analysis showed that the histogram could fit a combination of two theoretical curves. In the first phase of growth, the hook starts with a very fast growth rate (40 nm/min), and then the rate exponentially slows until the length reaches 55 nm. In the second phase of growth, where the hook length is over 55 nm, the hook grows at a constant rate of 8 nm/min. Second mutations in either the fliK or flhB genes, as found in pseudorevertants from fliK mutants, give rise to polyhook filaments (phf). The ratio between the numbers of hooks with and without filament was 6:4. The calculated probability of filament attachment to polyhooks was low so that the proportion of hooks that start filament growth was only 2% per minute. The lengths of polyhooks with and without filaments were measured. A histogram of hook length in phf's was the same as that for polyhooks in single-site fliK mutants, against the expectation that the distribution would shift to a shorter average. The role of FliK in hook length control is discussed.  相似文献   

13.
Previously, the flagellar filament of Vibrio anguillarum was suggested to consist of flagellin A and three additional flagellin proteins, FlaB, -C, and -D. This study identifies the genes encoding FlaB, -C, and -D and a possible fifth flagellin gene that may encode FlaE. The flagellin genes map at two separate DNA loci and are most similar to the four polar flagellin genes of Vibrio parahaemolyticus, also located at two DNA loci. The genetic organization of these two loci is conserved between both organisms. For each gene, in-frame deletions of the entire gene, the 5' end, and the 3' end were made. Mutant analysis showed that each mutation, except those in flaE, caused a loss of flagellin from the filament. However, no obvious structural loss in the filament, as determined by electron microscopy, and only slight decreases in motility were seen. Virulence analysis indicated that all but two of the mutations gave a wild-type phenotype. The 5'-end deletions of flaD and flaE decreased virulence significantly (>10(4)-fold) of infections via both the intraperitoneal and immersion routes. These results indicate that, like FlaA, FlaD and FlaE may also be involved in virulence.  相似文献   

14.
Complementation by Restricted Phage T1   总被引:2,自引:2,他引:0       下载免费PDF全文
The ability of restricted phage T1hr to complement stocks of T1am mutants carrying the P1 modification has been tested in mixed infection of Escherichia coli B(P1). Of the 18 genes tested, 15 could be complemented to give successful infection of approximately 10 to 25% of the cells, and 2 other genes consistently gave at least 5% complementation. The progeny phage produced in these infections was predominantly of the hr(+)am genotype. A mutant in gene 12 could be complemented very poorly, if at all. With one double mutant stock, the complementation obtained was nearly as good as the more poorly complemented of the two corresponding single mutants.  相似文献   

15.
The Type III flagellar protein export apparatus of bacteria consists of five or six membrane proteins, notably FlhA, which controls the export of other proteins and is homologous to the large family of FHIPEP export proteins. FHIPEP proteins contain a highly‐conserved cytoplasmic domain. We mutagenized the cloned Salmonella flhA gene for the 692 amino acid FlhA, changing a single, conserved amino acid in the 68‐amino acid FHIPEP region. Fifty‐two mutations at 30 positions mostly led to loss of motility and total disappearance of microscopically visible flagella, also Western blot protein/protein hybridization showed no detectable export of hook protein and flagellin. There were two exceptions: a D199A mutant strain, which produced short‐stubby flagella; and a V151L mutant strain, which did not produce flagella and excreted mainly un‐polymerized hook protein. The V151L mutant strain also exported a reduced amount of hook‐cap protein FlgD, but when grown with exogenous FlgD it produced polyhooks and polyhook‐filaments. A suppressor mutant in the cytoplasmic domain of the export apparatus membrane protein FlhB rescued export of hook‐length control protein FliK and facilitated growth of full‐length flagella. These results suggested that the FHIPEP region is part of the gate regulating substrate entry into the export apparatus pore.  相似文献   

16.
Flagellar assembly mutants in Escherichia coli   总被引:29,自引:28,他引:1       下载免费PDF全文
Genetic and biochemical analysis of mutants defective in the synthesis of flagella in Escherichia coli revealed an unusual class of mutants. These mutants were found to produce short, curly, flagella-like filaments with low amplitude ( approximately 0.06 mum). The filaments were connected to characteristic flagellar basal caps and extended for 1 to 2 mum from the bacterial surface. The mutations in these strains were all members of one complementation group, group E, which is located between his and uvrC. The structural, serological, and chemical properties of the filament derived from the mutants closely resemble those of the flagellar hook structure. On the basis of these properties, it is suggested that these filaments are "polyhooks", i.e., repeated end-to-end polymers of the hook portion of the flagellum. Polyhooks are presumed to be the result of a defective cistron which normally functions to control the length of the hook region of the flagellum.  相似文献   

17.
Among motile revertants isolated from flagellar hook-deficient ( flgE ) mutants of Salmonella typhimurium one produced only short flagellar filaments in L broth, despite the fact that flagellin itself has the ability to polymerize into long filaments in vitro . This pseudorevertant has an intragenic suppressor, resulting in a two-amino-acid substitution (Asp-Gln→Ala-Arg) in the C-terminal region of the hook protein, FlgE. The flagellation of the pseudorevertant was greatly affected by the concentration of NaCl in the culture media: we observed no filaments in the absence of NaCl, short filaments in 1% NaCl and full-length filaments in 2% NaCl. Electron microscopy of osmotically shocked cells showed that the number of hook–basal bodies on cells was constant under various NaCl conditions. Furthermore, we found that the mutant hook was straight rather than curved. We monitored the cellular flagellin level of this pseudorevertant under various NaCl concentrations by immunoblotting. It was revealed that little flagellin was present under NaCl-free conditions in contrast with the ordinary amounts of flagellin present in 2% NaCl. As the expression of flagellin is regulated by competitive interaction of a sigma factor, FliA, and a corresponding anti-sigma factor, FlgM, we also observed the effect of NaCl on the secretion of FlgM. FlgM was secreted into the media in more than 1% NaCl but accumulated inside the cells in the absence of NaCl, indicating that the failure of secretion of FlgM in the absence of salt was the cause of the impaired elongation of filaments.  相似文献   

18.
The flagellar hook of Salmonella is a filamentous polymer made up of subunits of the protein FlgE. Hook assembly is terminated when the length reaches about 55 nm. After our recent study of the effect of cellular levels of the hook length control protein FliK, we have now analyzed the effect of cellular levels of FlgE itself. When FlgE was overproduced in a wild-type strain, a fliC (flagellin) mutant, or a fliD (hook-associated protein 2 [HAP2], filament capping protein) mutant, the hooks remained at the wild-type length. In a fliK (hook length control protein) mutant, which produces long hooks (polyhooks), the overproduction of FlgE resulted in extraordinarily long hooks (superpolyhooks). In a flgK (HAP1, first hook-filament junction protein) mutant or a flgL (HAP3, second hook-filament junction protein) mutant, the overproduction of FlgE also resulted in longer than normal hooks. Thus, at elevated hook protein levels not only FliK but also FlgK and FlgL are necessary for the proper termination of hook elongation. When FlgE was severely underproduced, basal bodies without hooks were often observed. However, those hooks that were seen were of wild-type length, demonstrating that FlgE underproduction decreases the probability of the initiation of hook assembly but not the extent of hook elongation.  相似文献   

19.
We studied the adsorption of phage chi to various behavioral mutants (che mutants) of Escherichia coli having different swimming modes. Bacteriophage chi infects only bacteria with active flagella, and it was therefore of interest to examine whether the mode of swimming has an effect on the susceptibility of the bacteria to the phage. Neither the mode of swimming (smooth swimming or tumbling) nor the direction of flagellar rotation affected the degree of chi adsorption to the bacterial cells. Furthermore, the tumbling frequency, the rotation speed (tethered cells of all of the strains examined had the same average speed of rotation), the time proportion of rotation, and the reversal frequency were not important in determining susceptibility to chi. The only variable that influenced chi adsorption was the fraction of the population whose flagella rotated incessantly. A direct, linear correlation was found between chi adsorption and the fraction of unceasing rotation in each population. It seems, therefore, that an individual bacterium whose flagella pause periodically and briefly during rotation is not susceptible to irreversible adsorption of the phage. Pausing of rotation thus seems to be a new feature of motility that is prevalent especially in che mutants. It is concluded that irreversible chi adsorption can serve as a quantitative assay only for incessant flagellar rotation of E. coli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号