首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dorsal closure, a morphogenetic movement during Drosophila embryogenesis, is controlled by the Drosophila JNK pathway, D-Fos and the phosphatase Puckered (Puc). To identify principles of epithelial closure processes, we studied another cell sheet movement that we term thorax closure, the joining of the parts of the wing imaginal discs which give rise to the adult thorax during metamorphosis. In thorax closure a special row of margin cells express puc and accumulate prominent actin fibres during midline attachment. Genetic data indicate a requirement of D-Fos and the JNK pathway for thorax closure, and a negative regulatory role of Puc. Furthermore, puc expression co-localises with elevated levels of D-Fos, is reduced in a JNK or D-Fos loss-of-function background and is ectopically induced after JNK activation. This suggests that Puc acts downstream of the JNK pathway and D-Fos to mediate a negative feed-back loop. Therefore, the molecular circuitry required for thorax closure is very similar to the one directing dorsal closure in the embryo, even though the tissues are not related. This finding supports the hypothesis that the mechanism controlling dorsal closure has been co-opted for thorax closure in the evolution of insect metamorphosis and may represent a more widely used functional module for tissue closure in other species as well.  相似文献   

2.
A profusion of terms are currently used to describe free flap wound closure. It is important to broadly standardize nomenclature when embarking on a comparison of functional outcomes between institutions. Therefore, a series of 68 "emergency" (within 24 hours) free flaps performed by a single surgeon were reviewed with respect to a total experience of 188 free tissue transfers to formulate a consistent nomenclature applicable to free flap wound closure in general. The nomenclature presented divides free flap closure into three categories: "primary free flap closure" (12 to 24 hours), "delayed primary free flap closure" (2 to 7 days), and "secondary free flap closure" (after 7 days). This system is analogous to the standard terms "primary," "delayed primary," and "secondary wound closure." It is consistent with known biologic and microbiologic principles of wound closure in general and should provide a simple basis for classifying free flap wound closure. Illustrative examples are presented to highlight the classification scheme.  相似文献   

3.
Morphogenesis, the establishment of the animal body, requires the coordinated rearrangement of cells and tissues regulated by a very strictly-determined genetic program. Dorsal closure of the epithelium in the Drosophila melanogaster embryo is one of the best models for such a complex morphogenetic event. To explore the genetic regulation of dorsal closure, we carried out a large-scale RNA interference-based screen in combination with in vivo time-lapse microscopy and identified several genes essential for the closure or affecting its dynamics. One of the novel dorsal closure genes, the small GTPase activator pebble (pbl), was selected for detailed analysis. We show that pbl regulates actin accumulation and protrusion dynamics in the leading edge of the migrating epithelial cells. In addition, pbl affects dorsal closure dynamics by regulating head involution, a morphogenetic process mechanically coupled with dorsal closure. Finally, we provide evidence that pbl is involved in closure of the adult thorax, suggesting its general requirement in epithelial closure processes.  相似文献   

4.
Abstract The growth of saplings of Atherosperma moschatum within a Tasmanian forest during 1987/88 was negatively correlated with canopy closure. The dry weights and specific leaf weights of new leaves were also negatively correlated with canopy closure, but leaf areas showed a maximum at an intermediate canopy closure. Leaf chlorophyll concentration was positively correlated with canopy closure. Internode length was not correlated with canopy closure, but the ratio of leaf dry weight to internode length was negatively correlated with canopy closure. These results indicate that the load of photosynthetically active radiation may be a major determinant of the variation in plant development.  相似文献   

5.
Drosophila''s dorsal closure provides an excellent model system with which to analyze biomechanical processes during morphogenesis. During native closure, the amnioserosa, flanked by two lateral epidermal sheets, forms an eye-shaped opening with canthi at each corner. The dynamics of amnioserosa cells and actomyosin purse strings in the leading edges of epidermal cells promote closure, whereas the bulk of the lateral epidermis opposes closure. Canthi maintain purse string curvature (necessary for their dorsalward forces), and zipping at the canthi shortens leading edges, ensuring a continuous epithelium at closure completion. We investigated the requirement for intact canthi during closure with laser dissection approaches. Dissection of one or both canthi resulted in tissue recoil and flattening of each purse string. After recoil and a temporary pause, closure resumed at approximately native rates until slowing near the completion of closure. Thus the amnioserosa alone can drive closure after dissection of one or both canthi, requiring neither substantial purse string curvature nor zipping during the bulk of closure. How the embryo coordinates multiple, large forces (each of which is orders of magnitude greater than the net force) during native closure and is also resilient to multiple perturbations are key extant questions.  相似文献   

6.
Interspecific diversity exists in cranial suture closure patterns among mammalian species. Suture closure patterns partly reflect phylogenesis, but it has also been claimed that it is influenced by biomechanical factors. Here we provide the first report on the cranial suture closure pattern in water deer. Among cervids, the water deer is an exceptional species, as it is the only one without antlers. Instead, the male water deer possess prominent canines, which are utilized during male-male combats. This unique morphological setting allowed us to examine whether the presence of prominent canines affects cranial suture closure. We found that the only sexual difference in cranial suture closure pattern is the closure of the interfrontal suture in males, which is found in some other cervid species as well. Except for the interfrontal suture closure, timing and sequence of cranial suture closure were comparable between both sexes, suggesting that the presence of prominent canines in males has no influence on cranial suture closure pattern. Our results indicate that interfrontal suture closure in males is a phylogenetic pattern, i.e. an apomorphy for Capreolini, Hydropotini and Alceini.  相似文献   

7.
Primary neurulation in mammals has been defined by distinct anatomical closure sites, at the hindbrain/cervical spine (closure 1), forebrain/midbrain boundary (closure 2), and rostral end of the forebrain (closure 3). Zones of neurulation have also been characterized by morphologic differences in neural fold elevation, with non-neural ectoderm-induced formation of paired dorso-lateral hinge points (DLHP) essential for neural tube closure in the cranial and lower spinal cord regions, and notochord-induced bending at the median hinge point (MHP) sufficient for closure in the upper spinal region. Here we identify a unifying molecular basis for these observations based on the function of the non-neural ectoderm-specific Grainy head-like genes in mice. Using a gene-targeting approach we show that deletion of Grhl2 results in failed closure 3, with mutants exhibiting a split-face malformation and exencephaly, associated with failure of neuro-epithelial folding at the DLHP. Loss of Grhl3 alone defines a distinct lower spinal closure defect, also with defective DLHP formation. The two genes contribute equally to closure 2, where only Grhl gene dosage is limiting. Combined deletion of Grhl2 and Grhl3 induces severe rostral and caudal neural tube defects, but DLHP-independent closure 1 proceeds normally in the upper spinal region. These findings provide a molecular basis for non-neural ectoderm mediated formation of the DLHP that is critical for complete neuraxis closure.  相似文献   

8.
The sandfly Lutzomyia whitmani (Antunes & Coutinho) is an important vector for cutaneous leishmaniasis throughout much of Brazil, and has recently been shown to consist of more than one mitochondrial lineage. It has frequently been asserted that the degree of adaptation of L. whitmani to human environments varies across its range. As a standardized test of indoor feeding for three geographically distant populations of L. whitmani, catches inside experimental chicken sheds of varying degrees of wall closure (0%, 33%, 67% and 98%) were compared. Each increment in shed closure reduced catches of females (relative to the most open shed) by a similar degree for each population: geometric mean catches dropped by 11-40% with 33% closure, by 41-62% with 67% closure, and by 69-100% with 98% closure. Geometric mean catches of males from the two more northerly populations also decreased with increasing shed closure, by 18% and 22% for 33% closure, 58% and 69% for 67% closure, 91% and 93% for 98% closure. Males from the most southerly population showed significantly different behaviour, with 33% closure causing a 54% increase in geometric mean catch, 67% closure causing a 6% increase, and 98% closure causing a 32% reduction. For this southerly population, sex ratios became more male biased with increasing density in more closed sheds, suggesting aggregation driven by intra-specific communication. Lutzomyia intermedia (Lutz & Neiva) was relatively more likely than L. whitmani to approach baits in the three more closed sheds, rather than the most open shed, offering a behavioural explanation for observed differences in indoor biting rates between the species.  相似文献   

9.
Heterochronic changes in the rate or timing of development underpin many evolutionary transformations. In particular, the onset and rate of bone development have been the focus of many studies across large clades. In contrast, the termination of bone growth, as estimated by suture closure, has been studied far less frequently, although a few recent studies have shown this to represent a variable, although poorly understood, aspect of developmental evolution. Here, we examine suture closure patterns across 25 species of carnivoran mammals, ranging from social‐insectivores to hypercarnivores, to assess variation in suture closure across taxa, identify heterochronic shifts in a phylogenetic framework and elucidate the relationship between suture closure timing and ecology. Our results show that heterochronic shifts in suture closure are widespread across Carnivora, with several shifts identified for most major clades. Carnivorans differ from patterns identified for other mammalian clades in showing high variability of palatal suture closure, no correlation between size and level of suture closure, and little phylogenetic signal outside of musteloids. Results further suggest a strong influence of feeding ecology on suture closure pattern. Most of the species with high numbers of heterochronic shifts, such as the walrus and the aardwolf, feed on invertebrates, and these taxa also showed high frequency of closure of the mandibular symphysis, a state that is relatively rare among mammals. Overall, caniforms displayed more heterochronic shifts than feliforms, suggesting that evolutionary changes in suture closure may reflect the lower diversity of cranial morphology in feliforms.  相似文献   

10.
Delayed closure of the posterior neuropore (PNP) occurs to a variable extent in homozygous mutant curly tail (ct) mouse embryos, and results in the development of spinal neural tube defects (NTD) in 60% of embryos. Previous studies have suggested that curvature of the body axis may delay neural tube closure in the cranial region of the mouse embryo. In order to investigate the relationship between curvature and delayed PNP closure, we measured the extent of ventral curvature of the neuropore region in ct/ct embryos with normal or delayed PNP closure. The results show significantly greater curvature in ct/ct embryos with delayed PNP closure in vivo than in their normal littermates. Reopening of the posterior neuropore in non-mutant mouse embryos, to delay neuropore closure experimentally, did not increase ventral curvature, suggesting that increased curvature in ct/ct embryos is not likely to be a secondary effect of delayed PNP closure. Experimental prevention of ventral curvature in ct/ct embryos, brought about by implantation of an eyelash tip longitudinally into the hindgut lumen, ameliorated the delay in PNP closure. We propose, therefore, that increased ventral curvature of the neuropore region of ct/ct embryos imposes a mechanical stress, which opposes neurulation and thus delays closure of the PNP. Increased ventral curvature may arise as a result of a cell proliferation imbalance, which we demonstrated previously in affected ct/ct embryos.  相似文献   

11.
We studied the differences in how velopharyngeal closure is learned and obtained by operated cleft palate patients during various activities. Sixty-eight operated cleft palate patients, who had complete closure during swallowing, were examined with the nasopharyngeal fiberscope to determine the extent of velopharyngeal closure while they were producing pressure consonants or vowels, and during blowing. We concluded that the complete closure when producing vowels was the most difficult to obtain, and closure when producing pressure consonants was a little more difficult than that during blowing.  相似文献   

12.
Epidemiologic and economic effectiveness of school closure during influenza epidemics and pandemics is discussed. Optimal effect of school closure is observed when this measure is taken at the start of the epidemic or pandemic and for a sufficiently long time. School closure during high morbidity among schoolchildren, in the middle (at the peak) and by the end of epidemic or pandemic does not influence significantly the spread of influenza or morbidity. Significant economic losses and other negative consequences of school closure are noted. School closure may be the most appropriate during the emergence of influenza pandemic when the pandemic vaccine is not yet available, however timely mass immunization of schoolchildren against influenza may be a more appropriate measure than school closure for the reduction of influenza morbidity and spread during seasonal influenza epidemics.  相似文献   

13.
The bilobed stigma of many species in the order Scrophulariales closes in response to touch by an animal pollinator. In hummingbird-pollinated bush monkey flower, Mimulus aurantiacus (Scrophulariaceae), closure is rapid, occurring within seconds of tactile stimulus. We investigated the proximate causes of stigma closure and subsequent reopening in M. aurantiacus, as well as potential costs and benefits of stigma closure for female fitness. Stigma closure is elicited by both touch and pollen, but closure in response to pollen is much slower, requiring 0.5–1.5 h. Stigmata reopen within 2.5–4.5 h if touch, but no pollen, is applied. Upon receipt of pollen, most stigmata remain closed for the remaining lifetime of the flower, even if less pollen is received than is needed for full seed set. Those stigmata that do reopen after pollination generally require between 20 and 28 h to do so, much longer than for unpollinated stigmata. Reopening after pollination appears to be a response to low seed set rather than to low pollen load. Natural pollination of stigmata manipulated to prevent closure shows that closure does not increase capture of pollen or seed set. In fact, closure reduces the average pollen load received by flowers. Despite this, there is no evidence that stigma closure has any negative effect on female fitness in terms of seed set or germinability. Hypotheses for the adaptive significance of stigma closure are discussed. Understanding proximate causes of stigma closure and reopening is essential in the evaluation of these hypotheses.  相似文献   

14.
We examined airway closure with methacholine-induced bronchoconstriction in eight normal seated adults at a mean lung volume of 39% total lung capacity. Closure was evaluated in two ways. Regional closure was examined by comparing the regional distributions of 133Xe boluses distributed according to N2O uptake with those distributed by pulmonary perfusion; regions that exhibited less N2O uptake than perfusion were interpreted as having airway closure. In addition, we measured single-breath washouts of the same boluses; differences between the washouts indicated closure that was not necessarily regional. Basal airway closure increased with methacholine inhalation from 21 +/- 3 to 46 +/- 4% (means +/- SE; P less than 0.001). This was due to both decreased basal N2O uptake and a relative increase of basal perfusion. Washout curves of boluses distributed by perfusion did not change with bronchoconstriction. Before bronchoconstriction, washouts of boluses distributed by N2O uptake did not differ significantly from those distributed by perfusion. During bronchoconstriction, single-breath washouts of boluses distributed by N2O uptake showed increased concentration differences (P less than 0.015) that were significantly greater than those resulting from boluses delivered by perfusion. Changes in basal closure did not correlate with washout changes. We conclude that methacholine inhalation induced bronchoconstriction-increased basal airway closure and also increased airway closure in other lung regions in a way that did not relate to basal closure.  相似文献   

15.
The oropharynx stripped of the tonsils and the excessive mucosal folds after the uvulopalatopharyngoplasty operation allows a closed observation of the outline of the pharyngeal muscles. Forty-two consecutive patients undergoing uvolopalatopharyngoplasty were subjected to peroral examination of the oropharynx combined with nasendoscopic examination of the velopharyngeal valve. At rest, the oropharynx of the patients with coronal closure patterns was found to be flat relative to the oropharynx of the patients with the other closure patterns. During closure of the velopharyngeal valve, an anteroposterior movement of the velum, forming the nasendoscopic coronal closure pattern, was observed in patients with a flat oropharynx. On the other hand, a medial movement of the pharyngeal walls was found, forming the circular or sagittal closure pattern seen in patients with a deep oropharynx. Our conclusion is therefore that a different muscular orientation is responsible for both the different pharyngeal configuration at rest and the different contribution of the lateral and posterior pharyngeal walls to velopharyngeal valve closure.  相似文献   

16.
The present study was undertaken to gain further insight into the mechanisms responsible for the sustained active expiratory upper airway closure previously observed during high-permeability pulmonary edema in lambs. The experiments were conducted in nonsedated lambs, in which airflow and thyroarytenoid and inferior pharyngeal constrictor muscle electromyographic activity were recorded. We first studied the consequences of hemodynamic pulmonary edema (induced by impeding pulmonary venous return) on upper airway dynamics in five lambs; under this condition, a sustained expiratory upper airway closure consistently appeared. We then tested whether expiratory upper airway closure was related to vagal afferent activity from bronchopulmonary receptors. Five bivagotomized lambs underwent high-permeability pulmonary edema: no sustained expiratory upper airway closure was observed. Finally, we studied whether a sustained decrease in lung volume induced a sustained expiratory upper airway closure. Five lambs underwent a 250-ml pleural infusion: no sustained expiratory upper airway closure was observed. We conclude that 1) the sustained expiratory upper airway closure observed during pulmonary edema in nonsedated lambs is related to stimulation of vagal afferents by an increase in lung water and 2) a decrease in lung volume does not seem to be the causal factor.  相似文献   

17.
Floral closure may be induced by pollination and various other factors, but is rarely studied comprehensively. Different kinds of floral closure should have various effects on reproductive fitness of plants. Two contrasting types of floral closure were observed in the flowers of Gentiana straminea Maxim. in the eastern Qinghai-Tibetan Plateau. The first type occurred prior to pollination during both gender phases, in response mainly to decreasing air temperatures. Flowers closed when decreasing temperatures approached 20°C and subsequently began to reopen the following day during mid-morning when air temperatures warmed to approximately 13–15 °C. This kind of floral closure can protect pollen grains on either stamens or stigmas, increasing fitness of both male and female. Following pollination, permanent floral closure occurred, although there was a delay between the dates of pollination and permanent closure, during which flowers continued to show temporary closure in response to low temperature episodes. The time required for permanent, pollination-induced closure varied according to the age of the gender phase, including a prolonged time before closure if pollination occurred early in the female phase. The retaining of permanent closed flowers increased both approaching (to inflorescences) and visiting (to unpollinated flowers) frequencies of individual plants when with fewer open flowers and the persisting corolla is further beneficial for seed sets of these pollinated flowers. Thus, two separate types of floral closure, one in response to environmental cues and the other in response to the age of each gender stage, appeared to have a strong influence on reproductive fitness in this species. These results revealed a different adaptive strategy of alpine plants in the sexual reproduction assurance in addition to the well-known elevated floral longevity, dominant role of more effective pollinators and increased reproduction allocation in the arid habitats.  相似文献   

18.
Dorsal closure in Drosophila embryogenesis involves expansion of the dorsal epidermis, followed by closure of the opposite epidermal edges. This process is driven by contractile force generated by an extraembryonic epithelium covering the yolk syncytium known as the amnioserosa. The secreted signaling molecule Dpp is expressed in the leading edge of the dorsal epidermis and is essential for dorsal closure. We found that the outermost row of amnioserosa cells (termed pAS) maintains a tight basolateral cell-cell adhesion interface with the leading edge of dorsal epidermis throughout the dorsal closure process. pAS was subject to altered cell motility in response to Dpp emanating from the dorsal epidermis, and this response was essential for dorsal closure. alphaPS3 and betaPS integrin subunits accumulated in the interface between pAS and dorsal epidermis, and were both required for dorsal closure. Looking at alphaPS3, type I Dpp receptor, and JNK mutants, we found that pAS cell motility was altered and pAS and dorsal epidermis adhesion failed under the mechanical stress of dorsal closure, suggesting that a Dpp-mediated mechanism connects the squamous pAS to the columnar dorsal epidermis to form a single coherent epithelial layer.  相似文献   

19.

Background

School closure is considered as an effective measure to prevent pandemic influenza. Although Japan has implemented many class, grade, and whole school closures during the early stage of the pandemic 2009, the effectiveness of such a school closure has not been analysed appropriately. In addition, analysis based on evidence or data from a large population has yet to be performed. We evaluated the preventive effect of school closure against the pandemic (H1N1) 2009 and examined efficient strategies of reactive school closure.

Materials and Methods

Data included daily reports of reactive school closures and the number of infected students in the pandemic in Oita City, Japan. We used a regression model that incorporated a time delay to analyse the daily data of school closure based on a time continuous susceptible-exposed-infected-removed model of infectious disease spread. The delay was due to the time-lag from transmission to case reporting. We simulated the number of students infected daily with and without school closure and evaluated the effectiveness.

Results

The model with a 3-day delay from transmission to reporting yielded the best fit using R 2 (the coefficient of determination). This result suggests that the recommended period of school closure is more than 4 days. Moreover, the effect of school closure in the simulation of school closure showed the following: the number of infected students decreased by about 24% at its peak, and the number of cumulative infected students decreased by about 8.0%.

Conclusions

School closure was an effective intervention for mitigating the spread of influenza and should be implemented for more than 4 days. School closure has a remarkable impact on decreasing the number of infected students at the peak, but it does not substantially decrease the total number of infected students.  相似文献   

20.
Our previous report showed that rapid wound closure in Xenopus laevis embryos was associated with a decrease in the extracellular concentration of either Na(+) or Cl(-) ions. In this study, we examined the wound closure in Xenopus embryos when epithelial Na(+) channel (ENaC), Na(+)/K(+) ATPase (Na(+) pump) or CICs (members of Cl(-) channel) were blocked by each specific inhibitor. Blockage of ENaC and CIC restricted the rate of wound closure during the first 30 min PW and during the subsequent period, respectively. In contrast, inhibition of Na(+) pump had no effect on the rate of wound closure. Furthermore, simultaneous administration of both ENaC and CIC inhibitors resulted in the cumulative reduction of wound closure. Thus, it is plausible that these ion channels play active roles in wound closure in Xenopus embryos. NPPB is known to inhibit both CIC-2 and CIC-3. Immunohistochemical experiments showed that CIC-3, but not CIC-2, was expressed in Xenopus embryos, suggesting that the reduced wound closure by NPPB was due to blockage of CIC-3. A local enhancement of CIC-3 expression at the leading edge of the wounded epidermis was found to be specific to closing wounds that were kept in 10% NAM. An in vitro wounding assay also showed a pattern of CIC-3 expression at the margin of the scratch wound comparable to the results in vivo. These findings suggest that intracellular translocation of CIC-3 is involved in wound closure. We propose that the ion channels, including CIC-3, play a crucial role in wound closure in Xenopus embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号