首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
Two experiments were done in which anemic rats were fed diets containing safflower oil or stearic acid and low (10 ppm) or adequate (39-42 ppm) iron. Diets were 24% fat by weight. In the stearic acid diets, 2% (Experiment 1) or 4% (Experiment 2) of the fat was supplied by safflower oil to satisfy essential fatty acid requirements. Repletion of hemoglobin, hematocrit, and liver iron was assessed. Compared with safflower oil in both experiments, stearic acid had a significant positive effect (P less than 0.0001) on repletion of hemoglobin (Hb), hematocrit (Hct), and liver iron concentration; the effect on Hb and Hct was most pronounced when dietary iron was low. When expressed as g Hb/mg Fe intake, Hb repletion was affected by a significant interaction between fat and Fe (P less than 0.002) and was greatest in rats fed low iron stearic acid diets. In a third experiment, rats were fed low dietary iron and 24% safflower oil, 20% stearic acid + 4% safflower oil, 3.2% stearic acid + 20.8% safflower oil, or 20% beef tallow + 4% safflower oil. The 20% beef tallow provided 3.2% stearic acid in the total diet. The response of Hb and Hct were similar to those in the first two experiments for rats fed safflower oil or stearic acid. Rats fed beef tallow had significantly greater (P less than 0.05) Hb and Hct repletion than did rats fed safflower oil, although the degree of repletion was less than that observed in rats fed 20% stearic acid. There was no difference in iron repletion of rats fed 3.2% stearic acid and rats fed beef tallow. We conclude that stearic acid enhances iron utilization by rats.  相似文献   

2.
Anti-thrombotic effects of omega-3 (n-3) fatty acids are believed to be due to their ability to reduce arachidonic acid levels. Therefore, weanling rats were fed n-3 acids in the form of linseed oil (18:3n-3) or fish oil (containing 20:5n-3 and 22:6n-3) in diets containing high levels of either saturated fatty acids (hydrogenated beef tallow) or high levels of linoleic acid (safflower oil) for 4 weeks. The effect of diet on the rate-limiting enzyme of arachidonic acid biosynthesis (delta 6-desaturase) and on the lipid composition of hepatic microsomal membrane was determined. Both linseed oil- or fish oil-containing diets inhibited conversion of linoleic acid to gamma-linolenic acid. Inhibition was greater with fish oil than with linseed oil, only when fed with saturated fat. delta 6-Desaturase activity was not affected when n-3 fatty acids were fed with high levels of n-6 fatty acids. Arachidonic acid content of serum lipids and hepatic microsomal phospholipids was lower when n-3 fatty acids were fed in combination with beef tallow but not when fed with safflower oil. Similarly, n-3 fatty acids (18:3n-3, 20:5n-3, 22:5n-3, and 22:6n-3) accumulated to a greater extent when n-3 fatty acids were fed with beef tallow than with safflower oil. These observations indicate that the efficacy of n-3 fatty acids in reducing arachidonic acid level is dependent on the linoleic acid to saturated fatty acid ratio of the diet consumed.  相似文献   

3.
This work was designed to study the effect of different lipid sources on the activities of lipoprotein lipase and lipogenic enzymes in adipose tissue from rats fedad libitum or energy-controlled diets. Male Wistar rats were fed diets containing 40% of energy as fat (olive oil, sunflower oil, palm oil or beef tallow), for 4 wk. Underad libitum feeding no differences were found among dietary fat groups in final body weight, adipose tissue weights and total body fat. Under energy-controlled feeding, despite isoenergetic intake, rats fed the beef tallow diet gained significantly less weight than rats fed the other three diets. Beef tallow fed rats showed the lowest values for adipose tissue weights and total body fat. When rats had free access to food no effect of dietary lipid source on lipogenic enzyme activities was found. In contrast, under energy-controlled feeding rats fed the beef tallow diet showed significantly higher activities of glucose-6-phosphate dehydrogenase and fatty acid synthase than rats fed the other three diets. Heparin-releasable lipoprotein lipase activity in perirenal and subcutaneous adipose tissues was not different among rats fed olive oil, safflower oil, palm oil or beef tallow. When comparing both adipose tissue anatomical locations, significantly higher activities were found in subcutaneous than in perirenal fat pad independently of dietary fat. In conclusion, under our experimental protocol, lipogenesis in rat adipose tissue does not seem to be affected by dietary fat type.  相似文献   

4.
Rats were fed diets containing a high level of saturated fatty acids (hydrogenated beef tallow) versus a high level of linoleic acid (safflower oil) at both low and high levels of fish oil containing 7.5% (w/w) eicosapentaenoic and 2.5% (w/w) docosahexaenoic acids for a period of 28 days. The effect of feeding these diets on the cholesterol content and fatty acid composition of serum and liver lipids was examined. Feeding diets high in fish oil with safflower oil decreased the cholesterol content of rat serum, whereas feeding fish oil had no significant effect on the cholesterol content of serum when fed in combination with saturated fatty acids. The serum cholesterol level was higher in animals fed safflower oil compared to animals fed saturated fat without fish oil. Consumption of fish oil lowered the cholesterol content of liver tissue regardless of the dietary fat fed. Feeding diets containing fish oil reduced the arachidonic acid content of rat serum and liver lipid fractions, the decrease being more pronounced when fish oil was fed in combination with hydrogenated beef tallow than with safflower oil. These results suggest that dietary n-3 fatty acids of fish oil interact with dietary linoleic acid and saturated fatty acids differently to modulate enzymes of cholesterol and fatty acid metabolism.  相似文献   

5.
Rats, chicks, and pigs were fed diets containing fructose or glucose. Plasma triglyceride levels were elevated in rats but not in chicks or pigs fed diets containing fructose. The rate of fatty acid synthesis in rat liver but not in chick liver was elevated when fructose-containing diets were fed. Conversely, the rate of fatty acid synthesis in rat adipose tissue but not in pig adipose tissue tended to be depressed when fructose-containing diets were fed. These results indicate that there are species-specific as well as organ-specific metabolic responses to various dietary carbohydrates.  相似文献   

6.
1. The effects of dietary modification, including starvation, and of corticotropin injection on the activities of acyl-CoA synthetase, glycerol phosphate acyltransferase, dihydroxyacetone phosphate acyltransferase, phosphatidate phosphohydrolase, diacylglycerol acyltransferase and lipoprotein lipase were measured in adipose tissue. 2. Lipoprotein lipase activities in heart were increased and those in adipose tissue were decreased when rats were fed on diets enriched with corn oil or beef tallow rather than with sucrose or starch. The lipoprotein lipase activity was lower in the adipose tissue of rats fed on the sucrose rather than on the starch diet. 3. Rats fed on the beef tallow diet had slightly higher activities of the total glycerol phosphate acyltransferase in adipose tissue than did rats fed on the sucrose or starch diet. The diacylglycerol acyltransferase and the mitochondrial glycerol phosphate acyltransferase activities were higher for the rats fed on the tallow diet than for those fed on the corn-oil diet. 4. Starvation significantly decreased the activities of lipoprotein lipase (after 24 and 48 h), acyl-CoA synthetase (after 24 h) and of the mitochondrial glycerol phosphate acyltransferase and the N-ethylmaleimide-insensitive dihydroxyacetone phosphate acyltransferase (after 48 h) in adipose tissue. The activities of the microsomal glycerol phosphate acyltransferase, diacylglycerol acyltransferase and the soluble phosphatidate phosphohydrolase were not significantly changed after 24 or 48 h of starvation. 5. The activities of lipoprotein lipase and phosphatidate phosphohydrolase in adipose tissue were decreased 15 min after corticotropin was injected into rats during November to December. No statistically significant differences were found when these experiments were performed during March to September. These differences may be related to the seasonal variation in acute lipolytic responses. 6. These results are discussed in relation to the control of triacylglycerol synthesis and lipoprotein metabolism.  相似文献   

7.
Evening primrose oil, safflower oil, and salmon oil, all with high polyunsaturated fatty acid content, were fed to partially nephrectomized rats; the effects were compared to those of feeding beef tallow. All three oils had favorable effects on progression of renal failure, salmon oil on kidney histology as well. The changes induced in platelet production of thromboxane A2, and in the renal production of various eicosanoids may explain the protective role of these oils.  相似文献   

8.
Young growing rats, chicks and pigs were fed diets containing graded levels of 1,3-butanediol (BD). Replacement of up to 20% of the dietary carbohydrate energy with BD did not affect body weight gain or food efficiency in these species. Blood beta-hydroxybutyrate levels were markedly elevated when BD was added to the diet. Plasma triglyceride response varied with species. In the rat, plasma triglyceride levels were decreased when BD was added to a high-carbohydrate diet. Plasma triglyceride levels were increased when BD-containing diets were fed to pigs and unchanged when chicks consumed diets containing BD. The hepatic lactate:pyruvate ratio was increased in rats fed BD and decreased in chicks fed BD. Hepatic long-chain acyl CoA levels were increased in rats, but not in chicks, fed BD. Addition of BD to a high-carbohydrate diet markedly decreased the rate of fatty acid synthesis, as measured in vitro or in vivo, in rat liver but not in rat or pig adipose tissue. Hepatic fatty acid synthesis in the chick was not affected by replacement of up to 18% of the dietary carbohydrate with BD. We propose that the hepatic conversion of BD to beta-hydroxybutyrate in the rat shifts the cytoplasmic redox state, reduces the glycolytic rate, and reduces substrate availability for fatty acid synthesis. Further, the concomitant shift in the mitochondrial redox state allows long-chain acyl CoA levels to increase. The overall effect is a decrease in the rate of fatty acid synthesis in livers of rats fed BD.  相似文献   

9.
Evening primrose oil, safflower oil, and salmon oil, all with high polyunsaturated fatty acid content, were fed to partially nephrectomized rats; the effects were compared to those of feeding beef tallow. All three oils had favorable effects on progression on renal failure, salmon oil on kidney histology as well. The changes induced in platelet production of thromboxane A2, and in the renal production of various eicosanoids may explain the protective role of these oils.  相似文献   

10.
These studies were undertaken to determine how polyunsaturated (n-3 and n-6) and saturated triglycerides interact to regulate rates of low density lipoprotein (LDL) production and rates of receptor-dependent and receptor-independent LDL transport. Animals were fed diets containing 20% (by wt) hydrogenated coconut oil or diets in which the coconut oil was progressively removed and replaced with safflower oil or fish oil concentrate. Plasma LDL concentrations fell when either of the polyunsaturated triglycerides was substituted for saturated triglycleride in the diet; however, the reduction in LDL concentrations was greater with fish oil than with safflower oil at all ratios of polyunsaturated to saturated triglyceride that were examined. The lower plasma LDL concentrations when coconut oil was replaced with fish oil could be attributed almost entirely to a much greater increase in hepatic LDL receptor activity when fish oil was used as the substitute than when safflower oil was used as the substitute. To examine the effect of polyunsaturated triglycerides when used to supplement a high saturated fat diet rather than to replace saturated fat in the diet, animals were fed a diet containing 15% coconut oil (by wt) with or without an additional supplement of 5% fish oil or safflower oil. The addition of 15% coconut oil to low fat control diet increased the rate of LDL production causing circulating LDL levels to rise by 40%. The further supplementation of this high saturated fat diet with fish oil concentrate markedly increased hepatic LDL receptor activity causing plasma LDL concentrations to return to control values whereas supplementation with safflower oil had little effect. Thus, at least in the rat, supplementation of a high saturated fat diet with a fish oil concentrate lowers plasma LDL concentrations as effectively as removing the saturated fat from the diet, although in the former case, both the production and the receptor-dependent uptake of LDL are greatly increased.  相似文献   

11.
The activity and mRNA level of hepatic enzymes in fatty acid oxidation and synthesis were compared in rats fed diets containing either 15% saturated fat (palm oil), safflower oil rich in linoleic acid, perilla oil rich in α-linolenic acid or fish oil rich in eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) for 15 days. The mitochondrial fatty acid oxidation rate was 50% higher in rats fed perilla and fish oils than in the other groups. Perilla and fish oils compared to palm and safflower oils approximately doubled and more than tripled, respectively, peroxisomal fatty acid oxidation rate. Compared to palm and safflower oil, both perilla and fish oils caused a 50% increase in carnitine palmitoyltransferase I activity. Dietary fats rich in n-3 fatty acids also increased the activity of other fatty acid oxidation enzymes except for 3-hydroxyacyl-CoA dehydrogenase. The extent of the increase was greater with fish oil than with perilla oil. Interestingly, both perilla and fish oils decreased the activity of 3-hydroxyacyl-CoA dehydrogenase measured using short- and medium-chain substrates. Compared to palm and safflower oils, perilla and fish oils increased the mRNA level of many mitochondrial and peroxisomal enzymes. Increases were generally greater with fish oil than with perilla oil. Fatty acid synthase, glucose-6-phosphate dehydrogenase, and pyruvate kinase activity and mRNA level were higher in rats fed palm oil than in the other groups. Among rats fed polyunsaturated fats, activities and mRNA levels of these enzymes were lower in rats fed fish oil than in the animals fed perilla and safflower oils. The values were comparable between the latter two groups. Safflower and fish oils but not perilla oil, compared to palm oil, also decreased malic enzyme activity and mRNA level. Examination of the fatty acid composition of hepatic phospholipid indicated that dietary α-linolenic acid is effectively desaturated and elongated to form EPA and DHA. Dietary perilla oil and fish oil therefore exert similar physiological activity in modulating hepatic fatty acid oxidation, but these dietary fats considerably differ in affecting fatty acid synthesis.  相似文献   

12.
We have noted that n-3 fatty acid-rich oils, such as fish oil, perilla oil and flaxseed oil as well as ethyl docosahexaenoate (DHA) prolonged the survival time of stroke-prone spontaneously hypertensive rats (SHRSP) rats by approximately 10% as compared with linoleate (n-6)-rich safflower oil. Rapeseed oil with a relatively low n-6/n-3 ratio unusually shortened the survival time by approximately 40%, suggesting the presence of minor components unfavorable to SHRSP rats. This study examined the effects of dietary oils and DHA on renal injury and gene expression related to renal injury in SHRSP rats. Rats fed rapeseed oil- and safflower oil-supplemented diets developed more severe proteinuria than those fed soybean oil-supplemented diet used as a control, but there were no significant differences in blood pressure. In contrast, the DHA-supplemented diet inhibited the development of proteinuria and suppressed hypertension. The mRNA levels for renal TGF-beta, fibronectin and renin were higher in the rapeseed oil and safflower oil groups after 9 weeks of feeding of the experimental diet than in the soybean oil and DHA groups. The fatty acid composition of kidney phospholipids was markedly affected by these diets. These results indicate that the renal injury observed in the groups fed safflower oil with a high n-6/n-3 ratio and rapeseed oil with presumed minor components is accompanied by increased expression of the TGF-beta, renin and fibronectin genes, and that dietary DHA suppresses renal injury and gene expression as compared with soybean oil.  相似文献   

13.
A completely randomized design study with a 3 × 2 factorial arrangement was conducted to evaluate the effects of three different fat sources (soybean oil, tallow, and poultry fat) with or without emulsifier supplementation on performance, coefficient of total tract apparent digestibility (CTTAD) of fatty acids, and apparent metabolizable energy (AME) content in broiler chickens. Two hundred and fifty-two one-day-old male Arbor Acres broiler chickens were randomly divided into 6 different treatments: (T1) basal diet containing soybean oil without lysophosphatidylcholine (LPC) supplementation, (T2) basal diet containing soybean oil with LPC supplementation, (T3) basal diet containing tallow without LPC supplementation, (T4) basal diet containing tallow with LPC supplementation, (T5) basal diet containing poultry fat without LPC supplementation, and (T6) basal diet containing poultry fat with LPC supplementation. Body weight gains from broiler chicks fed diets containing tallow were lower (P<0.05) than the body weight gains from chicks that were fed diets containing soybean oil or poultry fat in both the starter and grower periods. Birds fed diets containing tallow had the highest FCR (P<0.05), followed by the birds that were fed diets containing poultry fat, and soybean oil. The CTTAD of C16:0, C18:2, and C18:3n3 was greater (P<0.05) for broilers fed diets containing soybean oil than for those fed diets containing tallow or poultry fat in the starter period. The addition of LPC increased (P<0.05) body weight gain of broiler chickens in the starter period and the AME of the diets in the grower period, and tended to reduce FCR (P=0.072) in the starter period. LPC supplementation increased (P<0.05) the CTTAD of C16:0, C18:1n7 and C18:1n9 in the starter period, and of C18:2, and C18:3n3 in the grower period (P<0.05). There were no significant interactions between fat sources and the addition of LPC. These data indicated that LPC supplementation can improve body weight gain of broiler chickens in the starter period. This effect may be associated with an increase of CTTAD of FA due to LPC activity.  相似文献   

14.
A synthetic diet preparation supplemented with 10% by weight of either safflower oil, hydrogenated coconut oil containing 3% safflower oil, or 'max EPA' fish oil was fed to rats over a 8-week period. Serial measurements of serum fatty acids, serum thromboxane B2 and urinary prostaglandin excretion were taken during the treatment period to assess the rate of change in fatty acid composition and prostaglandin synthesis following dietary manipulation. There was no significant change in weight gain between the dietary groups during the treatment period. Significant changes in serum fatty acids occurred within 48 h of treatment, with the 'max EPA' oil group having arachidonic acid levels reduced by 23% (P less than 0.01) compared to the coconut oil group. Conversely, rats fed safflower oil had an 18% enhancement of arachidonic acid during the same time period. Whole blood synthesis of thromboxane B2 was significantly depressed (P less than 0.01) after 48 h in rats fed 'max EPA' oil compared to the safflower oil or coconut oil groups. This suppression reached a maximum of 65% (P less than 0.001) after 7 days of dietary 'max EPA' oil treatment. The safflower oil and coconut oil-fed groups showed the same levels of serum thromboxane B2 production over the treatment period. Urinary excretion of both 6-ketoprostaglandin F1 alpha and prostaglandin E2 varied significantly (P less than 0.01) between the groups after 7 days of dietary treatment. Rats fed 'max EPA' oil had depressed urinary prostanoid excretion compared to the safflower and coconut oil groups which remained very similar to each other. After the 8-week treatment period rats were killed and the phospholipid fatty acid composition and prostaglandin-generating capacity of platelets, aorta and renal tissue was examined. Prostanoid production by kidney cortex and medulla and segments of aorta was consistently suppressed in rats fed 'max EPA' oil. These observations correlated well with changes in the phospholipid fatty acid profiles in these tissues. This study shows rapid changes in serum fatty acids and thromboxane B2 generation following dietary manipulation, while changes in urinary excretion or prostanoid metabolites occur only after a longer time period.  相似文献   

15.
The effects were examined of the dietary level of fat on the activity of inducible nitric oxide synthase (iNOS) in the liver of rats. In experiment 1, rats were fed on a diet containing 5% or 20% beef tallow or safflower oil for 32 d. The animals were given a subcutaneous injection of the carcinogen, 1,2-dimethylhydrazine (DMH), on d 4. The activity of hepatic iNOS was significantly elevated by the high-fat diet, but was unaffected by the dietary source of the fat examined. In experiment 2, rats were fed on a 5% or 20% beef tallow diet for 11 d or 32 d with or without the DMH treatment. Feeding the high-fat diet and DMH treatment caused higher activity of hepatic iNOS. In experiment 3, the high-fat diet elevated hepatic iNOS activity and the amount of its protein in the lipopolysaccharide-treated rats. The results suggest that hepatic NO production is enhanced by a high-fat diet.  相似文献   

16.
There is evidence that manganese (Mn) metabolism may be altered by the form and amount of dietary fat. Also, iron (Fe) absorption is greater with saturated fats, as compared to polyunsaturated fatty acids (PUFAs). The absorption of Fe and Mn are interrelated in many aspects; therefore, the form of dietary fat may indirectly alter Mn absorption. The reported studies were conducted to determine whether saturated fat, as compared to unsaturated fat, affected Mn absorption, retention, and metabolism. In experiment I, adult rats were fed diets containing either 0.7 or 100.4 μg/g Mn with the fat source as high-linoleic safflower oil or stearic acid. After 2 wk of equilibration, the animals were fed a test meal of 54Mn followed by whole-body counting for 10 d. Manganese absorption was significantly (p<0.05) lower in the stearic acid group (0.9–4.8%) than in the safflower oil group (20–33.8%); however, the biological half-life was shorter in the safflower oil group. Retention of 54Mn and total Mn was always significantly (p<0.05) greater in the safflower oil group when dietary Mn was low, but it was the same when dietary Mn was high. In experiment II, weanling rats were fed 1.3, 39.3, or 174.6 μg Mn/g and either stearate, high-oleic safflower oil or high-linoleic safflower oil for 8 wk. Long-term feeding of the stearate and low Mn-containing diet resulted in a significant (p<0.0001) reduction in heart superoxide dismutase activity and kidney and liver Mn concentrations compared to the other diets. These data show that stearic acid inhibitits Mn absorption, but it may not inhibit Mn retention when dietary Mn is high. The U.S. Department of Agriculture, Agricultural Research Service, Northern Plains Area, is an equal opportunity/affirmative action employer and all agency services are available without discrimination. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable.  相似文献   

17.
To investigate the net tissue fatty acid deposition in response to graded levels of energy restriction and modification of diet fatty acid composition, rats were randomly assigned into four dietary groups and fed for 10 weeks diets containing 40% as energy of either fish, safflower, or olive oil, or beef tallow, consumed ad libitum or energy restricted to 85% or 68% of ad libitum intake by reducing diet carbohydrate content. An additional eight rats were killed before the diet regimen, to provide baseline data from which fatty acid deposition rates were calculated. Body weight, and heart, liver and fat mass gains were decreased with energy restriction (P<0.001). Olive oil feeding resulted in higher body weight gain (P < 0.03) than tallow feeding, whereas fish oil feeding was associated with highest (P < 0.007) liver weight and lowest (P < 0.03) fat mass gains. Energy deficit-related differences in the deposition of stearic, linoleic, arachidonic, and docosahexaenoic acids in heart and palmitic and docosahexaenoic acids in liver were dependent on the dietary oil consumed (P < 0.03). Similarly, interactive effects of restricted food intake and dietary oil type were found in the gain of palmitic, stearic, oleic, and linoleic acids in adipose tissue (P < 0.01) when expressed in relation to the amount of each fatty acid consumed. These data suggest that energy intake level can influence the deposition pattern, as well as oxidation rate, of tissue fatty acids as a function of tissue type, fatty acid structure, and dietary fatty acid composition.  相似文献   

18.
The effects of dietary fat types on the thermogenic activity of brown adipocytes isolated from rat were examined. When beef tallow (saturated fatty acids + oleic) and safflower oil (linoleic) were the dietary fats, the respiration rates of brown adipocytes activated either by norepinephrine or an uncoupler of mitochondrial respiration (carbonylcyanide-m-chlorophenylhydrazone) were both slightly higher in rats fed the polyunsaturated fat. When the effects of safflower oil and evening primrose oil (linoleīc + γ-linolenic) were compared, the activated respiration rate tended to be higher in the latter. The respiratory responses to varying concentrations of norepinephrine were apparently dependent on the dietary fat types. Triglyceride stored in interscapular brown adipose tissue appeared to be modified by dietary fat types. Dietary fat also characteristically modified the fatty acid compositions of interscapular brown and epididymal white adipose tissues. Thus, the type of dietary fat caused an alteration to the thermogenesis of brown adipose tissue at the cellular level.  相似文献   

19.
Cholesterol and lipoprotein metabolism were investigated in a group of rats fed a fish oil-supplemented diet, a rich source of n-3 fatty acids. For comparison purposes, other groups of rats were fed either safflower oil (n-6 fatty acids) or coconut oil (saturated fatty acids). Diets were isocaloric and contained identical amounts of cholesterol. Rats fed fish oils for 2 weeks showed a 35% lower plasma cholesterol level than rats fed safflower oil, who in turn showed a 14% lower plasma cholesterol level than those fed coconut oil. The fall in plasma cholesterol level with fish oils was associated with significant falls in low density and high density lipoprotein cholesterol levels, but with no significant change in the ratio of low density to high density lipoprotein cholesterol. The fatty acid compositions of plasma, hepatic, and biliary lipids showed relative enrichment with n-3 fatty acids, reflecting the composition of the diet. The fish oil diet increased the basal secretion rate of cholesterol into bile, but the bile acid secretion rate remained unchanged. It is suggested that n-3 fatty acids reduce the plasma cholesterol level in rats by increasing the transfer of cholesterol into bile.  相似文献   

20.
We tested the hypothesis that diets containing fish oils prevent the effects of a high cholesterol diet on the morphology and nutrient uptake of the intestine. Isocaloric semisynthetic diets were supplemented with beef tallow or fish oil containing low or high amounts of cholesterol and were fed to growing female Wistar rats for 14 days, after which the in vitro jejunal and ileal uptake of glucose, galactose, long-chain fatty acids, and cholesterol was determined. Feeding cholesterol with beef tallow was associated with a 12% decrease in the jejunal mucosal surface area. Feeding fish oil decreased jejunal mucosal surface area by 24%, as compared with the beef tallow diet, but the reduction was increased to 42% when fish oil and cholesterol were fed together. Ileal surface area was unaffected by varying the major source of dietary lipid, or by adding cholesterol. Despite the effect of fish oil on the mucosal surface area, the jejunal and ileal uptake of saturated as well as unsaturated long-chain fatty acids and cholesterol was similar in the four diet groups. Cholesterol supplementation enhanced the jejunal uptake of high concentrations of galactose only when fed with beef tallow, i.e., feeding fish oil prevented the enhancing effect of cholesterol on galactose uptake observed when beef tallow was fed. Thus, (i) a fish oil diet prevents the enhancing effect of cholesterol on jejunal active transport of galactose, an effect not explained by the reduction in jejunal mucosal surface area observed with the fish oil diet; (ii) these dietary manipulations result in a clear dissociation of the morphological from the transport adaptation of the intestine; and (iii) substitution of fish oil for beef tallow as the major source of lipid in the diet prevents the influence of cholesterol on the active intestinal transport of galactose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号