首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Split hand/split foot malformation (SHFM; ectrodactyly) is genetically heterogeneous, with mutations identified at five loci (SHFM1 at 7q21.3, SHFM2 at Xq26, SHFM3 at 10q24, SHFM4 at 3q27 and SHFM5 at 2q31). In this study, we attempted to identify and localize the causative allele of a Korean case of SHFM. Pedigree analysis showed that the Korean SHFM was autosomally dominant and its penetrance was high, indicating that it was not caused by SHFM2. Clinical features were variable, but limited to the four limbs unlike SHFM1, SHFM4 and SHFM5. G-banding and FISH failed to identify any chromosomal abnormalities. We also performed mutation screening by SSCP and DNA sequencing, as well as loss of heterozygosity (LOH) analysis, to exclude the possibility that SHFM4 or SHFM5 were involved; these revealed no mutations in gene p63 and no LOH on 2q31, respectively. It therefore appears that the Korean SHFM may be caused by mutation of SHFM3. In fact, linkage analysis using informative microsatellite markers indicated that SHFM3 was linked to D10S577 with a maximum LOD score of 1.15 at recombination fraction zero. Finally, we identified two novel alleles (191 and 211 bp) of D10S577 that have not been found in Western populations.  相似文献   

2.
Split-hand/split-foot malformation (SHFM, ectrodactyly, or lobster-claw deformity) is a human limb malformation characterized by aberrant development of central digital rays with absence of fingers and toes, a deep median cleft, and fusion of remaining digits. SHFM is clinically heterogeneous, presenting both in an isolated form and in combination with additional abnormalities affecting the tibia and/or other organ systems, including the genitourinary, craniofacial, and ectodermal structures. Three SHFM disease loci have been genetically mapped to chromosomes 7q21 (SHFM1), Xq26 (SHFM2), and 10q24 (SHFM3). We mapped data from a large Turkish family with isolated SHFM to chromosome 10q24 and have narrowed the SHFM3 region from 9 cM to an approximately 2-cM critical interval between genetic markers D10S1147 and D10S1240. In several instances we found evidence for a more severe phenotype in offspring of a mildly affected parent, suggesting anticipation. Finally, data from this family, combined with those from six other pedigrees, mapped to 10q24, demonstrate biased transmission of SHFM3 alleles from affected fathers to offspring. The degree of this segregation distortion is obvious in male offspring and is possibly of the same magnitude for female offspring.  相似文献   

3.
Split-hand/foot malformation (SHFM), also known as ectrodactyly, is characterized by malformations primarily affecting the central rays of the hands and/or feet that often result in formation of a deep median cleft. Based on the study of mouse models a defect in the maintenance of the apical ectodermal ridge has been postulated as the underlying pathomechanism. Currently, six loci for SHFM have been mapped, and point mutations as well as genomic rearrangements (duplications, deletions, translocations) have been identified. However, in many cases the genetic cause still remains unknown. Using genome-wide screening methods such as array CGH, microduplications at chromosome 17p13.3 were recently shown to be associated with ectrodactyly and tibial hemimelia. This article presents an overview of the genetic principles, pathogenesis and inheritance underlying SHFM as well as a scheme for diagnostic approaches to non-syndromic SHFM.  相似文献   

4.
Split hand/foot malformation type I (SHFM1) disease locus maps to chromosome 7q21.3-q22, a region that includes the distal-less-related (dll) genes DLX5 and DLX6. However, incomplete penetrance, variable expressivity, segregation distortion, and syndromic association with other anomalies have so far prevented the identification of the SHFM1 gene(s) in man. Here we show that the targeted double inactivation of Dlx5 and Dlx6 in the mouse causes in homozygous mutant animals bilateral ectrodactyly with a severe defect of the central ray of the hindlimbs, a malformation typical of SHFM1. This is the first evidence that the role of dll/Dlx genes in appendage development is conserved from insects to mammals and proves their involvement in SHFM1.  相似文献   

5.
p63 mutations have been associated with EEC syndrome (ectrodactyly, ectodermal dysplasia, and cleft lip/palate), as well as with nonsyndromic split hand-split foot malformation (SHFM). We performed p63 mutation analysis in a sample of 43 individuals and families affected with EEC syndrome, in 35 individuals affected with SHFM, and in three families with the EEC-like condition limb-mammary syndrome (LMS), which is characterized by ectrodactyly, cleft palate, and mammary-gland abnormalities. The results differed for these three conditions. p63 gene mutations were detected in almost all (40/43) individuals affected with EEC syndrome. Apart from a frameshift mutation in exon 13, all other EEC mutations were missense, predominantly involving codons 204, 227, 279, 280, and 304. In contrast, p63 mutations were detected in only a small proportion (4/35) of patients with isolated SHFM. p63 mutations in SHFM included three novel mutations: a missense mutation (K193E), a nonsense mutation (Q634X), and a mutation in the 3' splice site for exon 5. The fourth SHFM mutation (R280H) in this series was also found in a patient with classical EEC syndrome, suggesting partial overlap between the EEC and SHFM mutational spectra. The original family with LMS (van Bokhoven et al. 1999) had no detectable p63 mutation, although it clearly localizes to the p63 locus in 3q27. In two other small kindreds affected with LMS, frameshift mutations were detected in exons 13 and 14, respectively. The combined data show that p63 is the major gene for EEC syndrome, and that it makes a modest contribution to SHFM. There appears to be a genotype-phenotype correlation, in that there is a specific pattern of missense mutations in EEC syndrome that are not generally found in SHFM or LMS.  相似文献   

6.
7.
Split-hand/split-foot malformation (SHFM) is a congenital limb malformation characterized by a median cleft of hand and/or foot due to the absence of central rays. Five loci for syndromic and non-syndromic SHFM, termed SHFM1-5, have been mapped to date. Recently, a 0.5 Mb tandem genomic duplication was found at chromosome 10q24 in SHFM3 families. To refine the minimum duplicated region and to further characterize the SHFM3 locus, we screened 28 non-syndromic SHFM families for tandem genomic duplication of 10q24 by Southern blot and sequence analysis of the dactylin gene. Of 28 families, only two showed genomic rearrangements. Representative patients from the two families exhibit typical SHFM, with symmetrically affected hands and feet. One patient is a familial case with a 511,661 bp tandem duplication, whereas the second is a sporadic case arising from a de novo, 447,338 bp duplication of maternal origin. The smaller duplication in the second patient contained the LBX1, BTRC, POLL, and DPCD genes and a disrupted extra copy of the dactylin gene, and was nearly identical to the smallest known duplicated region of SHFM3. Our results indicate that genomic rearrangement of SHFM3 is rare among non-syndromic SHFM patients and emphasize the importance of screening for genomic rearrangements even in sporadic cases of SHFM.  相似文献   

8.
9.
BACKGROUND: At least five distinct loci have been implicated in split hand foot malformation (SHFM). Establishing genotype/phenotype correlations at the chromosomal level may elucidate responsible developmental genes and improve patient management. In our analysis of previously published genetically mapped SHFM cases, preaxial hand involvement was a significant discriminating variable, most commonly seen at the SHFM3 locus (OMIM 600095) at 10q24. Of the 47 SHFM3 patients analyzed, 15 (31.9%) had triphalangeal thumb (TPT), a limb finding not reported at any other locus. METHODS: The association of TPT/split foot, in particular, prompted us to review the literature for similar cases. RESULTS: We ascertained a number of unmapped familial and sporadic cases with TPT/split foot, including a group of patients with triphalangeal thumb-brachyectrodactyly syndrome. Certain trends were similar in both SHFM3 and these unmapped literature cases. With respect to gender, 7/12 (58%) of mapped SHFM3 cases with TPT/split foot were male whereas 5/12 (42%) were female, compared with 22/50 (44%) males and 28/50 (56%) females among unmapped cases (P=0.3715). Individuals in both groups usually had bilateral involvement, with 67 and 60% showing bilateral TPT among mapped and literature cases, respectively (P=0.6714). Bilateral involvement of the feet was even more striking (83% of SHFM3 patients and 96% of literature cases; P=0.0808). CONCLUSIONS: Patients with TPT/split foot may in fact represent SHFM3 cases and should be evaluated for genomic rearrangements at 10q24. TPT may be identified only by radiographic analysis, emphasizing the importance of imaging these patients and their family members.  相似文献   

10.
BACKGROUND: Split hand foot malformation (SHFM) (cleft hand, central ray deficiency) is a highly variable malformation that shows genetic heterogeneity with at least five loci mapped to date. SHFM occurs as an isolated finding or in association with other anomalies, including congenital heart defects (CHDs). METHODS: In total 48 SHFM1, 52 SHFM3, 48 SHFM4, 21 SHFM5, and four chromosome 8 patients were evaluated. In addition, we performed a literature review to identify “unmapped” SHFM patients with CHD to evaluate the various etiologies of this combination of findings. The London Dysmorphology Database also served as a resource to identify syndromes with this combination of phenotypic findings. Only patients presenting with both SHFM and CHD were included in the analysis. Classification of CHD among mapped and unmapped SHFM patients was performed utilizing the revised Clark classification. A closer inspection of the types of CHD found in this patient group was performed in order to investigate possible pathogenetic mechanisms. RESULTS: CHDs were found in 10% of SHFM1 patients, 47% of SHFM5 patients, but were not reported in SHFM2, SHFM4 patients, or patients mapped to chromosome 8. Forty‐two syndromic cases and 15 cases of unrecognized syndromes were identified. CONCLUSIONS: The higher frequency of heart defects seen in SHFM1 and SHFM5 of the mapped patient group raises the question as to whether common mechanisms/genetic players are involved. Candidate genes for SHFM1 and SHFM5 include members of the DLX homeobox gene family. Birth Defects Research (Part A), 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

11.
Split-hand/foot malformation (SHFM) is a congenital limb defect affecting predominantly the central rays of the autopod and occurs either as an isolated trait or part of a multiple congenital anomaly syndrome. SHFM is usually sporadic, familial forms are uncommon. The condition is clinically and genetically heterogeneous and shows mostly autosomal dominant inheritance with variable expressivity and reduced penetrance. To date, seven chromosomal loci associated with isolated SHFM have been described, i.e., SHFM1 to 6 and SHFM/SHFLD. The autosomal dominant mode of inheritance is typical for SHFM1, SHFM3, SHFM4, SHFM5. Autosomal recessive and X-linked inheritance is very uncommon and have been noted only in a few families. Most of the known SHFM loci are associated with chromosomal rearrangements that involve small deletions or duplications of the human genome. In addition, three genes, i.e., TP63, WNT10B, and DLX5 are known to carry point mutations in patients affected by SHFM. In this review, we focus on the known molecular basis of isolated SHFM. We provide clinical and molecular information about each type of abnormality as well as discuss the underlying pathways and mechanism that contribute to their development. Recent progress in the understanding of SHFM pathogenesis currently allows for the identification of causative genetic changes in about 50 % of the patients affected by this condition. Therefore, we propose a diagnostic flow-chart helpful in the planning of molecular genetic tests aimed at identifying disease causing mutation. Finally, we address the issue of genetic counseling, which can be extremely difficult and challenging especially in sporadic SHFM cases.  相似文献   

12.
13.
14.
We report on a large Dutch family with a syndrome characterized by severe hand and/or foot anomalies, and hypoplasia/aplasia of the mammary gland and nipple. Less frequent findings include lacrimal-duct atresia, nail dysplasia, hypohydrosis, hypodontia, and cleft palate with or without bifid uvula. This combination of symptoms has not been reported previously, although there is overlap with the ulnar mammary syndrome (UMS) and with ectrodactyly, ectodermal dysplasia, and clefting syndrome. Allelism with UMS and other related syndromes was excluded by linkage studies with markers from the relevant chromosomal regions. A genomewide screening with polymorphic markers allowed the localization of the genetic defect to the subtelomeric region of chromosome 3q. Haplotype analysis reduced the critical region to a 3-cM interval of chromosome 3q27. This chromosomal segment has not been implicated previously in disorders with defective development of limbs and/or mammary tissue. Therefore, we propose to call this apparently new disorder "limb mammary syndrome" (LMS). The SOX2 gene at 3q27 might be considered an excellent candidate gene for LMS because the corresponding protein stimulates expression of FGF4, an important signaling molecule during limb outgrowth and development. However, no mutations were found in the SOX2 open reading frame, thus excluding its involvement in LMS.  相似文献   

15.
16.
Wei J  Xue Y  Wu L  Ma J  Yi X  Zhang J  Lu B  Li C  Shi D  Shi S  Feng X  Cai T 《PloS one》2012,7(5):e35337
EEC (ectrodactyly, ectodermal dysplasia, clefting; OMIM 604292) is an autosomal dominant developmental disorder resulting mainly from pathogenic mutations of the DNA-binding domain (DBD) of the TP63 gene. In this study, we showed that K193E mutation in nine affected individuals of a four-generation kindred with a large degree of phenotypic variability causes four different syndromes or TP63-related disorders: EEC, Ectrodactyly-ectodermal dysplasia (EE), isolated ectodermal dysplasia, and isolated Split Hand/Foot Malformation type 4 (SHFM4). Genotype-phenotype and DBD structural modeling analysis showed that the K193-located loop L2-A is associated with R280 through hydrogen bonding interactions, while R280 mutations also often cause large phenotypic variability of EEC and SHFM4. Thus, we speculate that K193 and several other DBD mutation-associated syndromes may share similar pathogenic mechanisms, particularly in the case of the same mutation with different phenotypes. Our study and others also suggest that the phenotypic variability of EEC is attributed, at least partially, to genetic and/or epigenetic modifiers.  相似文献   

17.
Split-hand/foot malformation (SHFM) associated with aplasia of long bones, SHFLD syndrome or Tibial hemimelia-ectrodactyly syndrome is a rare condition with autosomal dominant inheritance, reduced penetrance and an incidence estimated to be about 1 in 1,000,000 liveborns. To date, three chromosomal regions have been reported as strong candidates for harboring SHFLD syndrome genes: 1q42.2–q43, 6q14.1 and 2q14.2. We characterized the phenotype of nine affected individuals from a large family with the aim of mapping the causative gene. Among the nine affected patients, four had only SHFM of the hands and no tibial defects, three had both defects and two had only unilateral tibial hemimelia. In keeping with previous publications of this and other families, there was clear evidence of both variable expression and incomplete penetrance, the latter bearing hallmarks of anticipation. Segregation analysis and multipoint Lod scores calculations (maximum Lod score of 5.03 using the LINKMAP software) using all potentially informative family members, both affected and unaffected, identified the chromosomal region 17p13.1–17p13.3 as the best and only candidate for harboring a novel mutated gene responsible for the syndrome in this family. The candidate gene CRK located within this region was sequenced but no pathogenic mutation was detected.  相似文献   

18.
19.
Split-hand/split-foot malformation (SHFM), a limb malformation involving the central rays of the autopod and presenting with syndactyly, median clefts of the hands and feet, and aplasia and/or hypoplasia of the phalanges, metacarpals, and metatarsals, is phenotypically analogous to the naturally occurring murine Dactylaplasia mutant (Dac). Results of recent studies have shown that, in heterozygous Dac embryos, the central segment of the apical ectodermal ridge (AER) degenerates, leaving the anterior and posterior segments intact; this finding suggests that localized failure of ridge maintenance activity is the fundamental developmental defect in Dac and, by inference, in SHFM. Results of gene-targeting studies have demonstrated that p63, a homologue of the cell-cycle regulator TP53, plays a critically important role in regulation of the formation and differentiation of the AER. Two missense mutations, 724A-->G, which predicts amino acid substitution K194E, and 982T-->C, which predicts amino acid substitution R280C, were identified in exons 5 and 7, respectively, of the p63 gene in two families with SHFM. Two additional mutations (279R-->H and 304R-->Q) were identified in families with EEC (ectrodactyly, ectodermal dysplasia, and facial cleft) syndrome. All four mutations are found in exons that fall within the DNA-binding domain of p63. The two amino acids mutated in the families with SHFM appear to be primarily involved in maintenance of the overall structure of the domain, in contrast to the p63 mutations responsible for EEC syndrome, which reside in amino acid residues that directly interact with the DNA.  相似文献   

20.
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the shortening of a copy-number polymorphic array of 3.3 kb repeats (D4Z4) at one allelic 4q35.2 region. How this contraction of a subtelomeric tandem array causes FSHD is unknown but indirect evidence suggests that a short array has a cis effect on a distant gene or genes. It was hypothesized that the length of the D4Z4 array determines whether or not the array and a large proximal region are heterochromatic and thereby controls gene expression in cis. To test this, we used fluorescence in situ hybridization probes with FSHD and control myoblasts to characterize the distal portion of 4q35.2 with respect to the following: intense staining with the chromatin dye 4,6-diamidino-2-phenylindole; association with constitutively heterochromatic foci; extent of binding of heterochromatin protein 1; histone H3 methylation at lysine 9 and lysine 4; histone H4 lysine 8 acetylation; and replication timing within S-phase. Our results indicate that 4q35.2 does not resemble constitutive heterochromatin in FSHD or control myoblasts. Furthermore, in these analyses, the allelic 4q35.2 regions of FSHD myoblasts did not behave differently than those of control myoblasts. Other models for how D4Z4 array contraction causes long-distance regulation of gene expression in cis need to be tested.Communicated by S. Gerbi  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号