首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 130 毫秒
1.
The neural response to a stimulus is influenced by endogenous factors such as expectation and attention. Current research suggests that expectation and attention exert their effects in opposite directions, where expectation decreases neural activity in sensory areas, while attention increases it. However, expectation and attention are usually studied either in isolation or confounded with each other. A recent study suggests that expectation and attention may act jointly on sensory processing, by increasing the neural response to expected events when they are attended, but decreasing it when they are unattended. Here we test this hypothesis in an auditory temporal cueing paradigm using magnetoencephalography in humans. In our study participants attended to, or away from, tones that could arrive at expected or unexpected moments. We found a decrease in auditory beta band synchrony to expected (versus unexpected) tones if they were unattended, but no difference if they were attended. Modulations in beta power were already evident prior to the expected onset times of the tones. These findings suggest that expectation and attention jointly modulate sensory processing.  相似文献   

2.

Background  

Processing stimuli in one sensory modality is known to result in suppression of other sensory-specific cortices. Additionally, behavioral experiments suggest that the primary consequence of paying attention to a specific sensory modality is poorer task performance in the unattended sensory modality. This study was designed to determine how focusing attention on the auditory or visual modality impacts neural activity in cortical regions responsible for processing stimuli in the unattended modality.  相似文献   

3.
Both physiological and behavioral studies have suggested that stimulus-driven neural activity in the sensory pathways can be modulated in amplitude during selective attention. Recordings of event-related brain potentials indicate that such sensory gain control or amplification processes play an important role in visual-spatial attention. Combined event-related brain potential and neuroimaging experiments provide strong evidence that attentional gain control operates at an early stage of visual processing in extrastriate cortical areas. These data support early selection theories of attention and provide a basis for distinguishing between separate mechanisms of attentional suppression (of unattended inputs) and attentional facilitation (of attended inputs).  相似文献   

4.
Given the limited processing capabilities of the sensory system, it is essential that attended information is gated to downstream areas, whereas unattended information is blocked. While it has been proposed that alpha band (8–13 Hz) activity serves to route information to downstream regions by inhibiting neuronal processing in task-irrelevant regions, this hypothesis remains untested. Here we investigate how neuronal oscillations detected by electroencephalography in visual areas during working memory encoding serve to gate information reflected in the simultaneously recorded blood-oxygenation-level-dependent (BOLD) signals recorded by functional magnetic resonance imaging in downstream ventral regions. We used a paradigm in which 16 participants were presented with faces and landscapes in the right and left hemifields; one hemifield was attended and the other unattended. We observed that decreased alpha power contralateral to the attended object predicted the BOLD signal representing the attended object in ventral object-selective regions. Furthermore, increased alpha power ipsilateral to the attended object predicted a decrease in the BOLD signal representing the unattended object. We also found that the BOLD signal in the dorsal attention network inversely correlated with visual alpha power. This is the first demonstration, to our knowledge, that oscillations in the alpha band are implicated in the gating of information from the visual cortex to the ventral stream, as reflected in the representationally specific BOLD signal. This link of sensory alpha to downstream activity provides a neurophysiological substrate for the mechanism of selective attention during stimulus processing, which not only boosts the attended information but also suppresses distraction. Although previous studies have shown a relation between the BOLD signal from the dorsal attention network and the alpha band at rest, we demonstrate such a relation during a visuospatial task, indicating that the dorsal attention network exercises top-down control of visual alpha activity.  相似文献   

5.
In the past few years, important contributions have been made to the study of emotional visual perception. Researchers have reported responses to emotional stimuli in the human amygdala under some unattended conditions (i.e. conditions in which the focus of attention was diverted away from the stimuli due to task instructions), during visual masking and during binocular suppression. Taken together, these results reveal the relative degree of autonomy of emotional processing. At the same time, however, important limitations to the notion of complete automaticity have been revealed. Effects of task context and attention have been shown, as well as large inter-subject differences in sensitivity to the detection of masked fearful faces (whereby briefly presented, target fearful faces are immediately followed by a neutral face that 'masks' the initial face). A better understanding of the neural basis of emotional perception and how it relates to visual attention and awareness is likely to require further refinement of the concepts of automaticity and awareness.  相似文献   

6.
The effects of spatial selective attention upon ERPs associated with the processing of word stimuli were investigated. While subjects maintained central eye fixation, ERPs were recorded to words presented to the left and right visual fields. In each of 6 runs, subjects focussed attention to alternate fields to perform a category-detection task. Pairs of semantically related and repeated words were embedded in the word lists presented to the attended and unattended visual fields. Consistent with prior studies, the P1-N1 visual ERP was larger when elicited by words in attended spatial locations. A large negative slow wave identified as N400 was elicited by attended, but not unattended, words. For attended words, N400 was smaller for semantically primed or repeated words. We concluded that spatial selective attention can modulate the degree to which words are processed, and that the cognitive processes associated with N400 are not automatic.  相似文献   

7.
人脑每时每刻都要接收大量视觉信息,由于人脑加工信息的能力有限,所以在较大视野内将注意分配给相关信息,同时抑制引起注意分散的不相关信息,对执行目标导向的行为至关重要。这种对视觉信息的选择性和主动性加工以适应当前目标的过程被称作视觉注意(visual attention),且视觉注意可分为自上而下的注意与自下而上的注意两种不同功能。由于来自大脑电信号的神经振荡活动在认知加工中发挥重要作用,已有研究综述了视觉注意与神经振荡(neural oscillation)的密切关系,但并未涉及不同的注意功能与神经振荡的关系。本文系统性调查了不同注意功能与神经振荡的关系,发现额-顶区域的theta频带振荡活动反映了自上而下的认知控制,而后部脑区的theta振荡与自下而上的注意相关。顶-枕区域alpha振荡的偏侧化有助于注意分配,而alpha频带的大规模同步促成了注意对视皮层自上而下的影响。Beta振荡介导了自上而下的信息与自下而上的信息之间的互动,作为信息载体促进了视觉信息处理。Gamma振荡则可能与自上而下和自下而上的注意间整合相关。本文就视觉注意功能与神经振荡关系的研究现状展开综述,旨在揭示不同的神经振荡活动在特定的视觉注意功能中的作用。  相似文献   

8.
Liu T  Larsson J  Carrasco M 《Neuron》2007,55(2):313-323
How does feature-based attention modulate neural responses? We used adaptation to quantify the effect of feature-based attention on orientation-selective responses in human visual cortex. Observers were adapted to two superimposed oblique gratings while attending to one grating only. We measured the magnitude of attention-induced orientation-selective adaptation both psychophysically, by the behavioral tilt aftereffect, and physiologically, using fMRI response adaptation. We found evidence for orientation-selective attentional modulation of neuronal responses-a lower fMRI response for the attended than the unattended orientation-in multiple visual areas, and a significant correlation between the magnitude of the tilt aftereffect and that of fMRI response adaptation in V1, the earliest site of orientation coding. These results show that feature-based attention can selectively increase the response of neuronal subpopulations that prefer the attended feature, even when the attended and unattended features are coded in the same visual areas and share the same retinotopic location.  相似文献   

9.
A mechanistic study of consciousness need not be confined to human complexity. Other animals also display key behaviors and responses that have long been intimately tied to the measure of consciousness in humans. Among them are some very well-defined and measurable endpoints: selective attention, sleep and general anesthesia. That these three variables associated with changes in consciousness might exist even in a fruit-fly does not necessarily imply that a fly is "conscious", but it does suggest that some of the problems central to the field of consciousness studies could be investigated in a model organism such as Drosophila melanogaster. Demonstrating suppression of unattended stimuli, which is central to attention studies in humans, is now possible in Drosophila by measuring neural correlates of visual selection. By combining such studies with an eventual understanding of suppression in other arousal states in the fly, such as sleep and general anesthesia, we might be unraveling mechanisms relevant to consciousness as well.  相似文献   

10.
Spatial visual attention modulates the first negative-going deflection in the human averaged event-related potential (ERP) in response to visual target and non-target stimuli (the N1 complex). Here we demonstrate a decomposition of N1 into functionally independent subcomponents with functionally distinct relations to task and stimulus conditions. ERPs were collected from 20 subjects in response to visual target and non-target stimuli presented at five attended and non-attended screen locations. Independent component analysis, a new method for blind source separation, was trained simultaneously on 500 ms grand average responses from all 25 stimulus-attention conditions and decomposed the non-target N1 complexes into five spatially fixed, temporally independent and physiologically plausible components. Activity of an early, laterally symmetrical component pair (N1aR and N1aL) was evoked by the left and right visual field stimuli, respectively. Component N1aR peaked ca. 9 ms earlier than N1aL. Central stimuli evoked both components with the same peak latency difference, producing a bilateral scalp distribution. The amplitudes of these components were no reliably augmented by spatial attention. Stimuli in the right visual field evoked activity in a spatio-temporally overlapping bilateral component (N1b) that peaked at ca. 180 ms and was strongly enhanced by attention. Stimuli presented at unattended locations evoked a fourth component (P2a) peaking near 240 ms. A fifth component (P3f) was evoked only by targets presented in either visual field. The distinct response patterns of these components across the array of stimulus and attention conditions suggest that they reflect activity in functionally independent brain systems involved in processing attended and unattended visuospatial events.  相似文献   

11.
Color and luminance contrasts attract independent attention   总被引:2,自引:0,他引:2  
Paying attention can improve vision in many ways, including some very basic functions such as contrast discrimination, a task that probably reflects very early levels of visual processing. Electrophysiological, psychophysical, and imaging studies on humans as well as single recordings in monkey show that attention can modulate the neuronal response at an early stage of visual processing, probably by acting on the response gain. Here, we measure incremental contrast thresholds for luminance and color stimuli to derive the contrast response of early neural mechanisms and their modulation by attention. We show that, for both cases, attention improves contrast discrimination, probably by multiplicatively increasing the gain of the neuronal response to contrast. However, the effects of attention are highly specific to the visual modality: concurrent attention to a competing luminance, but not chromatic pattern, greatly impedes luminance contrast discrimination; and attending to a competing chromatic, but not luminance, task impedes color contrast discrimination. Thus, the effects of attention are highly modality specific, implying separate attentional resources for different fundamental visual attributes at early stages of visual processing.  相似文献   

12.
When subjects direct attention to a particular location in a visual scene, responses in the visual cortex to stimuli presented at that location are enhanced, and the suppressive influences of nearby distractors are reduced. What is the top-down signal that modulates the response to an attended versus an unattended stimulus? Here, we demonstrate increased activity related to attention in the absence of visual stimulation in extrastriate cortex when subjects covertly directed attention to a peripheral location expecting the onset of visual stimuli. Frontal and parietal areas showed a stronger signal increase during this expectation than did visual areas. The increased activity in visual cortex in the absence of visual stimulation may reflect a top-down bias of neural signals in favor of the attended location, which derives from a fronto-parietal network.  相似文献   

13.
The neural basis of selective spatial attention presents a significant challenge to cognitive neuroscience. Recent neuroimaging studies have suggested that regions of the parietal and temporal cortex constitute a "supramodal" network that mediates goal-directed attention in multiple sensory modalities. Here we used transcranial magnetic stimulation (TMS) to determine which cortical subregions control strategic attention in vision and touch. Healthy observers undertook an orienting task in which a central arrow cue predicted the location of a subsequent visual or somatosensory target. To determine the attentional role of cortical subregions at different stages of processing, TMS was delivered to the right hemisphere during cue or target events. Results indicated a critical role of the inferior parietal cortex in strategic orienting to visual events, but not to somatosensory events. These findings are inconsistent with the existence of a supramodal attentional network and instead provide direct evidence for modality-specific attentional processing in parietal cortex.  相似文献   

14.
Mismatch negativity of ERP in cross-modal attention   总被引:1,自引:0,他引:1  
Event-related potentials were measured in 12 healthy youth subjects aged 19-22 using the paradigm "cross-modal and delayed response" which is able to improve unattended purity and to avoid the effect of task target on the deviant components of ERP. The experiment included two conditions: (i) Attend visual modality, ignore auditory modality; (ii) attend auditory modality, ignore visual modality. The stimuli under the two conditions were the same. The difference wave was obtained by subtracting ERPs of the standard stimuli from that of the deviant stim-uli. The present results showed that mismatch negativity (MMN), N2b and P3 components can be produced in the auditory and visual modalities under attention condition. However, only MMN was observed in the two modalities un-der inattention condition. Auditory and visual MMN have some features in common: their largest MMN wave peaks were distributed respectively over their primary sensory projection areas of the scalp under attention condition, but over front  相似文献   

15.
This article reviews the nature of the neural code in non-human primate cortex and assesses the potential for neurons to carry two or more signals simultaneously. Neurophysiological recordings from visual and motor systems indicate that the evidence for a role for precisely timed spikes relative to other spike times (ca. 1-10 ms resolution) is inconclusive. This indicates that the visual system does not carry a signal that identifies whether the responses were elicited when the stimulus was attended or not. Simulations show that the absence of such a signal reduces, but does not eliminate, the increased discrimination between stimuli that are attended compared with when the stimuli are unattended. The increased accuracy asymptotes with increased gain control, indicating limited benefit from increasing attention. The absence of a signal identifying the attentional state under which stimuli were viewed can produce the greatest discrimination between attended and unattended stimuli. Furthermore, the greatest reduction in discrimination errors occurs for a limited range of gain control, again indicating that attention effects are limited. By contrast to precisely timed patterns of spikes where the timing is relative to other spikes, response latency provides a fine temporal resolution signal (ca. 10 ms resolution) that carries information that is unavailable from coarse temporal response measures. Changes in response latency and changes in response magnitude can give rise to different predictions for the patterns of reaction times. The predictions are verified, and it is shown that the standard method for distinguishing executive and slave processes is only valid if the representations of interest, as evidenced by the neural code, are known. Overall, the data indicate that the signalling evident in neural signals is restricted to the spike count and the precise times of spikes relative to stimulus onset (response latency). These coding issues have implications for our understanding of cognitive models of attention and the roles of executive and slave systems.  相似文献   

16.
The sophisticated analysis of gestures and vocalizations, including assessment of their emotional valence, helps group-living primates efficiently navigate their social environment. Deficits in social information processing and emotion regulation are important components of many human psychiatric illnesses, such as autism, schizophrenia and social anxiety disorder. Analyzing the neurobiology of social information processing and emotion regulation requires a multidisciplinary approach that benefits from comparative studies of humans and animal models. However, many questions remain regarding the relationship between visual attention and arousal while processing social stimuli. Using noninvasive infrared eye-tracking methods, we measured the visual social attention and physiological arousal (pupil diameter) of adult male rhesus monkeys (Macaca mulatta) as they watched social and nonsocial videos. We found that social videos, as compared to nonsocial videos, captured more visual attention, especially if the social signals depicted in the videos were directed towards the subject. Subject-directed social cues and nonsocial nature documentary footage, compared to videos showing conspecifics engaging in naturalistic social interactions, generated larger pupil diameters (indicating heightened sympathetic arousal). These findings indicate that rhesus monkeys will actively engage in watching videos of various kinds. Moreover, infrared eye tracking technology provides a mechanism for sensitively gauging the social interest of presented stimuli. Adult male rhesus monkeys' visual attention and physiological arousal do not always trend in the same direction, and are likely influenced by the content and novelty of a particular visual stimulus. This experiment creates a strong foundation for future experiments that will examine the neural network responsible for social information processing in nonhuman primates. Such studies may provide valuable information relevant to interpreting the neural deficits underlying human psychiatric illnesses such as autism, schizophrenia and social anxiety disorder.  相似文献   

17.
18.
Attentional selection plays a critical role in conscious perception. When attention is diverted, even salient stimuli fail to reach visual awareness. Attention can be voluntarily directed to a spatial location or a visual feature for facilitating the processing of information relevant to current goals. In everyday situations, attention and awareness are tightly coupled. This has led some to suggest that attention and awareness might be based on a common neural foundation, whereas others argue that they are mediated by distinct mechanisms. A body of evidence shows that visual stimuli can be processed at multiple stages of the visual-processing streams without evoking visual awareness. To illuminate the relationship between visual attention and conscious perception, we investigated whether top-down attention can target and modulate the neural representations of unconsciously processed visual stimuli. Our experiments show that spatial attention can target only consciously perceived stimuli, whereas feature-based attention can modulate the processing of invisible stimuli. The attentional modulation of unconscious signals implies that attention and awareness can be dissociated, challenging a simplistic view of the boundary between conscious and unconscious visual processing.  相似文献   

19.
A presently unresolved question within the face perception literature is whether attending to the location of a face modulates face processing (i.e. spatial attention). Opinions on this matter diverge along methodological lines – where neuroimaging studies have observed that the allocation of spatial attention serves to enhance the neural response to a face, findings from behavioural paradigms suggest face processing is carried out independently of spatial attention. In the present study, we reconcile this divide by using a continuous behavioural response measure that indexes face processing at a temporal resolution not available in discrete behavioural measures (e.g. button press). Using reaching trajectories as our response measure, we observed that although participants were able to process faces both when attended and unattended (as others have found), face processing was not impervious to attentional modulation. Attending to the face conferred clear benefits on sex-classification processes at less than 350ms of stimulus processing time. These findings constitute the first reliable demonstration of the modulatory effects of both spatial and temporal attention on face processing within a behavioural paradigm.  相似文献   

20.
Visuomotor origins of covert spatial attention   总被引:6,自引:0,他引:6  
Moore T  Armstrong KM  Fallah M 《Neuron》2003,40(4):671-683
Covert spatial attention produces biases in perceptual performance and neural processing of behaviorally relevant stimuli in the absence of overt orienting movements. The neural mechanism that gives rise to these effects is poorly understood. This paper surveys past evidence of a relationship between oculomotor control and visual spatial attention and more recent evidence of a causal link between the control of saccadic eye movements by frontal cortex and covert visual selection. Both suggest that the mechanism of covert spatial attention emerges as a consequence of the reciprocal interactions between neural circuits primarily involved in specifying the visual properties of potential targets and those involved in specifying the movements needed to fixate them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号