首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Investigations of the uptake of ammonium (NH 4 + ) by Rhodopseudomonas capsulata B100 supported the presence of an NH 4 + transport system. Experimentally NH 4 + was determined by electrode or indophenol assay and saturation kinetics were observed with two apparent K m's of 1.7 M and 11.1 M (pH 6.8, 30°) and a V max at saturation of 50–60 nmol/min·mg protein. The optimum pH and temperature were 7.0 and 33° C, respectively. The Q10 quotient was calculated to be 1.9 at 100 M NH 4 + , indicating enzymatic involvement. In contrast to the wild type, B100, excretion of NH 4 + , not uptake, was observed in a glutamine auxotroph, R. capsulata G29, which is derepressed for nitrogenase and lacks glutamine synthetase activity. G29R1, a revertant of G29, also took up NH 4 + at the same rate as wild type and had fully restored glutamine synthetase activity. Partially restored derivatives, G29R5 and G29R6, grew more slowly than wild type on NH 4 + as the nitrogen source, remained derepressed for nitrogenase in the presence of NH 4 + , and displayed rates of NH 4 + uptake in proportion to their glutamine synthetase activity. Ammonium uptake and glutamine synthetase activity were also restored in R. capsulata G29 exconjugants which had received the plasmid pPS25, containing the R. capsulata glutamine synthetase structural gene. These data suggest that NH 4 + transport is tightly coupled to assimilation.Abbreviations used CHES cyclohexylaminoethanesulfonic acid - GS glutamine synthetase - SDS sodium dodecylsulfate  相似文献   

2.
J. Schlee  E. Komor 《Planta》1986,168(2):232-238
The preincubation of Chlorella cells with glucose caused a tenfold increase of the maximal uptake rate of ammonium without change in the K m (2 M). A similar stimulation of ammonium uptake was found when the cells were transferred to nitrogen-free growth medium. The time-course of uptake stimulation by glucose revealed a lag period of 10–20 min. The turnover of the ammonium transport system is characterized by a half-life time of 5–10 h, but in the presence of light 30% of uptake activity stayed even after 50 h. 6-Deoxyglucose was not able to increase the ammonium uptake rate. These data together were interpreted as evidence for induction of an ammonium transport system by a metabolite of glucose. Mechanistic studies of the ammonium transport system provided evidence for the electrogenic uptake of the ammonium ion. The charge compensation for NH 4 + entry was achieved by immediate K+ efflux from the cells, and this was followed after 1 min by H+ extrusion. Ammonium accumulated in the cells; the rate of uptake was sensitive to p-trifluoromethoxy-carbonylcyanide-phenylhydrazon and insensitive to methionine-sulfoxime. Uptake studies with methylamine revealed that methylamine transport is obviously catalyzed by the ammonium transport system and, therefore, also increased in glucose-treated Chlorella cells.Abbreviation p.c. packed cells  相似文献   

3.
15N-Nuclear magnetic resonance spectroscopy was used to follow nitrogen assimilation and amino-acid production in Wolffia arrhiza (L.) Hork. ex. Wimmer, clone Golan exposed to 4.0 mM 15NH4Cl solutions for 24 h. The main 15N-labelled metabolites were asparagine and glutamine, as well as substantial amounts of unreacted, intracellular NH 4 + . These results were compared with those of a previous study on Lemna gibba L. clone Hurfeish (Monselise et al., 1987, New Phytol. 10, 341–345) with regard to NH 4 + uptake, assimilation and detoxification efficiencies. Both species, grown under continuous white light, were capable of preferential uptake of NH 4 + in the presence of nitrate. Relative growth rates indicate that both species tolerate increased levels of NH 4 + , up to 10–2 mol · 1–1, with L. gibba showing a slightly greater tolerance. No 15N-labelled free NH 4 + was detectable in L. gibba, while in W. arrhiza excess NH 4 + was found within the cells. This fact indicates that L. gibba is more efficient in detoxification than W. arrhiza, presumably because of inability of W. arrhiza to regenerate the NH 4 + traps, glutamate and aspartate, rapidly enough. This is also evident from the observation that addition of -ketoglutarate to the medium caused nearly complete assimilation of intracellular NH 4 + in W. arrhiza. In both plants, addition of -ketoglutarate increased both NH 4 + uptake and assimilation. Addition of l-methionine dl-sulfoximine, an inhibitor of glutamine synthetase inhibited NH 4 + assimilation, while addition of azaserine, an inhibitor of glutamate synthase, resulted in 15N incorporation into the glutamine-amide position only. These results are consistent with the glutamine synthetase-glutamate synthase pathway being the major route of NH 4 + assimilation in the two plants under the conditions used.Abbreviations AZA azaserine (O-diazoacetyl-l-serine) - GOGAT glutamine oxoglutarate amine transferase=]glutamate synthase E.C. 1.4.7. and E.C. 1.4.1.13. - GS glutamine synthetase E.C. 6.3.1.2. - -KG -ketoglutarate=2-oxoglutarate - MSO l-methionine dl-sulphoximine - NMR nuclear magnetic resonance - RGR relative growth rate This article is dedicated to Professor Bernhard Schrader on the occasion of his 60th birthdayWe wish to thank Professor Robert Glaser for helpful discussions, and Mrs. Aliza Levkoviz and Mr. Gideon Raziel for skillful assistance.  相似文献   

4.
Summary We studied root net uptake of ammonium (NH 4 + ) and nitrate (NO 3 ) in species of the genus Piper (Piperaceae) under high, intermediate and low photosynthetically active photon flux densities (PFD). Plants were grown hydroponically, and then transferred to temperature controlled (25° C) root cuvettes for nutrient uptake determinations. Uptake solutions provided NH 4 + and NO 3 simultaneously (both) or separately (single). In the first experiment, seven species of Piper, from a broad range of rainforest light habitats ranging from gap to understory, were screened for mineral nitrogen preference (100 M NH 4 + and/or 100 M NO 3 ) at intermediate PFD (100 mol m–2 s–1). Preference for NH 4 + relative to NO 3 , defined as the ratio of NH 4 + (both):NO 3 (both) net uptake, was higher in understory species than in gap species. Ammonium repression of NO 3 uptake, defined as the ratio of NO 3 (single): NO 3 (both) net uptake, was also higher in understory species as compared to gap species. In a second set of experiments, we examined the effect of nitrogen concentration (equimolar, 10 to 1000 M) on NH 4 + preference and NH 4 + repression of NO 3 net uptake at high (500 mol m–2 s–1) and low (50 mol m–2 s–1) PFD in a gap (P. auritum), generalist (P. hispidum) and understory species (P. aequale). All species exhibited negligible NH 4 + repression of NO 3 net uptake at high PFD. At low PFD, NH 4 + preference and repression of NO 3 net uptake occurred in all species (understory > generalist > gap), but only at intermediate nitrogen concentrations, i.e. between 10 and 200 M. Ammonium repression of net NO 3 uptake decreased or increased rapidly (in < 48 h) after transitions from low to high or from high to low PFD respectively. No significant diurnal patterns in NO 3 or NH 4 + net uptake were observed.CIWDPB publication # 1130  相似文献   

5.
BassiriRad  Hormoz  Prior  Stephen A.  Norby  Rich J.  Rogers  Hugo H. 《Plant and Soil》1999,217(1-2):195-204
Models describing plant and ecosystem N cycles require an accurate assessment of root physiological uptake capacity for NH 4 + and NO 3 - under field conditions. Traditionally, rates of ion uptake in field-grown plants are determined by using excised root segments incubated for a short period in an assay solution containing N either as a radioactive or stable isotope tracer (e.g., 36ClO3 as a NH 4 + analogue, 14CH3NH3 as an NO 3 - analogue or 15NH 4 + and 15NO 3 - ). Although reliable, this method has several drawbacks. For example, in addition to radioactive safety issues, purchase and analysis of radioactive and stable isotopes is relatively expensive and can be a major limitation. More importantly, because excision effectively interrupts exchange of compounds between root and shoot (e.g., carbohydrate supply to root and N transport to shoot), the assay must be conducted quickly to avoid such complications. Here we present a novel field method for simultaneous measurements of NH 4 + and NO 3 - uptake kinetics in intact root systems. The application of this method is demonstrated using two tree species; red maple (Acer rubrum) and sugar maple (Acer saccharum) and two crop species soybean (Glycine max) and sorghum (Sorghum bicolor). Plants were grown in open-top chambers at either ambient or elevated levels of atmospheric CO2 at two separate US national sites involved in CO2 research. Absolute values of net uptake rates and the kinetic parameters determined by our method were found to be in agreement with the literature reports. Roots of the crop species exhibited a greater uptake capacity for both N forms relative to tree species. Elevated CO2 did not significantly affect kinetics of N uptake in species tested except in red maple where it increased root uptake capacity, V, for NH 4 + . The application, reliability, advantages and disadvantages of the method are discussed in detail. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
The soil nitrifying bacterium Nitrosomonas europaea has shown the ability to transform cometabolically naphthalene as well as other 2- and 3-ringed polycyclic aromatic hydrocarbons (PAHs) to more oxidized products. All of the observed enzymatic reactions were inhibited by acetylene, a selective inhibitor of ammonia monooxygenase (AMO). A strong inhibitory effect of naphthalene on ammonia oxidation by N. europaea was observed. Naphthalene was readily oxidized by N. europaea and 2-naphthol was detected as a major product (85%) of naphthalene oxidation. The maximum naphthol production rate was 1.65 nmole/mg protein-min in the presence of 240 M naphthalene and 10 mM NH4 +. Our results demonstrate that the oxidation between ammonia and naphthalene showed a partial competitive inhibition. The relative ratio of naphthalene and ammonia oxidation, depending on naphthalene concentrations, demonstrated that the naphthalene was oxidized 2200-fold slower than ammonia at lower concentration of naphthalene (15 M) whereas naphthalene was oxidized only 100-fold slower than ammonia oxidation. NH4 +- and N2H4-dependent O2 uptake measurement demonstrated irreversible inhibitory effects of the naphthalene and subsequent oxidation products on AMO and HAO activity.  相似文献   

7.
Others have shown that exposing oocytes to high levels of (10–20 mM) causes a paradoxical fall in intracellular pH (pHi), whereas low levels (e.g., 0.5 mM) cause little pHi change. Here we monitored pHi and extracellular surface pH (pHS) while exposing oocytes to 5 or 0.5 mM NH3/NH4 +. We confirm that 5 mM causes a paradoxical pHi fall (−ΔpHi ≅ 0.2), but also observe an abrupt pHS fall (−ΔpHS ≅ 0.2)—indicative of NH3 influx—followed by a slow decay. Reducing [NH3/NH4 +] to 0.5 mM minimizes pHi changes but maintains pHS changes at a reduced magnitude. Expressing AmtB (bacterial Rh homologue) exaggerates −ΔpHS at both levels. During removal of 0.5 or 5 mM NH3/NH4 +, failure of pHS to markedly overshoot bulk extracellular pH implies little NH3 efflux and, thus, little free cytosolic NH3/NH4 +. A new analysis of the effects of NH3 vs. NH4 + fluxes on pHS and pHi indicates that (a) NH3 rather than NH4 + fluxes dominate pHi and pHS changes and (b) oocytes dispose of most incoming NH3. NMR studies of oocytes exposed to 15N-labeled show no significant formation of glutamine but substantial accumulation in what is likely an acid intracellular compartment. In conclusion, parallel measurements of pHi and pHS demonstrate that NH3 flows across the plasma membrane and provide new insights into how a protein molecule in the plasma membrane—AmtB—enhances the flux of a gas across a biological membrane.
Walter F. Boron (Corresponding author)Email:
  相似文献   

8.
The internal pool of ammonia in strains of unicellular and filamentous cyanobacteria was found to be 6–12 nmol·mg-1 protein. In nitrate grown Anacystis nidulans R-2 the pool size averaged 12 nmol·mg-1 protein, which corresponds to 2.3 mM, and was little affected by N-source or medium pH during growth. Cells from NH 4 + -limited continuous culture contained comparable pools, and cell yield was independent of medium pH (7.2–8.5). The internal pool was not bound to macromolecules. The pool fell transiently to about one-third within 2 h on shifting cells to N-free medium, but was slowly regenerated over 24 h.Added ammonia was removed from solution by illuminated cell suspensions at a linear rate, adequate to supply biosynthetic needs, to residual concentrations less than 5 M. An apparent K m of less than 1 M can be inferred. Uptake rates were independent of N-source during growth, and of assay pH over the range 6.2–8.7. Bicarbonate was needed for uptake, but the rate of uptake was not influenced by the simultaneous presence of NaNO3 (10 mM) or CH3NH3Cl (0.15 mM). Uptake was energydependent, and was eliminated in dark, anaerobic conditions or by the addition of protonophores. Uptake was also strongly inhibited by dicyclohexylearbodiimide, an ATPase inhibitor, by — SH reagents and methionine sulfoximine, suggesting that interference with energy supply or with ammonia metabolism prevented further entry into the cells.Non-standard abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DCCD dicyclohexylcarbodiimide - DCMU dichlorophenyl dimethylurea - NEM N-ethylmaleimide - pCMB p-chloromercuribenzoate - MSX L-methionine Dl-sulfoximine  相似文献   

9.
The free-living cyanobacterium Anabaena variabilis showed a biphasic pattern of 14CH3NH 3 + uptake. Initial accumulation (up to 60 s) was independent of CH3NH 3 + metabolism, but long-term uptake was dependent on its metabolism via glutamine synthetase (GS). The CH3NH 3 + was converted into methylglutamine which was not further metabolised. The addition of l-methionine-dl-sulphoximine (MSX), to inhibit GS, inhibited CH3NH 3 + metabolism, but did not affect the CH3NH 3 + transport system.NH 4 + , when added after the addition of 14CH3NH 3 + , caused the efflux of free CH3NH 3 + ; when added before 14CH3NH 3 + , NH 4 + inhibited its uptake indicating that both NH 4 + and CH3NH 3 + share a common transport system. Carbonylcyanide m-chlorophenylhydrazone and triphenyl-methylphosphonium both inhibited CH3NH 3 + accumulation indicating that the transport system was -dependent. At pH 7 and at an external CH3NH 3 + concentration of 30 mol dm-3, A. variabilis showed a 40-fold intracellular accumulation of CH3NH 3 + (internal concentration 1.4 mmol dm-3). Packets of the symbiotic cyanobacterium Anabaena azollae, directly isolated from the water fern Azolla caroliniana, also showed a -dependent NH 4 + transport system suggesting that the reduced inhibitory effect of NH 4 + on nitrogenase cannot be attributed to the absence of an NH 4 + transport system but is probably related to the reduced GS activity of the cyanobiont.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - GS glutamine synthetase - HEPES 4-(2-hydroxyethyl)-1-piperazine ethanesulphonic acid - MSX l-methionine-dl-sulphoximine - membrane potential - pH transmembrane pH difference - TPMP+ triphenylmethylphosphonium  相似文献   

10.
The effect of NH 4 + on the regulation of NO 3 and NO 2 transport systems in roots of intact barley (Hordeum vulgareL.) seedlings grown in NO 3 or NO 2 was studied. Ammonium partially inhibited induction of both transport systems. The inhibition was less severe in NO 2 -fed than in NO 3 -fed seedlings, presumably due to lower uptake of NH 4 + in the presence of NO 2 . In seedlings pretreated with NH 4 + subsequent induction was inhibited only when NH 4 + was also present during induction, even though pretreated roots accumulated high levels of NH 4 + . This indicates that inhibition may be regulated by NH 4 + concentration in the cytoplasm rather than its total accumulation in roots. L-Methionine sulfoximine did not relieve the inhibition by NH 4 + , suggesting that inhibition is caused by NH 4 + itself rather than by its assimilation product(s). Ammonium inhibited subsequent expression of NO 3 transport activity similarly in roots grown in 0.1, 1.0, or 10 mM NO 3 for 24 h (steady-state phase) or 4 d (decline phase), indicating that it has a direct, rather than general feedback effect. Induction of the NO 3 transport system was about twice as sensitive to NH 4 + as compared to the NO 2 transport system. This may relate to higher turnover rates of membraneassociated NO 3 -transport proteins.Abbreviations Mes 2(N-morpholino)ethanesulfonic acid - MSO L-methionine sulfoximine  相似文献   

11.
The uptake of the radioactive ammoniumanalogue 14C-methylammonium1 was measured in heterotrophically grown cells of Alcaligenes eutrophus H16 in order to study the mechanism of NH 4 + uptake. MA gradients of up to 200 were built up by a substrate-specific and energy-dependent system which showed a K m of 35–111 M and a V max of 0.4–1.8 nmol MA/min per mg protein. The involved carrier exhibited a higher affinity towards NH 4 + than towards CH3NH 3 + indicating that ammonium rather than MA was its natural substrate. Cold shock with hypotonic but not with hypertonic solutions caused the efflux of almost the entire accumulated MA. Osmotic shock did not affect the uptake reaction, suggesting that no periplasmic binding proteins were involved. Indirect observations indicate the membrane potential as driving force for MA uptake. High rates of uptake were observed in cells grown under nitrogen deficiency or with nitrate as nitrogen source. The uptake rate decreased during growth at high ammonium concentrations indicating that biosynthesis of nitrogenous compounds was supported by passive diffusion of NH3. The data suggest that the formation of the carrier is subject to nitrogen control.Non-standard abbreviations CCCP Carbonylcyanide-m-chlorphe-nylhydazone - MA methylammonium - pCMB para-chlormercuribenzoate  相似文献   

12.
Various enzymes involved in the initial metabolic pathway for ammonia assimilation by Methanobacterium ivanovii were examined. M. ivanovii showed significant activity of glutamine synthetase (GS). Glutamate synthase (GOGAT) and alanine dehydrogenase (ADH) were present, wheras, glutamate dehydrogenase (GDH) was not detected. When M. ivanovii was grown with different levels of NH + 4 (i.e. 2, 20 or 200 mM), GS, GOGAT and ADH activities varied in response to NH + 4 concentration. ADH was not detected at 2 mM level, but its activity increased with increased levels of NH + 4 in the medium. Both GS and GOGAT activities increased with decreasing concentrations of NH + 4 and were maximum when ammonia was limiting, suggesting that at low NH + 4 levels, GS and GOGAT are responsible for ammonia assimilation and at higher NH + 4 levels, ADH might play a role. Metabolic mutants of M. ivanovii that were auxotrophic for glutamine were obtained and analyzed for GS activity. Results indicate two categories of mutants: i) GS-deficient auxotrophic mutants and ii) GS-impaired auxotrophic mutants.Abbreviations GS Glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase  相似文献   

13.
The effect of copper on the uptake of nitrogen and the tissue contents of inorganic nitrogen, amino acids and proteins were studied in cooper-sensitive Silene vulgaris (Moench) Garcke, grown at different nitrogen sources (NH4 + or NO3 -). All the toxic copper levels tested, i.e. 4, 8, 16 M Cu2+, strongly inhibited the uptake of nitrogen, especially of NO3 -, and decreased the content of NO3 -, amino acids and proteins. Especially at 4 and 8 M Cu2+, NH4 + accumulated in the plants, suggesting that the conversion of NH4 - into amino acids was inhibited.  相似文献   

14.
Although many studies support the importance of the external mycelium for nutrient acquisition of ectomycorrhizal plants, direct evidence for a significant contribution to host nitrogen nutrition is still scarce. We grew nonmycorrhizal seedlings and seedlings mycorrhizal with Paxillus involutus (Batsch) Fr. in a sand culture system with two compartments separated by a 45-m Nylon mesh. Hyphae, but not roots, can penetrate this net. Nutrient solutions were designed to limit seedling growth by nitrogen. Hyphal density in the hyphal compartment, host N status and shoot growth of mycorrhizal seedlings significantly increased in response to NH4 + addition to the hyphal compartment. Labeling the compartment only accessible to hyphae with 15NH4 + showed that the increase in N uptake in the mycorrhizal seedlings was a result of hyphal N acquisition from the hyphal compartment. These results indicate that hyphae of P. involutus may actively forage into N-rich patches and improve host N status and growth. In the mycorrhizal seedlings, which received additional NH4 + via their external mycelium, the increase in NH4 + supply less negatively affected Ca and Mg uptake than in nonmycorrhizal seedlings, where the additional NH4 + was directly supplied to the roots. This was most likely due to the close link of NH4 + uptake and H+ extrusion, which, in the nonmycorrhizal seedlings, lead to a strong acidification in the root compartment, and subsequently reduced Ca and Mg uptake, whereas in the mycorrhizal seedlings the site of intensive NH4 + uptake and acidification was in the hyphal and not in the root compartment. Our data support the idea that the ectomycorrhizal mycelium connected to an N-deficient host may actively forage for N. The mycelium may also be important as a biological buffer system ameliorating negative influence of high NH4 + supply on cation uptake.  相似文献   

15.
Rainbow trout, Oncorhynchus mykiss, acclimated to 33% sea water (12 mg·ml-1 salinity) experienced significant (10 meq·1-1) increases in plasma [Na+] and [Cl-] within 5 h of exposure to 6.3 mol copper·1-1 indicating severe impairment of branchial ionoregulatory capacity. All plasma ion levels subsequently stabilised once the transbranchial [Na+] gradient was reduced to zero. The similar ionic strength of the external medium and their body fluids appeared to protect trout maintained in 33% sea water from further ionoregulatory stress and any secondary physiological disturbances during exposure to copper. Despite three- and fourfold greater transbranchial [Na+] and [Cl-] gradients, trout acclimated to full-strength sea water (35 mg·ml-1 salinity) suffered no major changes in plasma Na+, Cl-, K+, or Ca2+, blood gases or haematology during 24 h exposure to 6.3 mol copper·1-1. This reduction in toxicity in full strength sea water cannot be explained by differences in copper speciation. We suggest that during acute exposure to waterborne copper, active NaCl extrusion is unaffected due to the basolateral location of the gill Na+/K+-ATPase, but that ionoregulatory disturbances can occur due to gill permeability changes secondary to the displacement of surface-bound Ca2+. However, in full strength sea water the three-fold higher ambient [Ca2+] and [Mg2+] appear to be sufficient to prevent any detrimental permeability changes in the presence of 6.3 mol copper·1-1. Plasma [NH + 4 ] and [HCO - 3 ] were both significantly elevated during exposure to copper, indicating that some aspects of gill ion transport (specifically the apical Na+/NH + 4 and Cl-/HCO - 3 exchanges involved in acid/base regulation and nitrogenous waste excretion) are vulnerable to inhibition in the presence of waterborne copper.Abbreviations C aO2 arterial oxygen content - Hb haemoglobin - Hct haematocrit - MABP mean arterial blood pressure - MCHC mean cell haemoglobin content - MO2 rate of oxygen consumption - P a CO2 arterial carbon dioxide tension - P aO2 arterial oxygen partial pressure - S salinity - SW sea water - T Amm total ammonia (=NH3+NH + 4 ) - T CO 2 total carbon dioxide - TEP transepithelial potential - TOC total organic carbon - %Hb-O2 percentage of haemoglobin saturated with oxygen  相似文献   

16.
The role of H2O2 in abscisic acid (ABA)-induced NH4+ accumulation in rice leaves was investigated. ABA treatment resulted in an accumulation of NH4+ in rice leaves, which was preceded by a decrease in the activity of glutamine synthetase (GS) and an increase in the specific activities of protease and phenylalanine ammonia-lyase (PAL). GS, PAL, and protease seem to be the enzymes responsible for the accumulation of NH4+ in ABA-treated rice leaves. Dimethylthiourea (DMTU), a chemical trap for H2O2, was observed to be effective in inhibiting ABA-induced accumulation of NH4+ in rice leaves. Inhibitors of NADPH oxidase, diphenyleneiodonium chloride (DPI) and imidazole (IMD), and nitric oxide donor (N-tert-butyl-α-phenylnitrone, PBN), which have previously been shown to prevent ABA-induced increase in H2O2 contents in rice leaves, inhibited ABA-induced increase in the content of NH4+. Similarly, the changes of enzymes responsible for NH4+ accumulation induced by ABA were observed to be inhibited by DMTU, DPI, IMD, and PBN. Exogenous application of H2O2 was found to increase NH4+ content, decrease GS activity, and increase protease and PAL-specific activities in rice leaves. Our results suggest that H2O2 is involved in ABA-induced NH4+ accumulation in rice leaves.  相似文献   

17.
Low production rates and sensitivity to O2 are two major obstacles which prevent the technical exploitation of the ability of green algae to produce H2 from water. Both problems were addressed in the present work. The inhibitory effect of O2 on the hydrogen photoproduction of the green alga Chlorella fusca could be minimized by using algal cells which had not yet fully restored their oxygen evolving capacities after an artificially induced chloroplast de/regeneration cycle (de-/regreening). The H2 photoproductivity peaked after 30 h of greening light while the O2 evolution at this time reached only 59% of its normal capacity. The H2PP yields could be further increased if NH4Cl was added to the reaction medium at the beginning of the anaerobic preincubation period. No stimulatory effect was observed when NH4Cl was added just before illumination, i.e. at the end of the 5-h-preincubation period. It is assumed that NH4Cl inhibited the photosynthetic reduction of nitrite, which competed with hydrogen photoproduction indirectly by feedback repression of the NO 2 - /NO 3 - -reductive system. The impacts of the given results on an optimized H2-production in green algae based on photosynthesis are discussed.Abbreviations H2PP H2 photoproduction - H2ase hydrogenase - DA dark adaptation - LRG light regreening - DCMU 3-(3,4-dichlorophenyl)-l, 1-dimethylurea - Dit sodium dithionite - HEPES N-2-hydroxyethylpiperazin-N-2-ethan-sulfonic acid - PS I/II photosystem I/II  相似文献   

18.
V. K. Rajasekhar  H. Mohr 《Planta》1986,169(4):594-599
Nitrate-induced and phytochrome-modulated appearance of nitrate reductase (NR; EC 1.6.6.1) and nitrite reductase (NIR; EC 1.7.7.1) in the cotyledons of the mustard (Sinapis alba L.) seedling is strongly affected by externally supplied ammonium (NH 4 + ). In short-term experiments between 60 and 78 h after sowing it was found that in darkness NH 4 + —simultaneously given with NO 3 - —strongly inhibits appearance of nitrate-inducible NR and NIR whereas in continuous far-red light—which operates exclusively via phytochrome without significant chlorophyll formation —NH 4 + (simultaneously given with NO 3 - ) strongly stimulates appearance of NR. The NIR levels are not affected. This indicates that NR and NIR levels are regulated differently. In the absence of external NO 3 - appearance of NR is induced by NH4 in darkness as well as in continuous far-red light whereas NIR levels are not affected. On the other hand, in the absence of external NO 3 - , exogenous NH 4 + strongly inhibits growth of the mustard seedling in darkness as well as in continuous far-red light. This effect can be abolished by simultaneously supplying NO 3 - . The adverse effect of NH 4 + on growth (NH 4 + -toxicity) cannot be attributed to pH-changes in the medium since it was shown that neither the growth responses nor the changes of the enzyme levels are related to pH changes in the medium. Non-specific osmotic effects are not involved either.Abbreviations c continuous - D darkness - FR far-red light - NIR nitrite reductase (EC 1.7.7.1) - NR nitrate reductase (EC 1.6.6.1)  相似文献   

19.
Incubation of Azotobacter chroococcum in the presence of micromolar concentrations of MnCl2, but not MgCl2, prevented nitrogenase activity from NH 4 + inhibition. Mg(II), at a 100-fold concentration with respect to Mn(II), counteracted the protective effect of Mn(II) on nitrogenase activity. When Mn(II) was added to cells that had been given NH4Cl, stopping of NH 4 + uptake and recovery of nitrogenase activity took place, and a raise of NH 4 + concentration in medium developed. Furthermore, incubation of A. chroococcum cells with 20 M Mn(II) under air, but not under an argon: oxygen (79%:21%) gas mixture, resulted in NH 4 + excretion to the external medium. The Mn(II)-mediated uncoupling of nitrogen fixation from ammonium assimilation leads us to conclude that Mn(II) may act as a physiological inhibitor of glutamine synthetase.Abbreviations Hepes N-2-Hydroxyethylpiperazine-N-ethanesulfonic acid - Mops 3-(N-Morpholino)propanesulfonic acid  相似文献   

20.
Addition of NH4Cl at low concentrations to Azotobacter chroococcum cells caused an immediate cessation of nitrate uptake activity, which was restored when the added NH 4 + was exhausted from the medium or by adding an NH 4 + assimilation inhibitor, l-methionine-dl-sulfoximine (MSX) or l-methionine sulfone (MSF). In the presence of such inhibitors the newly-reduced nitrate was released into the medium as NH 4 + . When the artificial electron donor system ascorbate/N-methylphenazinium methylsulfate (PMS), which is a respiratory substrate that was known to support nitrate uptake by A. chroococcum while inhibiting glutamine synthetase activity, was the energy source, externally added NH 4 + had no effect on nitrate uptake. It is concluded that, in A. chroococcum cells, NH 4 + must be assimilated to exert its short-term inhibitory effect on nitrate uptake. A similar proposal was previously made to explain the short-term ammonium inhibition of N2 fixation in this bacterium.Abbreviations MOPS morpholinopropanesulfonic acid - MSX l-methionine-dl-sulfoximine - PMS N-methylphenazinium methylsulfate - MSF l-methionine sulfone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号