首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ErmE methyltransferase confers resistance to MLS antibiotics by specifically dimethylating adenine 2058 (A2058, Escherichia coli numbering) in bacterial 23S rRNA. To define nucleotides in the rRNA that are part of the motif recognized by ErmE, we investigated both in vivo and in vitro the effects of mutations around position A2058 on methylation. Mutagenizing A2058 (to G or U) completely abolishes methylation of 23S rRNA by ErmE. No methylation occurred at other sites in the rRNA, demonstrating the fidelity of ErmE for A2058. Breaking the neighboring G2057-C2611 Watson-Crick base pair by introducing either an A2057 or a U2611 mutation, greatly reduces the rate of methylation at A2058. Methylation remains impaired after these mutations have been combined to create a new A2057-U2611 Watson-Crick base interaction. The conformation of this region in 23S rRNA was probed with chemical reagents and it was shown that the A2057 and U2611 mutations alone and in combination alter the reactivity of A2058 and adjacent bases. However, mutagenizing position G-->A2032 in an adjacent loop, which has been implicated to interact with A2058, alters neither the ErmE methylation at A2058 nor the accessibility of this region to the chemical reagents. The data indicate that a less-exposed conformation at A2058 leads to reduction in methylation by ErmE. Nucleotide G2057 and its interaction with C2611 maintain the conformation at A2058, and are thus important in forming the structural motif that is recognized by the ErmE methyltransferase.  相似文献   

2.
The macrolide erythromycin binds to the large subunit of the prokaryotic ribosome near the peptidyltransferase center (PTC) and inhibits elongation of new peptide chains beyond a few amino acids. Nucleotides A2058 and A2059 (E. coli numbering) in 23S rRNA play a crucial role in the binding of erythromycin, and mutation of nucleotide A2058 confers erythromycin resistance in both gram-positive and gram-negative bacteria. There are high levels of sequence and structural similarity in the PTC of prokaryotic and eukaryotic ribosomes. However, eukaryotic ribosomes are resistant to erythromycin and the presence of a G at the position equivalent to E. coli nucleotide A2058 is believed to be the reason. To test this hypothesis, we introduced a G to A mutation at this position of the yeast Saccharomyces cerevisiae 25S rRNA and analyzed sensitivity toward erythromycin. Neither growth studies nor erythromycin binding assays on mutated yeast ribosomes indicated any erythromycin sensitivity in mutated yeast strains. These results suggest that the identity of nucleotide 2058 is not the only determinant responsible for the difference in erythromycin sensitivity between yeast and prokaryotes.  相似文献   

3.
Ketolides represent a new generation of macrolide antibiotics. In order to identify the ketolide-binding site on the ribosome, a library of Escherichia coli clones, transformed with a plasmid carrying randomly mutagenized rRNA operon, was screened for mutants exhibiting resistance to the ketolide HMR3647. Sequencing of the plasmid isolated from one of the resistant clones and fragment exchange demonstrated that a single U754A mutation in hairpin 35 of domain II of the E. coli 23S rRNA was sufficient to confer resistance to low concentrations of the ketolide. The same mutation also conferred erythromycin resistance. Both the ketolide and erythromycin protected A2058 and A2059 in domain V of 23S rRNA from modification with dimethyl sulphate, whereas, in domain II, the ketolide protected, while erythromycin enhanced, modification of A752 in the loop of the hairpin 35. Thus, mutational and footprinting results strongly suggest that the hairpin 35 constitutes part of the macrolide binding site on the ribosome. Strong interaction of ketolides with the hairpin 35 in 23S rRNA may account for the high activity of ketolides against erythromycin-resistant strains containing rRNA methylated at A2058. The existence of macrolide resistance mutations in the central loop of domain V and in hairpin 35 in domain II together with antibiotic footprinting data suggest that these rRNA segments may be in close proximity in the ribosome and that hairpin 35 may be a constituent part of the ribosomal peptidyl transferase centre.  相似文献   

4.
We have used chemical modification to examine the conformation of 23 S rRNA in Escherichia coli ribosomes bearing erythromycin resistance mutations in ribosomal proteins L22 and L4. Changes in reactivity to chemical probes were observed at several nucleotide positions scattered throughout 23 S rRNA. The L4 mutation affects the reactivity of G799 and U1255 in domain II and that of A2572 in domain V. The L22 mutation influences modification in domain II at positions m5U747, G748, and A1268, as well as at A1614 in domain III and G2351 in domain V. The reactivity of A789 is weakly enhanced by both the L22 and L4 mutations. None of these nucleotide positions has previously been associated with macrolide antibiotic resistance. Interestingly, neither of the ribosomal protein mutations produces any detectable effects at or within the vicinity of A2058 in domain V, the site most frequently shown to confer macrolide resistance when altered by methylation or mutation. Thus, while L22 and L4 bind primarily to domain I of 23 S rRNA, erythromycin resistance mutations in these ribosomal proteins perturb the conformation of residues in domains II, III and V and affect the action of antibiotics known to interact with nucleotide residues in the peptidyl transferase center of domain V. These results support the hypothesis that ribosomal proteins interact with rRNA at multiple sites to establish its functionally active three-dimensional structure, and suggest that these antibiotic resistance mutations act by perturbing the conformation of rRNA.  相似文献   

5.
The ErmE methyltransferase from the erythromycin-producing actinomycete Saccharopolyspora erythraea dimethylates the N-6 position of adenine 2058 in domain V of 23S rRNA. This modification confers resistance to erythromycin and to other macrolide, lincosamide, and streptogramin B antibiotics. We investigated what structural elements in 23S rRNA are required for specific recognition by the ErmE methyltransferase. The ermE gene was cloned into R1 plasmid derivatives, providing a means of inducible expression in Escherichia coli. Expression of the methyltransferase in vivo confers resistance to erythromycin and clindamycin. The degree of resistance corresponds to the level of ermE expression. In turn, ermE expression also correlates with the proportion of 23S rRNA molecules that are dimethylated at adenine 2058. The methyltransferase was isolated in an active, concentrated form from E. coli, and the enzyme efficiently modifies 23S rRNA in vitro. Removal of most of the 23S rRNA structure, so that only domain V (nucleotides 2000 to 2624) remains, does not affect the efficiency of modification by the methyltransferase. In addition, modification still occurs after the rRNA tertiary structure has been disrupted by removal of magnesium ions. We conclude that the main features that are specifically recognized by the ErmE methyltransferase are displayed within the primary and secondary structures of 23S rRNA domain V.  相似文献   

6.
Mechanisms and occurrence of macrolide resistance in the periodontal pathogen Treponema denticola have received little attention. In this study, erythromycin resistance due to mutations in the genes encoding T. denticola 23S rRNA was investigated. The T. denticola genome was shown to contain two copies of 23S rDNA. 23S rRNA genes of nine erythromycin-resistant isolates derived from T. denticola were amplified and sequences were analyzed. All the erythromycin-resistant strains had at least one A-->G transition mutation at the 23S rRNA gene sequence cognate to position A2058 in Escherichia coli 23S rDNA. This suggests that antibiotic pressure is sufficient to select for point mutations that confer resistance in this organism.  相似文献   

7.
Antibiotic susceptibilities of Propionibacterium acnes in Japan were determined. Erythromycin‐resistance was found in 10.4% (5/48) of the strains, and four of these were cross‐resistance to clindamycin. Although the erythromycin ribosome methylase gene erm(X) was looked for, no strain carrying erm(X) was found. Sequencing analysis revealed that all of the erythromycin‐resistant strains had a mutation in the peptidyl transferase region of the 23S rRNA gene: G2057A, A2058G, or A2059G. Consequently, our results show that P. acnes resistance to macrolides is caused by a mutation in the 23S rRNA gene, and has been increasing in Japan.  相似文献   

8.
Oxazolidinone antibiotics inhibit bacterial protein synthesis by interacting with the large ribosomal subunit. The structure and exact location of the oxazolidinone binding site remain obscure, as does the manner in which these drugs inhibit translation. To investigate the drug-ribosome interaction, we selected Escherichia coli oxazolidinone-resistant mutants, which contained a randomly mutagenized plasmid-borne rRNA operon. The same mutation, G2032 to A, was identified in the 23S rRNA genes of several independent resistant isolates. Engineering of this mutation by site-directed mutagenesis in the wild-type rRNA operon produced an oxazolidinone resistance phenotype, establishing that the G2032A substitution was the determinant of resistance. Engineered U and C substitutions at G2032, as well as a G2447-to-U mutation, also conferred resistance to oxazolidinone. All the characterized resistance mutations were clustered in the vicinity of the central loop of domain V of 23S rRNA, suggesting that this rRNA region plays a major role in the interaction of the drug with the ribosome. Although the central loop of domain V is an essential integral component of the ribosomal peptidyl transferase, oxazolidinones do not inhibit peptide bond formation, and thus these drugs presumably interfere with another activity associated with the peptidyl transferase center.  相似文献   

9.
Macrolide antibiotic resistance is widespread among Brachyspira hyodysenteriae (formerly Serpulina hyodysenteriae) isolates. The genetic basis of macrolide and lincosamide resistance in B. hyodysenteriae was elucidated. Resistance to tylosin, erythromycin and clindamycin in B. hyodysenteriae was associated with an A-->T transversion mutation in the nucleotide position homologous with position 2058 of the Escherichia coli 23S rRNA gene. The nucleotide sequences of the peptidyl transferase region of the 23S rDNA from seven macrolide and lincosamide resistant and seven susceptible strains of Brachyspira spp. were determined. None of the susceptible strains were mutated whereas all the resistant strains had a mutation in position 2058. Susceptible strains became resistant in vitro after subculturing on agar containing 4 micrograms ml-1 of tylosin. Sequencing of these strains revealed an A-->G transition mutation in position 2058.  相似文献   

10.
Two chloramphenicol resistance mutations were isolated in an Escherichia coli rRNA operon (rrnH) located on a multicopy plasmid. Both mutations also confer resistance to 14-atom lactone ring macrolide antibiotics, but they do not confer resistance to 16-atom lactone ring macrolide antibiotics or other inhibitors of the large ribosomal subunit. Classic genetic and recombinant DNA methods were used to map the two mutations to 154-base-pair regions of the 23S RNA genes. DNA sequencing of these regions revealed that chloramphenicol-erythromycin resistance results from a guanine-to-adenine transition at position 2057 of the 23S RNA genes of both independently isolated mutants. These mutations affect a region of 23S RNA strongly implicated in peptidyl transfer and known to interact with a variety of peptidyl transferase inhibitors.  相似文献   

11.
Streptomyces ambofaciens produces spiramycin, a macrolide antibiotic and expresses an inducible resistance to macrolides, lincosamides and streptogramin B antibiotics (MLS). From a mutant of S.ambofaciens exhibiting a constitutive MLS resistance phenotype a resistance determinant was cloned on a low copy number vector (pIJ61) through its expression in Streptomyces lividans. Further characterization has shown that this determinant corresponded to a mutant rRNA operon with a mutation in the 23S rRNA gene. In different organisms, mutations leading to MLS resistance have been located at a position corresponding to the adenine 2058 of Escherichia coli 23S rRNA. In the 23S rRNA from S.ambofaciens a similar position for the mutation has been postulated and DNA sequencing of this region has shown an adenine to guanine transition at a position corresponding to 2058. S.ambofaciens possesses four rRNA operons which we have cloned. In Streptomyces, contrary to other bacteria, a mutation in one among several rRNA operons confers a selectable MLS resistance phenotype. Possible reasons for this difference are discussed.  相似文献   

12.
Z Gu  R Harrod  E J Rogers    P S Lovett 《Journal of bacteriology》1994,176(20):6238-6244
Inducible chloramphenicol resistance genes cat and cmlA are regulated by translation attenuation. For both genes, the leader codons that must be translated to deliver a ribosome to the induction site specify a peptide that inhibits peptidyltransferase in vitro. The antipeptidyltransferase activity of the peptides is thought to select the site of ribosome stalling that is essential for induction. Using variations of the cat-86 leader-encoded 5-mer peptide MVKTD, we demonstrate a correlation between the in vitro antipeptidyltransferase activity and the ability of the same peptide to support induction by chloramphenicol in vivo. MVKTD footprints to nucleotides 2058, 2059, and 2060 in 23S rRNA. In vivo methylation of nucleotide 2058 by the ermC methylase interferes neither with cat-86 induction nor with peptide inhibition of peptidyltransferase. The methylation eliminates the competition that normally occurs in vitro between erythromycin and MVKTD. MVKTD inhibits the peptidyltransferase of several eubacteria, a representative Archaea species, and the eukaryote Saccharomyces cerevisiae. Bacillus stearothermophilus supports the in vivo induction of cat-86, and the RNA that is phenol extracted from the 50S ribosomes of this gram-positive thermophile is catalytically active in the peptidyltransferase assay and sensitive to peptide inhibition. Our results indicate that peptidyltransferase inhibition by a cat leader peptide is essential to induction, and this activity can be altered by minor changes in the amino acid sequence of the peptide. The broad range of organisms shown to possess peptide-inhibitable peptidyltransferase suggests that the target is a highly conserved component of the ribosome and includes 23S rRNA.  相似文献   

13.
The macrolide antibiotic erythromycin interacts with bacterial 23S ribosomal RNA (rRNA) making contacts that are limited to hairpin 35 in domain II of the rRNA and to the peptidyl transferase loop in domain V. These two regions are probably folded close together in the 23S rRNA tertiary structure and form a binding pocket for macrolides and other drug types. Erythromycin has been derivatized by replacing the L-cladinose moiety at position 3 by a keto group (forming the ketolide antibiotics) and by an alkyl-aryl extension at positions 11/12 of the lactone ring. All the drugs footprint identically within the peptidyl transferase loop, giving protection against chemical modification at A2058, A2059 and G2505, and enhancing the accessibility of A2062. However, the ketolide derivatives bind to ribosomes with widely varying affinities compared with erythromycin. This variation correlates with differences in the hairpin 35 footprints. Erythromycin enhances the modification at position A752. Removal of cladinose lowers drug binding 70-fold, with concomitant loss of the A752 footprint. However, the 11/12 extension strengthens binding 10-fold, and position A752 becomes protected. These findings indicate how drug derivatization can improve the inhibition of bacteria that have macrolide resistance conferred by changes in the peptidyl transferase loop.  相似文献   

14.
Single point mutations corresponding to the positions G2505 and G2583 have been constructed in the gene encoding E.coli 23S rRNA. These mutations were linked to the second mutation A1067 to T, known to confer resistance to thiostrepton (1). Mutant ribosomes were analyzed in vitro for their ability to direct poly(U) dependent translation, their missence error frequency and in addition their sensitivity to peptidyltransferase inhibitors. It was evident that the mutated ribosomes had an altered dependence on [Mg2+] and an increased sensitivity to chloramphenicol during poly(U) directed poly(Phe) synthesis. In a transpeptidation assay mutated ribosomes were as sensitive to chloramphenicol as wild-type ribosomes. However, the mutant ribosomes exhibited an increased sensitivity to lincomycin. An increase in translational accuracy was attributed to the mutations at the position 2583: accuracy increased in the order G less than A less than U less than C.  相似文献   

15.
Members of the Mycobacterium tuberculosis complex possess a resistance determinant, erm(37) (also termed ermMT), which is a truncated homologue of the erm genes found in a diverse range of drug-producing and pathogenic bacteria. All erm genes examined thus far encode N(6)-monomethyltransferases or N(6),N(6)-dimethyltransferases that show absolute specificity for nucleotide A2058 in 23 S rRNA. Monomethylation at A2058 confers resistance to a subset of the macrolide, lincosamide, and streptogramin B (MLS(B)) group of antibiotics and no resistance to the latest macrolide derivatives, the ketolides. Dimethylation at A2058 confers high resistance to all MLS(B) and ketolide drugs. The erm(37) phenotype fits into neither category. We show here by tandem mass spectrometry that Erm(37) initially adds a single methyl group to its primary target at A2058 but then proceeds to attach additional methyl groups to the neighboring nucleotides A2057 and A2059. Other methyltransferases, Erm(E) and Erm(O), maintain their specificity for A2058 on mycobacterial rRNA. Erm(E) and Erm(O) have a full-length C-terminal domain, which appears to be important for stabilizing the methyltransferases at their rRNA target, and this domain is truncated in Erm(37). The lax interaction of the M. tuberculosis Erm(37) with its rRNA produces a unique methylation pattern and confers resistance to the ketolide telithromycin.  相似文献   

16.
D Moazed  H F Noller 《Biochimie》1987,69(8):879-884
Using dimethyl sulfate and kethoxal, we have probed antibiotic-ribosome complexes, and identified sites of interaction of chloramphenicol, erythromycin, carbomycin, vernamycin B and viomycin with 23S rRNA. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping nonequivalent sites in the central loop of domain V. From the known functional effects of these drugs and their protection patterns, we infer that peptidyl transferase is inhibited as a result of binding antibiotics proximal to A-2451, whereas antibiotics bound proximal to A-2058 interfere with growth of the nascent polypeptide chain. Vernamycin B also strongly protects A-752, implying that this region of domain II is proximal to the central loop of domain V. Viomycin, which affects translocation and subunit dissociation, protects U-913 and G-914.  相似文献   

17.
Background Transition mutations (A-G) at residue 2143, cognate to position 2058 in the Escherichia coli 23S rRNA gene, have been shown to confer resistance to macrolides in Helicobacter pylori. This study reports the finding that transversion mutations (A-C) can occur at 2143 as well.
Materials and Methods. Three clarithromycin-resistant H. pylori isolated from three different patients after treatment with clarithromycin were analyzed for point mutations by cycle sequencing of a 163-bp amplified region surrounding residue 2143 within the conserved loop of the 23S rRNA gene.
Results. Nucelotide sequence comparisons of a 163-bp amplified product revealed that A-C transversion mutations occurred at position 2143. H. pylori isolated from the patients prior to treatment were susceptible to clarithromycin and displayed no polymorphism at 2143.
Conclusion. This is the first report to show that A-C transversion mutations at position 2143 can confer resistance to clarithromycin in H. pylori and further support the role that mutations at position 2143 play in conferring macrolide resistance in H. pylori.  相似文献   

18.
Nucleotide 1093 in domain II of Escherichia coli 23S rRNA is part of a highly conserved structure historically referred to as the GTPase center. The mutation G1093A was previously shown to cause readthrough of nonsense codons and high temperature-conditional lethality. Defects in translation termination caused by this mutation have also been demonstrated in vitro. To identify sites in 23S rRNA that may be functionally associated with the G1093 region during termination, we selected for secondary mutations in 23S rRNA that would compensate for the temperature-conditional lethality caused by G1093A. Here we report the isolation and characterization of such a secondary mutation. The mutation is a deletion of two consecutive nucleotides from helix 73 in domain V, close to the peptidyltransferase center. The deletion results in a shortening of the CGCG sequence between positions 2045 and 2048 by two nucleotides to CG. In addition to restoring viability in the presence of G1093A, this deletion dramatically decreased readthrough of UGA nonsense mutations caused by G1093A. An analysis of the amount of mutant rRNA in polysomes revealed that this decrease cannot be explained by an inability of G1093A-containing rRNA to be incorporated into polysomes. Furthermore, the deletion was found to cause UGA readthrough on its own, thereby implicating helix 73 in termination for the first time. These results also indicate the existence of a functional connection between the G1093 region and helix 73 during translation termination.  相似文献   

19.
Catalytic properties of mutant 23 S ribosomes resistant to oxazolidinones   总被引:4,自引:0,他引:4  
Kinetic analysis of ribosomal peptidyltransferase activity in a methanolic puromycin reaction with wild type and drug-resistant 23 S RNA mutants was used to probe the structural basis of catalysis and mechanism of resistance to antibiotics. 23 S RNA mutants G2032A and G2447A are resistant to oxazolidinones both in vitro and in vivo with the latter displaying a 5-fold increase in the value of Km for initiator tRNA and a 100-fold decrease in Vmax in puromycin reaction. Comparison of the Ki values for oxazolidinones, chloramphenicol, and sparsomycin revealed partial cross-resistance between oxazolidinones and chloramphenicol; no cross-resistance was observed with sparsomycin, a known inhibitor of the peptidyltransferase A-site. Inhibition of the mutants using a truncated CCA-Phe-X-Biotin fragment as a P-site substrate is similar to that observed with the intact initiator tRNA, indicating that the inhibition is substrate-independent and that the peptidyltransferase itself is the oxazolidinone target. Mapping of all known mutations that confer resistance to these drugs onto the spatial structure of the 50 S ribosomal subunit allows for docking of an oxazolidinone into a proposed binding pocket. The model suggests that oxazolidinones bind between the P- and A-loops, partially overlapping with the peptidyltransferase P-site. Thus, kinetic, mutagenesis, and structural data suggest that oxazolidinones interfere with initiator fMet-tRNA binding to the P-site of the ribosomal peptidyltransferase center.  相似文献   

20.
Mutants resistant to streptomycin, spectinomycin, neamine/kanamycin and erythromycin define eight genetic loci in a linear linkage group corresponding to about 21 kb of the circular chloroplast genome of Chlamydomonas reinhardtii. With one exception, all of these mutants represent single base-pair changes in conserved regions of the genes encoding the 16S and 23S chloroplast ribosomal RNAs. Streptomycin resistance can result from changes at the bases equivalent to Escherichia coli 13, 523, and 912-915 in the 16S gene, or from mutations in the rps12 gene encoding chloroplast ribosomal protein S12. In the 912-915 region of the 16S gene, three mutations were identified that resulted in different levels of streptomycin resistance in vitro. Although the three regions of the 16S rRNA mutable to streptomycin resistance are widely separated in the primary sequence, studies by other laboratories of RNA secondary structure and protein cross-linking suggest that all three regions are involved in a common ribosomal neighborhood that interacts with ribosomal proteins S4, S5 and S12. Three different changes within a conserved region of the 16S gene, equivalent to E. coli bases 1191-1193, confer varying levels of spectinomycin resistance, while resistance to neamine and kanamycin results from mutations in the 16S gene at bases equivalent to E. coli 1408 and 1409. Five mutations in two genetically distinct erythromycin resistance loci map in the 23S rDNA of C. reinhardtii, at positions equivalent to E. coli 2057-2058 and 2611, corresponding to the rib3 and rib2 loci of yeast mitochondria respectively. Although all five mutants are highly resistant to erythromycin, they differ in levels of cross-resistance to lincomycin and clindamycin. The order and spacing of all these mutations in the physical map are entirely consistent with our genetic map of the same loci and thereby validate the zygote clone method of analysis used to generate this map. These results are discussed in comparison with other published maps of chloroplast genes based on analysis by different methods using many of the same mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号