首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The expression of the structural genes of the proline utilization cluster of Aspergillus nidulans is repressed efficiently only when both repressing carbon and nitrogen sources are present. Two hypotheses can account for this fact. One is a direct or indirect competition mechanism between the positive-acting AreA GATA factor, mediating nitrogen metabolite repression, and the negative-acting CreA protein, mediating carbon catabolite repression. The second is to propose that CreA prevents the binding or activity of another, as yet unidentified, positive-acting factor, here called ADA. We show the second possibility to be the correct one, and we localize the new positive cis-acting element within 290 bp of the prnD-prnB divergent promoter.  相似文献   

3.
4.
5.
6.
Histidine (His) tags are one of the most popular fusion tags for the isolation of proteins via metal affinity chromatography. The fusion tag is routinely left attached to the protein when carrying out experiments, with the assumption that the addition has no effect on structure or function. In the present study, we have prepared four proteins of the gene regulatory protein AreA from Aspergillus nidulans for crystallization experiments: a 91-amino acid peptide encompassing the minimal DNA-binding region, both with and without the His-tag (HZFB and ZFB, respectively), and a 155-amino acid protein previously proposed to be the entire DNA-binding domain for AreA, both with and without the His-tag (HG1b and G1b, respectively). To test the integrity of the four AreA proteins, urea denaturation experiments and DNA-binding studies were performed using fluorescence spectroscopy. The DNA-binding data showed similar dissociation constants for all proteins, with Kd values in the nanomolar range. The urea denaturation data, however, clearly indicated that the HZFB protein exhibited a completely different denaturation profile when compared to the ZFB, HG1b, and G1b proteins. The HZFB protein showed a profile indicative of the presence of an altered conformation around the sole tryptophan, whereas the other proteins showed a transition point between 3 and 4 M urea concentration. These data show that, although function was not altered for any of the proteins studied, the structure of one of the His-tagged proteins was different from the native form of that protein.  相似文献   

7.
8.
G H Jacobs 《The EMBO journal》1992,11(12):4507-4517
The CC/HH zinc finger is a small independently folded DNA recognition motif found in many eukaryotic proteins, which ligates zinc through two cysteine and two histidine ligands. A database of 1340 zinc fingers from 221 proteins has been constructed and a program for analysis of aligned sequences written. This paper describes sequence analysis aimed at determining the amino acid positions that recognize the DNA bases, by comparing two types of sequence variation. Using the idea that long runs of adjacent zinc fingers have arisen from internal gene duplication, the conservation of each position of the finger within the runs was calculated. The conservation of each position of the finger between homologous proteins from different species was also noted. A correlation of the two types of conservation showed clusters of related amino acids. One cluster of three positions was found to be especially variable within long runs, but highly conserved between corresponding fingers of homologous proteins; these positions are predicted to be the base contact positions. They match the amino acid positions that contact the bases in the co-crystal structure determined by Pavletich and Pabo [Science, 240, 809-817 (1991)]. An adjacent cluster of four positions on the plot may also be associated with DNA binding. This analysis shows that the base recognition positions can be identified even in the absence of a known structure for a zinc finger. These results are applicable to zinc fingers where the structure of the complex is unknown, in particular suggesting that the individual finger--DNA interaction seen in the Zif268--DNA structure has been conserved in many zinc finger--DNA interactions.  相似文献   

9.
10.
11.
We have recently described an engineered zinc finger protein (Gq1) that binds with high specificity to the intramolecular G-quadruplex formed by the human telomeric sequence 5'-(GGTTAG)(5)-3', and that inhibits the activity of the enzyme telomerase in vitro. Here we report site-directed mutagenesis, biophysical, and molecular modeling studies that provide new insights into quadruplex recognition by the zinc finger scaffold. We show that any one finger of Gq1 can be replaced with the corresponding finger of Zif268, without significant loss of quadruplex affinity or quadruplex versus duplex discrimination. Replacement of two fingers, with one being finger 2, of Gq1 by Zif268 results in significant impairment of quadruplex recognition and loss of discrimination. Molecular modeling suggests that the zinc fingers of Gq1 can bind to the human parallel-stranded quadruplex structure in a stable arrangement, whereas Zif268-quadruplex models show significantly weaker binding energy. Modeling also suggests that an important role of the key protein finger residues in the Gq1-quadruplex complex is to maintain Gq1 in an optimum conformation for quadruplex recognition.  相似文献   

12.
13.
14.
15.
The GAGA factor of Drosophila melanogaster uses a single Cys 2His 2-type zinc finger for specific DNA binding. The conformation and DNA binding mode of the GAGA zinc finger are similar to those of other structurally characterized zinc fingers. In almost all Cys 2His 2-type zinc fingers, the fourth position of the DNA-recognizing helix is occupied by the Leu residue involved in the formation of the minimal hydrophobic core. However, no systematic study on the precise role of the Leu residue in the hydrophobic core formation and DNA binding function has been reported. In this study, the Leu residue is substituted with other aliphatic amino acids having different side chain lengths and hydrophobicities, namely, Ile, Val, Aib, and Ala. The metal binding properties were studied by UV-vis spectroscopy. The peptide conformations were examined by CD and NMR spectroscopies. Furthermore, the DNA binding ability was examined with a gel mobility shift assay. Though the Ile, Val, and Aib mutants exhibited conformations similar to those of the wild type, the DNA binding affinity decreased as the side chain length of the amino acid decreased. Interestingly, the Val mutant can bind to the cognate DNA, while Aib cannot, in spite of the similarity in their secondary structures based on the CD measurements. Variable-temperature NMR experiments clearly indicated differences in the stability of the hydrophobic core between the Val and Aib mutants. This study demonstrates that the bulkiness of the conserved aliphatic residue is important in the formation of the well-packed minimal hydrophobic core and proper ternary structure and that the hydrophobic core stabilization is apparently related to the DNA binding function of the GAGA zinc finger.  相似文献   

16.
17.
MIG1 is a zinc finger protein that mediates glucose repression in the yeast Saccharomyces cerevisiae. MIG1 is related to the mammalian Krox/Egr, Wilms' tumor, and Sp1 finger proteins. It has two fingers and binds to a GCGGGG motif that resembles the GC boxes recognized by these mammalian proteins. We have performed a complete saturation mutagenesis of a natural MIG1 site in order to elucidate its binding specificity. We found that only three mutations within the GC box retain the ability to bind MIG1: G1 to C, C2 to T, and G5 to A. This result is consistent with current models for zinc finger-DNA binding, which assume that the sequence specificity is determined by base triplet recognition within the GC box. Surprisingly, we found that an AT-rich region 5' to the GC box also is important for MIG1 binding. This AT box is present in all natural MIG1 sites, and it is protected by MIG1 in DNase I footprints. However, the AT box differs from the GC box in that no single base within it is essential for binding. Instead, the AT-rich nature of this sequence seems to be crucial. The fact that AT-rich sequences are known to increase DNA flexibility prompted us to test whether MIG1 bends DNA. We found that binding of MIG1 is associated with bending within the AT box. We conclude that DNA binding by a simple zinc finger protein such as MIG1 can involve both recognition of the GC box and flanking sequence preferences that may reflect local DNA bendability.  相似文献   

18.
19.
The rates of the cross-aminoacylation reactions of tRNAs(Met) catalyzed by methionyl-tRNA synthetases from various organisms suggest the occurrence of two types of tRNA(Met)/methionyl-tRNA synthetase systems. In this study, the tRNA determinants recognized by mammalian or E. coli methionyl-tRNA synthetases, which are representative members of the two types, have been examined. Like its prokaryotic counterpart, the mammalian enzyme utilizes the anticodon of tRNA as main recognition element. However, the mammalian cytoplasmic elongator tRNA(Met) species is not recognized by the bacterial synthetase, and both the initiator and elongator E. coli tRNA(Met) behave as poor substrates of the mammalian cytoplasmic synthetase. Synthetic genes encoding variants of tRNAs(Met), including the elongator one from mammals, were expressed in E. coli. tRNAs(Met) recognized by a synthetase of a given type can be converted into a substrate of an enzyme of the other type by introducing one-base substitutions in the anticodon loop or stem. In particular, a reduction of the size of the anticodon loop of cytoplasmic mammalian elongator tRNA(Met) from 9 to 7 bases, through the creation of an additional Watson-Crick pair at the bottom of the anticodon stem, makes it a substrate of the prokaryotic enzyme and decreases its ability to be methionylated by the mammalian enzyme. Moreover, enlarging the size of the anticodon loop of E. coli tRNA(Metm) from 7 to 9 bases, by disrupting the base pair at the bottom of the anticodon stem, renders the resulting tRNA a good substrate of the mammalian enzyme, while strongly altering its reaction with the prokaryotic synthetase. Finally, E. coli tRNA(Metf) can be rendered a better substrate of the mammalian enzyme by changing its U33 into a C. This modification makes the sequence of the anticodon loop of tRNA(Metf) identical to that of cytoplasmic initiator tRNA(Met).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号