首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new species of the fungal genus Trichoderma, Trichoderma compactum and Trichoderma yunnanense, isolated from rhizosphere of tobacco in Yunnan Province, China are described based on morphological characters and phylogenetic analyses of nucleotide sequences. Our DNA sequences included the internal transcribed spacer (ITS) regions of the rDNA cluster (ITS1 and ITS2), and partial sequences of the translation elongation factor 1-alpha (tef1) and a fragment of the gene coding for endochitinase 42 (ech42). The analyses show that T. compactum belongs to the Harzianum clade, and T. yunnanense belongs to the Hamatum clade.  相似文献   

2.
Using a genotypic approach (PCR-fingerprinting, DNA/DNA reassociation, partial sequences of the 26S rDNA gene, complete sequences of the 18S rDNA gene, and sequences of the internal transcribed spacers) five tremelloid yeast isolates from the agarics Asterophora lycoperdoides and A. parasitica were shown to be conspecific with Cryptococcus ramirezgomezianus. It was not possible to distinguish the yeast strains from A. lycoperdoides and A. parasitica using sequences from the intergenic spacer (IGS1). Phylogeny based on the 26S (D1/D2-domain), ITS1-5.8S-ITS2 and complete 18S rDNA demonstrated that C. ramirezgomezianus is closely related to several additional Cryptococcus species (C. humicola, C. longus, C. musci, C. pseudolongus) within the Trichosporonales. A new genus, Asterotremella, and a new family, Asterotremellaceae were introduced for Cryptococcus species clustering within the Trichosporonales having a ubiquinone Q-9. Cryptococcus ramirezgomezianus is a synonym of Asterotremella albida.  相似文献   

3.
Georg Hausner  Xi Wang 《Génome》2005,48(4):648-660
The internal transcribed spacers of the ribosomal DNA tandem repeat were examined in members of the ascomycetous genus Sphaeronaemella. Species of Sphaeronaemella and its mitotic counterpart Gabarnaudia, have a compact rDNA gene arrangement due to unusually short internal transcribed spacer (ITS) regions. Examination of these regions from phylogenetically related taxa, Cornuvesica, Gondwanamyces, and Ceratocystis, showed that their ITS1 and ITS2 regions could be folded into central hairpin-like structures with the size reduction in species of Sphaeronaemella being due to length reduction of the main-hairpin and the loss of smaller hairpin-like structures that emanate from the main hairpin. A databank compilation, combined with newly obtained sequences, provided an ITS data set that includes sequences of 600 species belonging to the Ascomycota. Correlation analysis revealed that the sizes of ITS1 and ITS2 show a strong positive correlation, suggesting that the 2 rDNA regions have co-evolved. This supports biochemical evidence indicating that the ITS1 and ITS2 segments interact to facilitate the maturation of the rRNA precursor.  相似文献   

4.
5.
A set of primers was developed for the detection, identification and quantification of common Trichoderma species in soil samples. Based on a broad range master alignment primers were derived to amplify an approximate 540 bp fragment comprising the internal transcribed spacer region 1 (ITS 1), 5.8S rDNA and internal transcribed spacer region 2 (ITS 2) from all taxonomic Clades of the genus Trichoderma. The primer set was applied to test strains as well as community DNA isolated from arable and forest soil. For all tested isolates the corresponding internal transcribed spacer regions of Trichoderma spp. strains were amplified, but none of non-Trichoderma origin. PCR with community DNA from soil yielded products of the expected size. Analysis of a clone library established for an arable site showed that all amplified sequences originated exclusively from Trichoderma species mainly being representatives of the Clades Hamatum, Harzianum and Pachybasioides and comprising most of the species known for biocontrol ability. In a realtime PCR approach the primer set uTf/uTr also proved to be a suitable system to quantify DNA of Trichoderma spp. in soils.  相似文献   

6.
The sequences of the chitinase gene (Chi-26) and the internal transcribed spacer of 18S - 5.8S - 26S rDNA (ITS1) were determined to analyze the phylogenetic relationships among species representing the four basic genomes of the genus Hordeum. Grouping analysis based on data for Chi-26 gene sequences placed Hordeum secalinum (H genome) near the Hordeum murinum complex (Xu genome), and Hordeum bulbosum distant from the other species that carried the I genome. ITS sequence data showed the expected grouping based on the genome classification of the species studied. Different sequences of ITS were detected even in the genomes of the diploid species. The results are interpreted in terms of defective or unfinished concerted evolution processes in each taxon.  相似文献   

7.
We analyzed sequences of the D1D2 domain of the 26S ribosomal RNA gene (26S rDNA sequence), the internal transcribed spacer 1, the 5.8S ribosomal RNA gene, and the internal transcribed spacer 2 (the ITS sequence) from 46 strains of miso and soy sauce fermentation yeast, Zygosaccharomyces rouxii and a closely related species, Z. mellis, for typing. Based on the 26S rDNA sequence analysis, the Z. rouxii strains were of two types, and the extent of sequence divergence between them was 2.6%. Based on the ITS sequence analysis, they were divided into seven types (I-VII). Between the type strain (type I) and type VI, in particular, a 12% difference was detected. The occurrence of these nine genotypes with a divergence of more than 1% in these two sequences suggests that Z. rouxii is a species complex including novel species and hybrids. Z. mellis strains were of two types (type alpha and type beta) based on the ITS sequence. Z. rouxii could clearly be distinguished from Z. mellis by 26S rDNA and ITS sequence analyses, but not by the 16% NaCl tolerance, when used as the sole key characteristic for differentiation between the two species.  相似文献   

8.
In order to establish the molecular phylogeny of the genus Rhizopus, three molecules of the ribosomal RNA-encoding DNA (rDNA), complete 18S, internal transcribed spacer (ITS)1-5.8S-ITS2, and 28S D1/D2 regions of all the species of the genus were sequenced. Phylogenetic trees showed three major clusters corresponding to the three groups in the current morphological taxonomy, microsporus-group, stolonifer-group, and R. oryzae. R. stolonifer var. lyococcos was clustered independently from the major clusters. R. schipperae clustered differently in all trees. Strains of R. sexualis had multiple ITS sequences. A. rouxii clustered with R. oryzae. These results indicate the possibility of molecular identification of species groups using rDNA sequencing. Reclassification of the genus might be appropriate.  相似文献   

9.
We studied the morphology and molecular phylogeny of Myoschiston duplicatum, a peritrich ciliate that has been recorded as an epibiont of crustaceans, but which we also identified on marine algae from Korea. The important morphological characteristics revealed by silver staining of Myoschiston species have not been described because they are rarely collected. Using morphological methods, we redescribed the type species of the genus, Myoschiston duplicatum, and provided an improved diagnosis of Myoschiston. In addition, the coding regions for nuclear small subunit (SSU) rRNA and internal transcribed spacer 1‐5.8S‐internal transcribed spacer 2 sequences were sequenced. Phylogenetic analyses that included available SSU rDNA sequences of peritrichs from GenBank strongly supported a position of M. duplicatum within the family Zoothamniidae. In addition, phylogenetic analyses were performed with single datasets (ITS1‐5.8S‐ITS2) and combined datasets (SSU rDNA + ITS1‐5.8S‐ITS2) to explore further the phylogenetic relationship in the family Zoothamniidae between the three morphologically similar genera—Zoothamnium, Myoschiston, and Zoothamnopsis.  相似文献   

10.
We analyzed sequences of the D1D2 domain of the 26S ribosomal RNA gene (26S rDNA sequence), the internal transcribed spacer 1, the 5.8S ribosomal RNA gene, and the internal transcribed spacer 2 (the ITS sequence) from 46 strains of miso and soy sauce fermentation yeast, Zygosaccharomyces rouxii and a closely related species, Z. mellis, for typing. Based on the 26S rDNA sequence analysis, the Z. rouxii strains were of two types, and the extent of sequence divergence between them was 2.6%. Based on the ITS sequence analysis, they were divided into seven types (I–VII). Between the type strain (type I) and type VI, in particular, a 12% difference was detected. The occurrence of these nine genotypes with a divergence of more than 1% in these two sequences suggests that Z. rouxii is a species complex including novel species and hybrids. Z. mellis strains were of two types (type α and type β) based on the ITS sequence. Z. rouxii could clearly be distinguished from Z. mellis by 26S rDNA and ITS sequence analyses, but not by the 16% NaCl tolerance, when used as the sole key characteristic for differentiation between the two species.  相似文献   

11.
亚稀褶黑菇和稀褶黑菇的ITS序列分析   总被引:1,自引:0,他引:1  
对亚稀褶黑菇和稀褶黑菇的ITS全序列进行了测定和比较,首次报道了亚稀褶黑菇的ITS1和5.8S区域.在ITS区域中,不同采集地的亚稀褶黑菇与稀褶黑菇的5.8S rDNA具有100%的同源性,而两侧ITS之间表现出种内和种间的多态性,种内的差异均不超过5%,种间的差异达10%左右.ITS序列分析方法可以作为两者的鉴定方法.  相似文献   

12.
对亚稀褶黑菇和稀褶黑菇的ITS全序列进行了测定和比较,首次报道了亚稀褶黑菇的ITS1和5.8S区域。在ITS区域中,不同采集地的亚稀褶黑菇与稀褶黑菇的5.8S rDNA具有100%的同源性,而两侧ITS之间表现出种内和种间的多态性,种内的差异均不超过5%,种间的差异达10%左右。ITS序列分析方法可以作为两者的鉴定方法。  相似文献   

13.
We analyzed sequences of the D1D2 domain of the 26S ribosomal RNA gene (26S rDNA sequence), and the region of internal transcribed spacer 1, 5.8S ribosomal RNA gene and internal transcribed spacer 2 (ITS sequence) of the miso and soy sauce fermentation yeasts, Candida etchellsii and Candida versatilis, in order to evaluate the usefulness of this sequence analysis for identification and typing of these two species. In the 26S rDNA sequence method, the numbers of base substitutions among C. etchellsii strains were up to 2 in 482 bp (99.6% similarity), and they were divided into three types (types A, B, and C). Those of C. versatilis strains were also up to 2 in 521 bp (99.6% similarity) and they were divided into three types (types 1, 2, and 3). In the ITS sequence method, those of C. etchellsii strains were zero in 433 bp (type a, 100% similarity). Those of C. versatilis were 5 in 409 bp (98.8% similarity), divided into 4 types (types I, II, III and IV). It was found that molecular methods based on the sequences of the 26S rDNA D1D2 domain and the ITS region were rapid and precise compared with the physiological method for the identification and typing of these two species.  相似文献   

14.
In the traditional sense, several families of Chlorococcales sensu lato , such as Golenkiniaceae, Micractiniaceae, and Scenedesmaceae contained taxa with bristle formation, whereas the Chlorellaceae contained only genera without bristles. However, phylogenetic analyses of the small subunit (SSU) and internal transcribed spacer (ITS) rDNA sequences have shown that the genera Micractinium, Diacanthos (formerly Micractiniaceae) and Didymogenes (formerly Scenedesmaceae) are closely related to the genus Chlorella . The bristle formation within the Chlorella -clade is originated independently in four lineages: Micractinium pusillum, Diacanthos belenophorus, Didymogenes anomala , and Micractinium parvulum (also known as Golenkinia minutissima ). The latter species is to exclude from the genus Micractinium . Consequently, we proposed the new genus Hegewaldia and transferred M. parvulum to this genus. In contrast, Diacanthos belenophorus is closely related to Micractinium pusillum . As a result, the new combination ( Micractinium belenophorum comb. nov.) is proposed. Comparisons of the secondary structure of ITS-1 and ITS-2 rDNA sequences among the strains of Didymogenes and Hegewaldia are provided to support the species concept in these genera.  相似文献   

15.
Schistosoma species have traditionally been arranged in groups based on egg morphology, geographical origins, and the genus or family of snail intermediate host. One of these groups is the 'S. indicum group' comprising species from Asia that use pulmonate snails as intermediate hosts. DNA sequences were obtained from the four members of this group (S. indicum, S. spindale, S. nasale and S. incognitum) to provide information concerning their phylogenetic relationships with other Asian and African species and species groups. The sequences came from the second internal transcribed spacer (ITS2) of the ribosomal gene repeat, part of the 28S ribosomal RNA gene (28S), and part of the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene. Tree analyses using both distance and parsimony methods showed the S. indicum group not to be monophyletic. Schistosoma indicum, S. spindale and S. nasale were clustered among African schistosomes, while S. incognitum was placed as sister to the African species (using ITS2 and 28S nucleotide sequences and CO1 amino acid sequences), or as sister to all other species of Schistosoma (CO1 nucleotide sequences). Based on the present molecular data, a scenario for the evolution of the S. indicum group is discussed.  相似文献   

16.
Two yeast strains, the cells of which contained xylose and Q-10 as the major ubiquinone, were isolated from a plant leaf collected in Taiwan. These yeasts were found to represent two new species of the genus Bullera in the Hymenomycetes. Identification was based on the sequence analysis of the 18S rDNA, the internal transcribed spacer (ITS) regions and the D1/D2 domain of 26S rDNA. The yeasts are named Bullera melastomae sp. nov. and Bullera formosana sp. nov. In the phylogenetic trees based on 18S rDNA and D1/D2 domain of 26S rDNA sequences, these two species constitute a cluster connected with Dioszegia cluster in the Cryptococcus luteolus lineage.  相似文献   

17.
Wang JB  Wang C  Shi SH  Zhong Y 《Hereditas》2000,133(1):1-7
The genus Aegilops comprises approximately 25 diploid, tetraploid and hexaploid species, in which the genome types of all allopolyploids involve either U or D genome, or both of them. The internal transcribed spacer (ITS) region of 18S-26S nuclear ribosomal DNA (rDNA) from 11 allopolyploid species and 7 related diploid species in the genus were directly sequenced by pooled PCR products. Phylogenetic analyses for tracing evolutionary patterns of parental rDNA in allopolyploid species were performed using the neighbor-joining method. The D genome involved tree included three clades (CC-DDCC, DDMM-DDMMSS-DDMMUU, and MM-MhMh-DDNN), but did not include Ae. squarrosa (DD). It indicated that the rDNA of ancestral D genome had been somewhat differentiated in allopolyploids. The U genome involved tree showed that the allopolyploids and their common ancestor, Ae. umbellulata, formed a clade, suggesting that rDNA in UUMM and UUSS genomes has been homogenizing toward that of ancestral U genome. The phylogenetic pattern of U genome based on ITS sequences also supported the "pivotal-differential" hypothesis.  相似文献   

18.
We comparatively examined the nutritional, molecular and optical and electron microscopical characteristics of reference species and new isolates of trypanosomatids harboring bacterial endosymbionts. Sequencing of the V7V8 region of the small subunit of the ribosomal RNA (SSU rRNA) gene distinguished six major genotypes among the 13 isolates examined. The entire sequences of the SSU rRNA and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) genes were obtained for phylogenetic analyses. In the resulting phylogenetic trees, the symbiont-harboring species clustered as a major clade comprising two subclades that corresponded to the proposed genera Angomonas and Strigomonas. The genus Angomonas comprised 10 flagellates including former Crithidia deanei and C. desouzai plus a new species. The genus Strigomonas included former Crithidia oncopelti and Blastocrithidia culicis plus a new species. Sequences from the internal transcribed spacer of ribosomal DNA (ITS rDNA) and size polymorphism of kinetoplast DNA (kDNA) minicircles revealed considerable genetic heterogeneity within the genera Angomonas and Strigomonas. Phylogenetic analyses based on 16S rDNA and ITS rDNA sequences demonstrated that all of the endosymbionts belonged to the Betaproteobacteria and revealed three new species. The congruence of the phylogenetic trees of trypanosomatids and their symbionts support a co-divergent host-symbiont evolutionary history.  相似文献   

19.
Sequence variability in two mitochondrial DNA (mtDNA) regions, namely cytochrome c oxidase subunit 1 (cox1) and NADH dehydrogenase subunit 4 (nad4), and internal transcribed spacer (ITS) of rDNA among and within three cestodes, Spirometra erinaceieuropaei, Taenia multiceps and Taenia hydatigena, from different geographical origins in China was examined. A portion of the cox1 (pcox1), nad4 genes (pnad4) and the ITS (ITS1+5.8S rDNA+ITS2) were amplified separately from individual cestodes by polymerase chain reaction (PCR). Representative amplicons were subjected to sequencing in order to estimate sequence variability. While the intra-specific sequence variations within each of the tapeworm species were 0-0.7% for pcox1, 0-1.7% for pnad4 and 0.1-3.6% for ITS, the inter-specific sequence differences were significantly higher, being 12.1-17.6%, 18.7-26.2% and 31-75.5% for pcox1, pnad4 and ITS, respectively. Phylogenetic analyses based on the pcox1 sequence data revealed that T. multiceps and T. hydatigena were more closely related to the other members of the Taenia genus, and S. erinaceieuropaei was more closely related to the other members of the Spirometra genus. These findings demonstrated clearly the usefulness of mtDNA and rDNA sequences for population genetic studies of these cestodes of socio-economic importance.  相似文献   

20.
A novel yeast species was isolated from leaf litter of Macropanax dispermus obtained from the Cibodas Botanical Garden, West Java, Indonesia. The two strains of the species displayed typical characteristics of the genus Citeromyces. Phylogenetic analysis based on the gene sequences of the D1/D2 domains of large subunit (LSU) rDNA, internal transcribed spacer (ITS) including 5.8S rDNA, mitochondrial small-subunit rRNA gene (MtSm), and translation elongation factor-1α (EF-1α) showed that the novel strains were clearly separated from the other four existing species of the genus Citeromyces. Therefore, the two strains were proposed to represent a novel species within the genus Citeromyces, for which the name Citeromyces cibodasensis is proposed; the type strain is NBRC 110244T (= CBS 14272T?=?InaCCY703T?=?AK 01).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号