首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have investigated reactions of the 5-phosphonoethyl and 5-phosphonoethenyl analogs of pyridoxal 5'-phosphate in the coenzyme site of cytosolic aspartate aminotransferase. Acid dissociation constants and equilibrium constants for hydration and for tautomerization have been evaluated for these compounds. In confirmation of previous results, both compounds are partially active. They bind to apoenzyme well and undergo conversion in the presence of glutamate to amine forms which show induced circular dichroism comparable to that of native enzyme. A normal "external" Schiff base is evidently formed with 2-methylaspartate, but the amounts of quinonoid intermediate formed with erythro-3-hydroxyaspartate are less than those formed with pyridoxal phosphate. The pKa of the imine group of the enzyme reconstituted with the phosphonoethyl analog is more than two units lower than that in the native enzyme. Binding of the dicarboxylates glutarate, 2-oxoglutarate, and succinate shifts the pKa upward. The absorption spectra of the resulting complexes indicate the existence of at least three low pH species. A shift of 2.3 to 2.9 ppm to a lower frequency was observed for the 31P NMR signal upon binding of these dicarboxylates or of 2-methylaspartate. Enzyme containing the analogs crystallizes. Polarized absorption spectra suggest that the coenzyme has an orientation similar to that of pyridoxal phosphate in the native enzyme.  相似文献   

2.
Resonance Raman (RR) spectra are reported for aspartate aminotransferase from pig heart cytosol, and for inhibitor complexes. They are interpreted with reference to the previously analyzed spectra of pyridoxal phosphate (PLP) Schiff base adducts. This comparison shows that, as expected, the pyridine N atom is protonated in the native enzyme at pH 5, and in the glutarate complexes at pH 8.5, and that it is also protonated in the alpha-methylaspartate complex; the stabilization of the pyridine proton at high pH must be due to the interaction with aspartate 222 seen in the x-ray crystal structure. RR spectra of the erythro-beta-hydroxy-DL-aspartate complex, representing the p-quinoid enzyme intermediate, as well as of AlIII complexes of PLP Schiff bases with phenylalanine and tyrosine ethyl ester have been obtained via the coherent anti-Stokes Raman scattering technique, and partially assigned. A novel H/D exchange at the coenzyme C4' atom has been observed for the native enzyme in D2O, and has been determined, by a combination of NMR and RR measurements, to be due to the Raman laser irradiation. This photoprocess, which is not observed for PLP Schiff bases in aqueous solution, is attributed to a photoexcited p-quinoid intermediate, similar to that implicated in the enzyme mechanism. It is suggested that this intermediate is stabilized by protein interactions which localize charge on the phenolate O atom, plausibly a hydrogen bond from the nearby tyrosine 225. H/D exchange would then follow via the aldimine-ketimine interconversion known to take place in the enzyme reaction.  相似文献   

3.
Crystalline enzyme.substrate complexes of asparate aminotransferase   总被引:2,自引:0,他引:2  
Crystalline complexes of cytoplasmic aspartate aminotransferase of pig heart with the substrates L-glutamate and L-aspartate, and with other amino acids, have been prepared and polarized light absorption spectra have been measured. Striking differences in the directions of polarization of the absorption bands are seen. A complete half-transamination of pyridoxal phosphate to pyridoxamine phosphate by aspartate or by cysteine sulfinate can be demonstrated in the crystal as can the accumulation of a quinonoid intermediate with erythro-beta-hydroxyaspartate. X-ray diffraction studies show that the crystals with erythro-beta-hydroxyaspartate and alpha-methylaspartate are isomorphous with those of both alpha and beta subforms of the native enzyme.  相似文献   

4.
The inhibition kinetic patterns obtained when ATP and pyridoxal analogues are used as inhibitors of the reaction catalyzed by pyridoxal kinase are consistent with a rapid equilibrium random Bi Bi, in which binary complexes, i.e. enzyme . ATP and enzyme . pyridoxal, are formed in kinetically significant amounts. Protein fluorescence quenching was used to determine the dissociation constant (Kd = 25 microM) of ATP . Zn bound to the nucleotide site of the kinase. The binding of ATP to the kinase induces a conformational change which is transmitted to other areas of the macromolecule. Pyridoxaloxime, a competitive inhibitor of pyridoxal, was used as a probe of the pyridoxal-binding site. It binds to the kinase with Ki = 2 microM and displays a fluorescent decay time of 7.8 ns. Time emission anisotropy measurements yield a rotational correlation time for bound pyridoxaloxime of approximately 2 ns, which is considerably shorter than the rotational correlation time of the protein (phi = 38 ns). The fast rotation of pyridoxaloxime remains unaffected by the binding of ATP.  相似文献   

5.
K Feldmann  E J Helmreich 《Biochemistry》1976,15(11):2394-2401
1 H NMR spectra of the 3-0-methylpyridoxal 5'-phosphate-n-butylamine reaction product indicated that this analogue forms a Schiff base in aprotic solvent. The uv spectral properties of 3-0-methylpyridoxal-5'-phosphate phosphorylase b correspond to those of the n-butylamine Schiff base derivative in dimethyl sulfoxide. On the basis of that and auxiliary uv and 1H NMR spectra of pyridoxal and pyridoxal 5'-phosphate and the corresponding Schiff base derivatives we have verified that pyridoxal 5' -phosphate is also bound as a Schiff base to phosphorylase and not as an aldamine. Since 3-0-methylpyridoxal-5'-phosphate phosphorylase is active, a proton shuttle between the 3-hydroxyl group and the pyridine nitrogen is excluded. This directs attention to the 5' -phosphate group of the cofactor as a candidate for a catalytic function. 31P NMR spectra of pyridoxal 5' -phosphate in phosphorylase b indicated that deprotonation of the 5' -phosphate group was unresponsive to external pH. Interaction of phosphorylase b with adenosine 5' -monophosphate, the allosteric effector required activity, and arsenate, which substitutes for phosphate as substrate, triggered a conformational change which resulted in deprotonation of the 5' -phosphate group of pyridoxal 5' at pH 7.6. It now behaved like in the pyridoxal-phosphate-epsilon-aminocaproate Schiff base in aqueous buffer, where the diionized form is dominant at this pH. Differences of line widths of the adenosine 5' -monophosphate signal point to different life times of the allosteric effector- enzyme complexes in the presence and absence of substrate (arsenate).  相似文献   

6.
Rat thymic lymphocytes have saturable, specific receptors for glucocorticoids, which are localized predominantly in the nucleus following exposure of thymocytes to dexamethasone at 37°C. The present results demonstrate the dose-dependent extraction by pyridoxal phosphate of dexamethasone-receptor complexes from isolated thymocyte nuclei. On an equal molar basis, pyridoxal phosphate is considerably more effective than pyridoxal; pyridoxine, pyridoxamine phosphate and 5-deoxypyridoxal are ineffective. The release of the nuclear dexamethasone receptor complex is dependent on the integrity of the C4′ carboxaldehyde group of pyridoxal phosphate as evidenced by the inhibition of extraction of dexamethasone-receptor complexes by either hydroxylamine or semicarbazide. The dexamethasone which pyridoxal phosphate liberates from thymus nuclei is bound to a macromolecule which is of smaller size than unactivated cytoplasmic dexamethasone receptor.  相似文献   

7.
Pyridoxal 5'-phosphate labeled to the extent of 90% with 13C in the 4' (aldehyde) and 5' (methylene) positions has been synthesized. 13C NMR spectra of this material and of natural abundance pyridoxal 5'-phosphate are reported, as well as 13C NMR spectra of the Schiff base formed by reaction of pyridoxal 5'-phosphate with n-butylamine, the secondary amine formed by reduction of this Schiff base, the thiazolidine formed by reaction of pyridoxal 5'-phosphate with cysteine, the hexahydropyrimidine formed by reaction of pyridoxal 5'-phosphate with 1,3-diaminobutane, and pyridoxamine 5'-phosphate. The range of chemical shifts for carbon 4' in these compounds is more than 100 ppm, and thus this chemical shift is expected to be a sensitive indicator of structure in enzyme-bound pyridoxal 5'-phosphate. The chemical shift of carbon 5', on the other hand, is insensitive to these structure changes. 13C NMR spectra have been obtained at pH 7.8 and 9.4 for D-serine dehydratase (Mr = 46,000) containing natural abundance pyridoxal 5'-phosphate and containing 13C-enriched pyridoxal 5'-phosphate. The enriched material contains two new resonances not present in the natural abundance material, one at 167.7 ppm with a linewidth of approximately 24 Hz, attributed to carbon 4' of the Schiff base in the bound coenzyme, and one at 62.7 Hz with a linewidth of approximately 48 Hz attributed to carbon 5' of the bound Schiff base. A large number of resonances due to individual amino acids are assigned. The NMR spectrum changes only slightly when the pH is raised to 9.4. The widths of the two enriched coenzyme resonances indicate that the coenzyme is rather rigidly bound to the enzyme but probably has limited motional freedom relative to the protein. 13C NMR spectra have been obtained for L-glutamate decarboxylase containing natural abundance pyridoxal 5'-phosphate and 13C-enriched pyridoxal 5'-phosphate. Under conditions where the two enriched 13C resonances are clearly visible in D-serine dehydratase, no resonances are visible in enriched L-glutamate decarboxylase, presumably because the coenzyme is rigidly bound to the protein and the 300,000 molecular weight of this enzyme produces very short relaxation times for the bound coenzyme and thus very broad lines.  相似文献   

8.
Schiff bases formed with octopamine, pyridoxal and pyridoxal phosphate react with copper ions to give various pH-dependent species. The outstanding feature of these complexes is their absence of EPR spectra at physiological pH values. We propose dimeric dipolar coupled structures for the EPR non-detectable copper complexes, involving hydroxyde anions and vitamin B-6 Schiff bases. These results establish that EPR non-detectable copper in enzymes may arise from dipolar coupling between metal ions involved in Schiff base type complexes.  相似文献   

9.
The circular dichroism has been used to evaluate the effect of mutation on the environment of the pyridoxal phosphate coenzyme in the active site of the beta-subunit in the tryptophan synthase alpha 2 beta 2 complex from Salmonella typhimurium. Seven mutant forms of the alpha 2 beta 2-complex with single amino acid replacements at residues 87, 109, 188, 306, and 350 of the beta-subunit have been prepared by site-directed mutagenesis, purified to homogeneity, and characterized by absorption and circular dichroism spectroscopy. Since the wild type and mutant alpha 2 beta 2 complexes all exhibit positive circular dichroism in the coenzyme absorption band, pyridoxal phosphate must bind asymmetrically in the active site of these enzymes. However, the coenzyme may have an altered orientation or active site environment in five of the mutant enzymes that display less intense ellipticity bands. The mutant enzyme in which lysine 87 is replaced by threonine has very weak ellipticity at 400 nm. Since lysine 87 forms a Schiff base with pyridoxal phosphate in the wild type enzyme, our results demonstrate the importance of the Schiff base linkage for rigid or asymmetric binding. Although the mutant enzymes display spectra in the presence of L-serine that differ from that of the wild type enzyme, addition of alpha-glycerol 3-phosphate converts the spectra of two of the mutant enzymes to that of the wild type enzyme. We conclude that this alpha-subunit ligand may produce a conformational change in the alpha-subunit that is transmitted to the mutant beta-subunits and partially corrects conformational alterations in the mutant enzymes.  相似文献   

10.
The β2 subunit of tryptophan synthetase of Escherichia coli is photoinactivated in the presence of pyridoxal 5′-phosphate and L-serine as a result of the destruction of one histidyl residue per chain (1). Two tryptic peptides are found in much lower amounts in the photoinactivated enzyme than in the control enzyme. These peptides have been identified from their amino acid composition as the 9 or 10 residue peptides which terminate with the lysyl residue which forms a Schiff base with pyridoxal 5′-phosphate. These peptides contain two histidyl residues, one of which appears to be photosensitive. Thus pyridoxal 5′-phosphate sensitizes the photooxidation of a nearby, essential histidyl residue.  相似文献   

11.
Cowpea chlorotic mottle virus (CCMV), which is stable at pH 5.0, has been modified at this pH with 0.5--0.7 pyridoxal 5'-phosphate molecules per protein subunit. The fluorescence properties of the labelled CCMV protein in different aggregation states of the virus provide information about the labelled part of the protein and the changes induced in its environment, when the nucleo-protein particles are swollen or dissociated. Fluorescence excitation and emission spectra indicate the presence of radiationless energy transfer from the aromatic amino acid residues to the label. Comparison of the fluorescence lifetimes of the labelled and the unlabelled protein confirms the existence of energy transfer. The mobility of the labelled part, which can be estimated from the fluorescence polarization of pyridoxal phosphate chromophore, is higher than expected from the dimensions of the virus and the protein subunits. Polarization values and the fluorescence lifetimes depend on the presence of small amounts of NaCl or MgCl2 in the buffer solution at pH 7.5. This is due to structural changes in the vicinity of the pyridoxal phosphate label of the RNA and of the protein part.  相似文献   

12.
The pdxK and pdxY genes have been found to code for pyridoxal kinases, enzymes involved in the pyridoxal phosphate salvage pathway. Two pyridoxal kinase structures have recently been published, including Escherichia coli pyridoxal kinase 2 (ePL kinase 2) and sheep pyridoxal kinase, products of the pdxY and pdxK genes, respectively. We now report the crystal structure of E. coli pyridoxal kinase 1 (ePL kinase 1), encoded by a pdxK gene, and an isoform of ePL kinase 2. The structures were determined in the unliganded and binary complexes with either MgATP or pyridoxal to 2.1-, 2.6-, and 3.2-A resolutions, respectively. The active site of ePL kinase 1 does not show significant conformational change upon binding of either pyridoxal or MgATP. Like sheep PL kinase, ePL kinase 1 exhibits a sequential random mechanism. Unlike sheep pyridoxal kinase, ePL kinase 1 may not tolerate wide variation in the size and chemical nature of the 4' substituent on the substrate. This is the result of differences in a key residue at position 59 on a loop (loop II) that partially forms the active site. Residue 59, which is His in ePL kinase 1, interacts with the formyl group at C-4' of pyridoxal and may also determine if residues from another loop (loop I) can fill the active site in the absence of the substrate. Both loop I and loop II are suggested to play significant roles in the functions of PL kinases.  相似文献   

13.
Tryptophanase (tryptophan: indole-lyase) from Escherichia coli has been isolated in the holoenzyme form and its absorption spectra and acid-base chemistry have been reevaluated. Apoenzyme has been prepared by dialysis against sodium phosphate and L-alanine and molar absorptivities of the coenzyme bands have been estimated by readdition of pyridoxal 5'-phosphate. The spectrophotometric titration curve, whose midpoint is at pH 7.6 in 0.1 M potassium phosphate buffers, indicates some degree of cooperativity in dissociation of a pair of protons. Resolution of the computed spectra of individual ionic forms of the enzyme with lognormal distribution curves shows that band shapes are similar to those of model Schiff bases and of aspartate aminotransferase. Using molar areas from the latter we estimated amounts of individual tautomeric species. In addition to ketoenamine and enolimine or covalent adduct the high pH form also appears to contain approximately 18% of a species with a dipolar ionic ring (protonated on the ring nitrogen and with phenolate -O-). We suggest that this may be the catalytically active form of the coenzyme in tryptophanase. The equilibrium between tryptophanase and L-alanine has also been reevaluated.  相似文献   

14.
Phytochelatins, heavy-metal-containing peptides with structures (gamma EC)nG, where n = 2-8, have been isolated from higher plants and the fission yeast Schizosaccharomyces pombe. The present work describes the isolation and characterization of several naturally occurring mixed complexes of these peptides from S. pombe exposed to 1 mM CdCl2. A lower-molecular-mass fraction from Sephadex G-50 chromatography yielded three distinct species on further fractionation. HPLC chromatography revealed the presence of peptides with n = 1-4 in varying amounts in these three complexes, referred to as complexes I, II and III. Stoichiometries are proposed for these complexes, based on [Cd], [SH], [S2-] and the amino acid content. Ultraviolet absorption and magnetic circular dichroism spectra of complexes II and III are similar, whereas the CD spectra of these two complexes are strikingly different. Compared to both complexes II and III, the CD bands of complex I are relatively weak. Ultraviolet absorption, CD and magnetic circular dichroism spectra provide a basis for the discussion of structural differences in these complexes.  相似文献   

15.
It has been established that phosphate analogues can activate glycogen phosphorylase reconstituted with pyridoxal in place of the natural cofactor pyridoxal 5'-phosphate (Change YC. McCalmont T, Graves DJ. 1983. Biochemistry 22:4987-4993). Pyridoxal phosphorylase b has been studied by kinetic, ultracentrifugation, and X-ray crystallographic experiments. In solution, the catalytically active species of pyridoxal phosphorylase b adopts a conformation that is more R-state-like than that of native phosphorylase b, but an inactive dimeric species of the enzyme can be stabilized by activator phosphite in combination with the T-state inhibitor glucose. Co-crystals of pyridoxal phosphorylase b complexed with either phosphite, phosphate, or fluorophosphate, the inhibitor glucose, and the weak activator IMP were grown in space group P4(3)2(1)2, with native-like unit cell dimensions, and the structures of the complexes have been refined to give crystallographic R factors of 18.5-19.2%, for data between 8 and 2.4 A resolution. The anions bind tightly at the catalytic site in a similar but not identical position to that occupied by the cofactor 5'-phosphate group in the native enzyme (phosphorus to phosphorus atoms distance = 1.2 A). The structural results show that the structures of the pyridoxal phosphorylase b-anion-glucose-IMP complexes are overall similar to the glucose complex of native T-state phosphorylase b. Structural comparisons suggest that the bound anions, in the position observed in the crystal, might have a structural role for effective catalysis.  相似文献   

16.
The solution conformations of pyridoxal-5′ -phosphate and pyridoxamine-5′-phosphate have been investigated using Eu(III) as a nuclear magnetic resonance shift probe. Binding of Eu(III) to pyridoxal phosphate results in the formation of two complexes, at the phosphate group and theo-hydroxy-aldehyde moiety, which are in slow exchange on the nuclear magnetic resonance time-scale. The lanthanide-induced pseudo contact shifts calculated using the McConnell-Robertson equation (J. Chem. Soc. (1950), 22, 1561) are in good agreement with the experimentally observed values for both pyridoxal phosphate and pyridoxamine phosphate and lead to a family of closely related conformations. Contribution No. 130 from the Molecular Biophysics Unit.  相似文献   

17.
Pyridoxal 5'-phosphate and other aromatic aldehydes inactivate rhodanese. The inactivation reaches higher extents if the enzyme is in the sulfur-free form. The identification of the reactive residue as an amino group has been made by spectrophotometric determination of the 5'-phosphorylated pyridoxyl derivative of the enzyme. The inactivation increases with pyridoxal 5'-phosphate concentration and can be partially removed by adding thiosulfate or valine. Prolonged dialysis against phosphate buffer also leads to the enzyme reactivation. The absorption spectra of the pyridoxal phosphate - rhodanese complex show a peak at 410 nm related to the Schiff base and a shoulder in the 330 nm region which is probably due to the reaction between pyridoxal 5'-phosphate and both the amino and thiol groups of the enzyme that appear reasonably close to each other. The relationship betweenloss of activity and pyridoxal 5'-phosphate binding to the enzyme shows that complete inactivation is achieved when four lysyl residues are linked to pyridoxal 5'-phosphate.  相似文献   

18.
The effect of pyridoxal 5'-phosphate on the binding of the ecdysteroid receptor from a nuclear extract of Drosophila melanogaster to DNA-cellulose was studied. The binding of hormone-receptor complexes to DNA-cellulose was completely blocked after a 30-min incubation with 3 mM pyridoxal 5'-phosphate at 0-4 degree C. The effect was specific for pyridoxal 5'-phosphate since related compounds (pyridoxal, pyridoxamine 5'-phosphate and pyridoxamine) were not effective or gave only 17% inhibition (pyridoxal). Under standard conditions, none of the compounds tested exerted a significant effect on the stability of [3H](20R,22R)-2 beta,3 beta, 14 alpha,20,22-pentahydroxy-5 beta-cholest-7-en-6-one ([3H]ponasterone A)-receptor complexes. The loss of DNA-binding activity caused by pyridoxal 5'-phosphate is accompanied by changes in the molecular properties of [3H]ponasterone-A-receptor complexes. A shift of [3H]ponasterone-A binding was observed from the 8.0-8.5 S to the 4.5-5.0 S region, when [3H]ponasterone-A-receptor complexes were exposed to pyridoxal 5'-phosphate during sucrose-gradient centrifugation. The inhibition of DNA-cellulose binding by pyridoxal 5'-phosphate can be reversed. Probably, pyridoxal 5'-phosphate forms a Schiff base with a critical lysine group of the ecdysteroid receptor, presumably at its DNA-binding site. The hormone-receptor complexes obtained after removal of pyridoxal 5'-phosphate had the same affinity for DNA-cellulose as 'native' complexes. DNA-cellulose-bound [3H]ponasterone-A complexes were efficiently eluted from DNA-cellulose with pyridoxal 5'-phosphate in 0.1 M KCl resulting in a 104-fold purification of the ecdysteroid receptor. The results reflect possible structural similarities between ecdysteroid and vertebrate steroid receptors.  相似文献   

19.
Inhibition of pyridoxal kinase by methylxanthines   总被引:2,自引:0,他引:2  
In the presence of saturating concentrations of adenosine triphosphate (ATP) and rate-limiting amounts of pyridoxal, theophylline was found to inhibit sheep brain pyridoxal kinase (EC 2.7.1.35) competitively. The apparent inhibition constant (Ki) of theophylline for pyridoxal kinase was determined as 8.7 mumol/l. Theophylline concentrations of up to 60 mumol/l did not affect pyridoxal phosphorylation in the presence of saturating amounts of pyridoxal and rate-limiting concentrations of ATP. Caffeine was less potent to inhibit pyridoxal kinase (Ki = 45 mumol/l) due to the presence of a methyl group on the 7 position of the xanthine ring structure. Theobromine showed only a weak inhibition of pyridoxal kinase (Ki = 453 mumol/l). The presence of a hydroxyethyl, hydroxypropyl or dihydroxypropyl group on the N7 position of theophylline completely abolished inhibition of pyridoxal kinase. Enprofylline (3-propylxanthine), a recently described bronchodilator, was also able to inhibit pyridoxal kinase with a Ki of 256 mumol/l.  相似文献   

20.
The changes in physical properties accompanying the removal of pyridoxal 5'-phosphate from glycogen phosphorylase b have been examined. The apoenzyme retains a high degree of structural rigidity, as determined from the time decay of anisotropy. The bulk of the secondary structure remains intact, although a significant change in circular dichroism indicates some degree of alteration. The mobility of a sulfhydryl-linked spin label increases. The restoration of pyridoxal 5'-phosphate reverses this effect, with indication of interaction between subunits. One or more new binding sites for 1-anilinonaphthalene-8-sulfonate appear for the apoenzyme. The kinetics of the recombination of pyridoxal 5'-phosphate with the apoenzyme, as monitored by difference spectra, indicate a high activation energy for the process. The apoenzyme is a reversibly associating system at 20-30 degrees C, pH 7.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号