首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
抗感枯萎病西瓜根际细菌群落多样性比较   总被引:1,自引:0,他引:1  
本文通过传统微生物培养方法,结合现代分子生物学技术对抗感枯萎病西瓜根际可培养细菌群落进行了比较研究.结果表明,抗病西瓜根际可培养细菌的多样性要高于感病西瓜,且细菌分布的均匀度也高于感病西瓜.表现为抗病西瓜根际可培养细菌的多样性指数H'(1.29)和1/D(30.28)分别高于感病西瓜的H'(1.12)和1/D(2.482).抗病西瓜根际可培养细菌的均匀度指数E(0.72)也高于感病西瓜的E(0.69).抗感西瓜根际分别具有不同的可培养优势群落,抗病西瓜根际可培养优势基因型为基因型1,占51.1%,感病西瓜根际可培养优势基因型为基因型7,占58.7%.  相似文献   

2.
转基因西瓜(Citrullus vulgaris Schrad)抗病性试验   总被引:1,自引:0,他引:1  
本文报道转基因西瓜植株WMV—Ⅰ病毒感染后的抗病性试验结果。结果表明,无论在温室还是在田间试验,转基因植株均可以推迟发病时间,减轻发病程度,表现出对相关病毒有一定的抗性。  相似文献   

3.
物种间亲缘关系的研究是杂交育种的理论基础,野生西瓜在西瓜育种中具有重要作用,然而目前对西瓜属物种间亲缘关系的研究十分有限,而且对西瓜属物种的分类问题还存在分歧.比较基因组原位杂交是分析物种间亲缘关系的有效手段,本研究以西瓜基因组DNA作探针,分别对缺须西瓜、热迷西瓜、药西瓜和诺丹西瓜有丝分裂中期染色体进行了比较基因组原位杂交分析,揭示了西瓜属物种间的亲缘关系,同时对分类地位尚存在争议的诺丹西瓜的归属问题进行了分析,发现诺丹西瓜和甜瓜之间具有非常近的亲缘关系,本研究结果为西瓜与近缘种间的远缘杂交提供了重要的理论依据.  相似文献   

4.
为了揭示嫁接提高西瓜抗枯萎病的机制,该研究以嫁接西瓜为材料,采用扫描电镜观察了枯萎病菌侵染下寄主的组织结构变化,荧光定量分析了相关防卫基因的表达,比较了嫁接西瓜对枯萎病菌侵染的抗感反应。结果显示:(1)枯萎病菌侵染后,与自根西瓜相比,嫁接西瓜的根部木质部导管通过快速形成膜状物、侵填体及细胞壁增厚阻塞菌丝入侵;自根西瓜防御反应较嫁接西瓜晚,严重侵染时薄壁细胞降解,导管组织脱落导致维管系统空洞,从而使植株呈现萎蔫症状,该现象在嫁接西瓜中没有发现。(2)枯萎病菌侵染后,嫁接西瓜比自根西瓜具有较高的防卫基因表达水平,其中:嫁接西瓜中,CHI、APX和PPO基因的表达随枯萎病菌侵染时间的延长而升高,而PAL呈现先升高后降低的表达趋势,但仍高于本底表达;自根西瓜中,仅PPO基因在枯萎病菌侵染后表达上调,而其他基因的表达则是先升高后降低,与嫁接西瓜中的PAL基因表达一致。研究表明,嫁接植株一方面通过快速的组织结构响应,另一方面从转录水平提高了相关防卫基因的表达,最终使植株具有抗病性;推测防御基因在嫁接植株与枯萎病菌互作中的强烈诱导响应可能是嫁接植株抗病的分子机制之一。  相似文献   

5.
西瓜基因转化及其转基因植株再生的研究   总被引:4,自引:0,他引:4  
西瓜味甜汁多,营养丰富,能消暑、解渴,是夏季重要水果。主要危害是马铃薯Y病毒组(Potyviring group)的西瓜花叶病毒一号(WMV-Ⅰ)和西瓜花叶病毒二号(WMV-Ⅱ)。WMV-Ⅰ和WMV-Ⅱ发病严重,农药防治效果差且存在农药残留问题。目前尚未选育出抗病新品种。近年来,国内外广泛采用植物基因工程方法来选育抗病毒的良种,其中利用外壳蛋  相似文献   

6.
【背景】细菌性果斑病是一种严重的种传细菌病害,其病原菌为西瓜食酸菌。截至目前对该病病原菌与寄主的互作机制认识极为有限。葫芦科的模式植物黄瓜易被西瓜食酸菌侵染发病,对西瓜食酸菌-黄瓜互作体系进行转录组分析,可以为探究西瓜食酸菌与寄主互作机制奠定重要基础。【目的】解析西瓜食酸菌-黄瓜互作时的相互响应规律。【方法】以细菌悬液注射接种6d黄瓜子叶,处理48 h的子叶作为转录组测序样本。利用RNA-Seq技术分析西瓜食酸菌FC440菌株与黄瓜9930品种互作时基因的表达特征。【结果】测序数据质量分析发现,各样品不同重复间相关性较强,与参考基因组比对率达95%以上,聚类分析发现对照组与处理组表达模式相反,样品处理达到一定效果,表明数据整体质量较高。选取6个差异表达基因进行RT-qPCR验证,结果显示6个基因的表达模式与转录组结果基本一致,表明转录组测序结果比较可靠。西瓜食酸菌和黄瓜互作48 h后,在转录组水平分别检测到1 618个和8 698个差异表达基因。Gene Ontology (GO)功能注释显示,细菌的差异基因显著富集在细胞组分中的细胞膜(37.5%)和膜部分(27.0%),生物过程中的氧化还原过程(66.7%)以及分子功能中的水解酶活性(66.5%);黄瓜的差异基因显著富集在细胞组分中的质体(22.2%)和叶绿体(21.3%),分子功能中的催化活性(70.0%)以及生物过程中的碳水化合物衍生物代谢(32.2%)。Kyoto Encyclopedia of Genes and Genomes (KEGG)分析显示,细菌中致病相关基因显著富集在群体感应及细菌趋化性途径,而且群体感应系统基因下调更显著。黄瓜中调控钙依赖蛋白激酶(Calcium-Dependent Protein Kinase,CDPK)、钙调素和类钙调素(Calmodulin and Calmodulin-Like,CaMCML)及呼吸氧暴发激酶(Respiratory Burst Oxidase Homologne,Rboh)的基因总体上调,调控苯丙氨酸裂解酶(Phenylalanine Ammonia-Lyase,PAL)的基因和谷胱甘肽S-转移酶(Glutathione S-Transferase,GST)的基因在相应代谢途径中数量最多且上调程度明显。【结论】获得较高质量的西瓜食酸菌与黄瓜互作的转录组测序结果。群体感应与西瓜食酸菌FC440菌株致病力密切相关;寄主黄瓜应对西瓜食酸菌侵染以Ca~(2+)信号激活的防御反应为主。PAL和GST在黄瓜抵抗西瓜食酸菌侵染中发挥重要作用。本研究为进一步深入解析西瓜食酸菌与寄主互作的机制奠定了基础。  相似文献   

7.
普通西瓜均属于二倍体西瓜。用秋水仙碱溶液处理二倍体西瓜的种子或幼苗,使其染色体加倍,成为四倍体西瓜,再以四倍体西瓜作母本,普通西瓜作父本,杂交后就得到三倍体西瓜种子。由三倍体西瓜种子长成的植株,由于不能进行正常的减数分裂、形成可育的配子而没有种籽,这就叫无籽西瓜。无籽西瓜与普通西瓜比较,由于无种子而使更多的养分转化为糖,具有味甜汁多、品质好、食用方便等优点,深受人们欢迎。但在国内市场上目前还少见。其主要原因是三倍体西瓜必须每年进行杂制种,制种过程又非常复杂,因而种子价格很高;加上所得的三倍体西瓜…  相似文献   

8.
李敏  刘润进  赵洪海 《菌物学报》2001,20(4):547-551
在温室盆栽条件下研究了丛枝菌根(Arbuscular Mycorrhiza, AM)真菌Glomus versiforme和西瓜枯萎镰刀菌Fusarium oxysporum f.sp. niveum对西瓜根系中过氧化物酶(POD)、苯丙氨酸解氨酶(PAL)、β-1,3-葡聚糖酶和几丁质酶活性的影响。结果表明,接种AM真菌的西瓜根系中4种酶的活性均高于对照,先接种G. versiforme,后接种F. oxysporum f.sp. niveum处理的4种酶的活性均高于只接种F. oxysporum f.sp. niveum 的处理,且酶的活性峰值出现较早。表明接种G. versiforme 能预先诱导这4种酶的产生,提高其活性,从而提高西瓜对F. oxysporum f.sp. niveum侵染的抗性。接种G. versiforme的感枯萎病西瓜品种“郑杂5号”酶的增加幅度大于抗病品种“京欣1号”的接种处理,说明G. versiforme对提高感病西瓜品种酶活性的作用更大。  相似文献   

9.
在温室盆栽条件下研究了丛枝菌根(Arbuscular Mycorrhiza, AM)真菌Glomus versiforme和西瓜枯萎镰刀菌Fusarium oxysporum f.sp. niveum对西瓜根系中过氧化物酶(POD)、苯丙氨酸解氨酶(PAL)、β-1,3-葡聚糖酶和几丁质酶活性的影响。结果表明,接种AM真菌的西瓜根系中4种酶的活性均高于对照,先接种G. versiforme,后接种F. oxysporum f.sp. niveum处理的4种酶的活性均高于只接种F. oxysporum f.sp. niveum 的处理,且酶的活性峰值出现较早。表明接种G. versiforme 能预先诱导这4种酶的产生,提高其活性,从而提高西瓜对F. oxysporum f.sp. niveum侵染的抗性。接种G. versiforme的感枯萎病西瓜品种“郑杂5号”酶的增加幅度大于抗病品种“京欣1号”的接种处理,说明G. versiforme对提高感病西瓜品种酶活性的作用更大。  相似文献   

10.
梁愈 《生物学通报》2009,44(2):36-36
在多年的高中生物学教学实践中,有关三倍体无籽西瓜的教学中学生总是存在一些疑惑,比如:三倍体西瓜是不是绝对无籽:为什么选择四倍体西瓜做母本、二倍体西瓜做父本,用反交行不行;为什么三倍体西瓜种子在翌年还要与二倍体西瓜间行种植;三倍体西瓜的性状能不能遗传等。下面就上述问题进行简要的剖析。  相似文献   

11.
生防菌根系定殖竞争作用对西瓜枯萎病发病机理的影响   总被引:2,自引:0,他引:2  
【目的】西瓜枯萎病是由西瓜专化型尖孢镰刀菌(Fusarium oxysporum f.sp.niveum)引起的一种常见的毁灭性土传病害,对镰刀菌同属非致病性菌株与致病性菌株存在的竞争作用进行研究,有助于获得新的具有生防效果的菌株,从而拓宽西瓜枯萎病生物防治的手段。【方法】利用选择性培养基和稀释平板计数法对温室盆栽试验中西瓜根际和非根际土壤及植物组织中非致病性轮枝镰刀菌菌株(Fusarium verticillioides XA)与致病性尖孢镰刀菌(Fusarium oxysporum LD)进行计数,确定其在西瓜植株根际和组织中的定殖情况。【结果】将从田间西瓜枯萎病发病植株根部分离获得的菌株XA和LD接入健康土壤中,接种菌株XA既不会引起西瓜枯萎病发病症状,也不会影响西瓜植株生物量,但接种菌株LD导致严重发病症状。与单接种LD处理相比较,双接种(XA+LD)处理地上部鲜重和地上部干重都分别增加了151.2%和110%。XA菌株能成功定殖于西瓜根系,但在茎基部没有检测到。在接种菌株LD的处理中植物组织和土壤中致病性镰刀菌的数量达到(1.58 4.85)×104CFU/g。与单接种LD处理相比,双接种菌株XA和LD处理植物茎基部、根系、根际土壤和土体土壤致病性镰刀菌的数量分别下降63.3%、66.1%、3.3%和24.4%,根系、根际土壤和土体土壤非致病性镰刀菌的数量增加到(0.35 3.84)×104CFU/g;双接种处理对西瓜枯萎病的防效达57.8%。【结论】非致病性轮枝镰刀菌菌株XA可有效降低致病性尖孢镰刀菌LD对西瓜植株的定殖侵染能力,对西瓜枯萎病具有一定的生防效果。  相似文献   

12.
采用稀释涂布平板计数法,研究了石灰碳铵及碳铵熏蒸对黄瓜和西瓜连作土壤尖孢镰刀菌数量的影响,以及熏蒸后施用生物有机肥对黄瓜和西瓜枯萎病的防控效果及植株生长的影响.结果表明:与对照相比,石灰碳铵及碳铵熏蒸后,连作土壤中黄瓜尖孢镰刀菌的数量分别下降95.4%及71.4%,西瓜尖孢镰刀菌的数量分别下降87.2%及64.2%;多因素方差分析表明,熏蒸、施用有机肥及作物种类均对土壤中尖孢菌数量、枯萎病发病率、防控率及生物量有显著影响;与未熏蒸施用普通有机肥对照相比,石灰碳铵熏蒸后施用生物有机肥能显著减少后茬黄瓜或西瓜土壤中尖孢镰刀菌的数量并显著降低枯萎病发病率,防控率高达91.9%及92.5%,同时显著增加了植株的株高、茎粗、SPAD值及干质量.表明石灰碳铵熏蒸及施用生物有机肥能够降低土壤中尖孢镰刀菌数量,有效防控黄瓜和西瓜枯萎病的发生并促进其植株生长.  相似文献   

13.
Isolates of Fusarium oxysporum from Abaco, the Bahamas, whether obtained from wilted plants of cucumber (Cucumis sativus) or watermelon (Citrullus lanatus), were pathogenic to cucumber, watermelon, and cantaloupe (Cucumis melo var. reticulatus). The West Indian gherkin (Cucumis anguria), pumpkin (Cucurbita pepo), and three cultivars of summer squash (C. pepo var. melopepo) were not susceptible. Strains of F. oxysporum from wilted cucumber or watermelon plants from Florida were highly pathogenic only to their original host species and are regarded as different formae speciales.  相似文献   

14.
15.
Paenibacillus polymyxa SQR-21 has been identified as a potential agent for the biocontrol of Fusarium wilt in watermelon, which is caused by the pathogenic fungus Fusarium oxysporum f.sp. niveum (FON). In the present study, the effects of root exudates from watermelon plants inoculated or non-inoculated with either SQR-21 or FON on conidial germination of FON were investigated. Compared to the control, conidial germination was decreased with root exudates from SQR-21-inoculated plants, but conidial germination was enhanced by root exudates from FON-inoculated plants. Maximal germination was found with root exudates from FON-inoculated plants after 30 d, which was 1.35 times more germination than the control. A split-root system was designed to verify that the alterations of the exudation pattern in SQR-21- inoculated or FON-inoculated watermelon roots were not only local, but also systemic. Cinnamic acid was found in the watermelon root exudates. An assay to test the effects of cinnamic acid on conidial germination of FON revealed that the stimulation of conidial germination was observed from cinnamic acid concentrations ranging from 0 to 30 μg/ml. In conclusion, both of SQR-21 and FON systemically affects watermelon root exudates. These results will help to the better understanding of the plant-microbe communication and will guide to improve the biocontrol strategies against Fusarium wilt of watermelon plants.  相似文献   

16.
The aim of this study was characterized Pectobacterium carotovorum subsp. carotovorum (Pcc) the causal pathogen of watermelon soft rot disease in Iran. Of fifty bacterial isolates with white grey and convex colonies on nutrient agar obtained from symptomatic watermelon, ten isolates were selected for further tests. Pathogenicity tests results showed that all test isolates developed typical water‐soak symptoms after 2 days and signs of soft rot began 4 days after inoculation on watermelon fruits. Based on the phenotypic properties, the isolates were identified as Pectobacterium carotovorum subsp. carotovorum. The 16S rDNA sequences of isolates were 99% similar to the corresponding 16S rDNA sequence of the reference Pcc isolate. BOX and ERIC‐PCR analysis indicated that genetic diversity was present among the isolated Pcc isolates did not relate to the geographic location isolated from. To the best of our knowledge, this is the first study of biochemical and genotypic characterization of Pcc isolates the causal agents of soft rot disease on watermelon, in Iran.  相似文献   

17.
A crown, foot and fruit rot of watermelon has been observed in most of the watermelon production areas in Tunisia. A survey conducted from 2000 to 2001 allowed the isolation of 291 isolates which were identified as Fusarium solani. These isolates were identified as F. solani f. sp. cucurbitae (Fsc) and races 1 and 2 characterized on the basis of pathogenicity tests on watermelon seedlings and muskmelon fruits. These results were confirmed by counts of the number of septa in the macroconidia. About 271 isolates were identified as Fsc race 1, 12 isolates were identified as Fsc race 2 and eight isolates were not pathogenic. Race 1 is widely distributed in watermelon production areas in Tunisia and race 2 has a lower incidence but it is present in the north, the middle and southern Tunisian watermelon cropping areas. Additionally, a study to compare the virulence of 122 isolates of Fsc race 1 showed different degrees of virulence among them. This is the first report of Fsc races 1 and 2 in Tunisia.  相似文献   

18.
More effective ways of applying biocontrol products should be developed based both on the characteristics of the biocontrol agents and the normal practices of the agricultural producer. A new system was developed to improve the biocontrol efficacy of Fusarium wilt for watermelon production, and this system was tested in pot and field experiments. Biocontrol was achieved by applying a novel bioorganic fertilizer product (BIO) to Fusarium-infested soil. The best biocontrol was obtained by application of a bioorganic fertilizer, BIO, into soil during the nursery phase of watermelon seedling followed by a second application to Fusarium-infested soil when watermelon seedlings were transplanted. In comparison with the controls, the incidence of the disease was reduced by 60–100% in the pot experiment and by 59–73% in the field experiment when the BIO was applied during the nursery stage. After application of BIO during the nursery stage, the number of colony-forming units of Fusarium oxysporum in rhizospheric soil was significantly (P < 0.05) inhibited compared to the controls. An in vitro experiment showed that the antagonist Paenibacillus polymyxa in the BIO could effectively colonize the rhizosphere of watermelon and proliferate along the extending plant roots. This inhibited growth of Fusarium oxysporum in the rhizosphere of watermelon and protected the watermelon roots from attack by the pathogens. The method used for biocontrol Fusarium wilt disease in watermelon should be a useful strategy to improve field efficacy of other biocontrol agents.  相似文献   

19.
Thirty‐seven isolates of Didymella bryoniae from three Cucurbitaceae species were collected in Brazil and tested for pathogenicity to watermelon. All isolates were pathogenic but differed in aggressiveness levels. Seven representative isolates were used in cross‐pathogenicity tests against 10 cucurbitaceous hosts. Most isolates were pathogenic to most host species tested, except to Sechium edule. Among the susceptible species, Citrullus and Cucumis species were the most susceptible hosts, while pumpkin and Luffa purgans were the most resistant. Host of origin affected the pattern of aggressiveness on each host. Isolates from watermelon were very aggressive to their original host, but much less aggressive or not pathogenic at all to some Cucurbita. Two previously described random‐amplified polymorphic DNA (RAPD)‐specific primers indicated that 81% of the isolates could be classified into the so‐called RG I group, while the remaining isolates could not be classified into any of the described RG groups. All 37 isolates were further characterized by RAPD fingerprinting and compared with three US isolates representative of RG I and RG II groups. The Brazilian D. bryoniae isolates could be separated into genetically similar clusters. The majority of the isolates were grouped in cluster DB Ia, which contained only isolates of Citrullus lanatus and Cucumis melo. Two of the American isolates used as controls clustered with this group at 68% similarity level. The DB Ib cluster included three Brazilian isolates obtained from melon and watermelon and the American representative for RG II, at a lower similarity level (43%). Two isolates from watermelon clustered with one isolate from melon in a separate group (DB II), while one single isolate from pumpkin (DB III) showed the lowest genetic similarity to all other isolates. Didymella bryoniae isolates from Brazil showed, therefore, a level of genetic diversity higher than previously reported for the species. RAPD fingerprinting allowed for geographical distinction of D. bryoniae isolates but no correlation between genetic distance, aggressiveness or origin of the isolate was found.  相似文献   

20.
Arbuscular mycorrhizal fungi (AMF) colonisation of plant root facilitates the absorption of nutrients such as phosphorus (P) and enhances plant biotic and abiotic resistance generally. However, arbuscular mycorrhiza (AM) colonisation decreases with application of chemical fertiliser. Here, we investigated whether AMF inoculation in nurseries would facilitate AM colonisation and take physiological and ecological functions in watermelon (Citrullus lanatus) in the field. Pot experiments were carried out to study the change of AMF colonised seedling on physiology and gene expression in nursery site. Field experiments were performed to investigate the effect of nursery AMF inoculation on yield, quality and disease resistance of watermelon in the field. The results showed that nursery‐inoculated seedlings produced more dry matter and root surface area than non‐inoculated seedlings. Expression of the secretory purple acid phosphatase (PAP) genes ClaPAP10 and ClaPAP26 was up‐regulated following AMF colonisation. Accordingly, acid phosphatase activities at the root surface and P concentrations in seedling were enhanced. After transplantation to the field, the shoot dry matter and P concentration in old stem were higher in the nursery AMF inoculated seedlings than that in non‐AMF inoculated seedling. AMF inoculation also induced increase of yields and decrease of wilt disease indexes and soluble sugar content. In addition, acid phosphatase activities and AMF spore densities were increased by nursery‐inoculation in watermelon rhizosphere soil in the field. In conclusion, nursery colonisation AMF seedling enhanced watermelon growth and yield by improving the root growth and P acquisition in nursery cultivating stage, as well as optimised soil properties in the field. Nursery cultivation of watermelon seedling with AMF was an effective technique to reduce wilt disease in continuous cropped management in watermelon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号