首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
125I[D-Ala2, Met5] enkephalin with high specific activity (122-185 Ci/mmol) was prepared and purified by Sep-Pak C18 reverse phase cartridge followed by high performance liquid chromatography (HPLC). HPLC at pH 3.0 resolved 125I[D-Ala2, Met5] enkephalin into two fractions, which ran as a single spot in thin-layer chromatography with the same Rf values. Alkaline hydrolysates of the HPLC-purified fractions showed a single spot corresponding to monoiodotyrosine standard when analysed by thin-layer chromatography. Binding kinetics of the tracer was found to approach equilibrium after 30 min at 24 degrees. Scatchard analysis of the saturation equilibrium binding studies gave an equilibrium dissociation constant of 3.58 nM and the number of binding site of 30 fmol/mg protein. Enkephalin analogs were capable of displacing 125I[D-Ala2, Met5] enkephalin binding from the rat brain plasma membrane. The effective concentration of [D-Ala2, Met5] enkephalin and [D-Ala2, Leu5] enkephalin for 50% inhibition of 125I[D-Ala2, Met5] enkephalin binding was estimated to be 79 nM and 23 nM, respectively. Both substance P and gastrin tetrapeptide failed to displace the 125I[D-Ala2, Met5] enkephalin binding to any significant extent. The 125I[D-Ala2, Met5] enkephalin prepared by the present procedure is therefore a useful tracer. This method of preparing radioiodinated peptide may be applicable to other enkephalin analogs or neuropeptides in general.  相似文献   

2.
Radioreceptor binding assay using a membrane fraction from the rat brain was applied to study [D-Arg2, Leu5] enkephalin and two series of its analogues truncated at the C-terminus with a free or modified carboxyl group: tetra- and tripeptide amides and ethyl esters. The affinity to mu-specific opiate receptor subtype of the N-terminal [D-Arg2] tetrapeptide ethyl ester was 44 times as high as that of the tripeptide with a free carboxyl, and thus the ester retained up to 10% of leucine-enkephalin binding potency. However, a comparable esterification of the carboxyl group in the N-terminal [D-Arg2] tripeptide led to a 6-fold reduction in its affinity to mu-receptors. Consequently, identical modifications of the C-terminal carboxyl group in enkephalin analogues of various length can have completely different effects. Substitution of the natural glycine residue by D-arginine residue in position 2 of the enkephalin molecule truncated at the C-terminus increased the mu-receptor binding potency of the tetrapeptide, whereas its delta receptor binding potency declined by more than one order of magnitude. Simultaneous replacement of glycine2 by D-arginine2 and carboxyl amidation resulted in the short enkephalin analogue Tyr--D--Arg--Gly--Phe--NH2, whose affinity to mu receptors was four times as high as that of leucine--enkephalin, the tetrapeptide being 284 times more selective for the mu vs. delta opiate receptors.  相似文献   

3.
1. The effects of chronic treatment with a dimeric or monomeric penta- or tetrapeptide enkephalin analogue on binding and cyclic AMP (cAMP) accumulation in NG108-15 cells have been studied. 2. When the cells were cultured in the presence of 1 mumol of a pentapeptide analogue (dimer or monomer) for up to 96 hr, binding was reduced by greater than or equal to 90%. 3. In contrast, in the presence of 1 mumol of a tetrapeptide analogue (dimer or monomer), binding was reduced by only less than or equal to 30%. 4. The analogues had varying effects on regulation of cAMP formation. Desensitization, indicated by impaired opioid-mediated inhibition of prostaglandin E1 (PGE1)-stimulated cAMP accumulation, was clearly apparent only for cells pretreated with [D-Ala2,D-Leu5]enkephalin (DADLE), while cells pretreated with [D-Ala2,Leu5-NH-CH2-]2 (DPE2) showed minor impairment. 5. Thus, ligand dimerization appeared to have a modulating effect on regulation of adenylate cyclase activity but not to affect opioid-induced down-regulation.  相似文献   

4.
P W Schiller  B Eggimann  T M Nguyen 《Life sciences》1982,31(16-17):1777-1780
Analogs of dynorphin-(1-13) with modifications in the enkephalin segment were compared with correspondingly modified analogs of [Leu5]enkephalin in the guinea pig ileum (GPI) and mouse vas deferens (MVD) assay as well as in mu- and delta-receptor selective binding assays. The obtained results indicate that a) the enkephalin binding domain of the dynorphin (kappa) receptor has structural requirements which are distinct from those of the enkephalin binding site at the mu-receptor and b) the introduction of an identical conformational constraint in [Leu5]enkephalin and in the enkephalin segment of dynorphin-(1-13) produces a superpotent agonist in both cases. Fluorescence energy transfer measurements with the active [4-tryptophan]analogs of dynorphin-(1-13) and [Leu5]enkephalin and with dynorphin-(1-17) demonstrated a more extended conformation of the N-terminal tetrapeptide segment in [Trp4]dynorphin-(1-13) than in [Trp4, Leu5]enkephalin as well as the absence of an interaction between the N- and C-terminal segments of dynorphin-(1-17).  相似文献   

5.
The technique of microiontophoresis was used to study the effects of leucine-enkephalin [( Leu]enkephalin) and the tetrapeptide Tyr-Ile-Phe-Val on spontaneous and evoked activity of guinea-pig hypothalamic neurons. The inhibitory effects of the tetrapeptide were similar to those of [Leu]enkephalin on some neurons. However, in other cases, [Leu]enkephalin was inhibitory whereas Tyr-Ile-Phe-Val was without effect. These data and the fact that naloxone caused a different antagonism of inhibitory effects by these two peptides suggest the existence of two types of opiate receptors on some hypothalamic neurons and that Tyr-Ile-Phe-Val preferentially binds to delta-receptors. Conformational features of Tyr-Ile-Phe-Val have been established by 1H-NMR spectroscopy and were found to be in accordance with the above considerations. The peptide has a peculiar folded conformation called gamma-turn. Due to the restricted flexibility of this structure, the aromatic moieties (Tyr and Phe) and the hydrophobic (Val) or hydrophilic (terminal NH2 and CO2H) parts are positioned in a specific spatial relationship which can be related to an optimal binding to delta-receptors.  相似文献   

6.
Low-energy peptide backbone conformers were found by means of energy calculation for several cyclic analogues of enkephalin in an attempt to assess models for receptor-bound conformations for opioid receptors of the mu- and delta-types. They included [D-Cys2, L-Cys5]- and [D-Cys2, D-Cys5]-enkephalinamides showing moderate preference for mu-receptors, the delta-selective compounds [D-Pen2, L-Pen5] and [D-Pen2, D-Pen5]-enkephalins and Tyr-D-Lys-Gly-Phe- analogue possessing very high affinity to receptors of the mu-type. The low-energy conformers obtained for these analogues were in good agreement with the results of calculations by other authors and with experimental evidence. All of the analogues contain a Phe residue in position 4 of the peptide chain which facilitates the eventual search for geometrical similarity between the low-energy backbone conformers of different analogues in question.  相似文献   

7.
The effects of nineteen enkephalin analogues on the circulating levels of prolactin in the male rat following intraventricular injection of the peptides were determined and compared with that of Met- and Leu-enkephalin. Eleven of the 19 analogues stimulated prolactin secretion. It was found, in general, that the structure activity relationship for enkephalin stimulation of prolactin secretion was similar to that for opiate receptor activity. Analogues which contained a [DAla2] substitution were generally effective in stimulating prolonged prolactin release. Some, but not all analogues containing [DTrp2] or [DLeu5] were active. Analogues containing the [DTrp1], [DPhe4] or [DMet5] substitutions were ineffective. The prolactin releasing effect of intravenous Tyr-DAla-Gly-Phe-DLeu was reversed by naloxone. Naloxone had no effect on the haloperidol- and alpha-methylparatyrosine induced increases in plasma prolactin levels. The results of these studies are discussed in the light of the suggestion that the enkephalins may function as neuroendocrine modulators.  相似文献   

8.
An amphiphilic substrate was used as the basis of a specific assay for peptidases which generate the opioid peptide methionine enkephalin. The substrate [Homoarg-14C]Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Homoarg is prepared by guanidination of the lysine analogue (which is beta-lipotropin 61-69) with O-methyl-[14C]isourea and is quantitatively adsorbed to dextrancoated charcoal. The COOH-terminal tetrapeptide is not adsorbed and, since it carries the radioactive label, is easily assayed in the charcoal-free supernatant fluid. Two enzyme activities have been identified in rat brain which specifically convert the amphiphilic substrate to enkephalin and the resulting tetrapeptide tail. These activities are soluble and particulate, respectively, and differ in regional distribution within the brain, in their inhibition by other peptides and in Km. Based upon these characteristics, it seems likely that the soluble activity is not primarily involved in the biosynthesis of enkephalin. It does seem possible, however, that the particulate activity which we describe may play a role in opioid peptide synthesis from larger precursors.  相似文献   

9.
Syntheses are described of new dermorphin and [D-Ala2]deltorphin I analogues in which the phenylalanine, the tyrosine or the valine residues have been substituted by the corresponding N-alkylglycine residues. Structural investigations by CD measurements in different solvents and preliminary pharmacological experiments were carried out on the resulting peptide-peptoid hybrids. The contribution from aromatic side chain residues is prominent in the CD spectra of dermorphin analogues and the assignment of a prevailing secondary structure could be questionable. In the CD spectra of deltorphin analogues the aromatic contribution is lower and the dichroic curves indicate the predominance of random conformer populations. The disappearance of the aromatic contribution in the [Ntyr1,D-Ala2]-deltorphin spectrum could be explained in terms of high conformational freedom of the N-terminal residue. The kinetics of degradation of the synthetic peptoids digestion by rat and human plasma enzymes were compared with that of [Leu5]-enkephalin. The binding to opioid receptors was tested on crude membrane preparations from CHO cells stably transfected with the mu- and delta-opioid receptors. The biological potency of peptoids was compared with that of dermorphin in GPI preparations and with that of deltorphin I in MVD preparations. All the substitutions produced a dramatic decrease in the affinity of the peptide-peptoid hybrids for both the mu- and delta-opioid receptors. Nval5 and/or Nval6 containing hybrids behaved as mu-opioid receptor agonists and elicit a dose-dependent analgesia (tail-flick test) when injected i.c.v. in rats.  相似文献   

10.
Biological activity of the enkephalin cyclic analogues with a disulphide bridge between second and fifth positions, and the dependence of the activity on the cycle size, disulfide bridge localization and configuration of the amino acid residues have been studied. The analogues were synthesized by chemical approach with the use of pentafluorophenyl esters. The cyclization was carried out at the C-terminal tetrapeptide stage by iodine in methanol after removing benzyl protecting groups from thiol groups of cysteine and homocysteine by sodium in liquid ammonia. The blocking activity in vitro (GPI and MVD tests) to the mu- and delta-receptors depends on cycle size, localization of disulphide bridge in the cycle, and amino acid configuration at second and fifth positions. Analogues with D-amino acids proved to be most active in vivo (analgesia, cataleptic activity, effect on frequency of heart contractions and body temperature). Conformational characteristics of enkephalin analogues were investigated by means of CD spectroscopy.  相似文献   

11.
The synthesis is described of a [D-Ala2]-deltorphin I peptoid analogue in which all amino acid residues have been substituted by the corresponding N-alkylglycine residues. The [D-Ala2]-deltorphin I retropeptoid was also prepared as well as [Ala1 ,D-Ala2]-deltorphin 1 and the corresponding peptoid. Structural investigations by FT-IR and fluorescence measurements were carried out on the synthetic analogues and on some [D-Ala2]-deltorphin 1 peptide-peptoid hybrids previously prepared. According to the fluorescence measurements the distance between the aromatic residues in the deltorphin I peptoid and retropeptoid is similar to that suggested for the delta- and micro-opioids, respectively. Measurements of CD in the presence of beta-cyclodextrin, and some preliminary pharmacological experiments were also performed. No dichroic bands are present in the spectrum of the [Ntyr1,D-Ala2]-deltorphin I, but an increasing dichroic effect appears in the spectra of both the deltorphin I peptoid and retropeptoid. Activity tests on isolated organ preparations showed that the modifications made produced a dramatic decrease in the agonistic activity of the synthetic derivatives.  相似文献   

12.
The synthesis of some [Leu5]enkephalin derivatives is described in which D-glucose has been linked to the opioid pentapeptide through the ester bond involving the carboxyl function at the C-terminal with C-1 or C-6 of the D-glucopyranose moiety. Enkephalin derivatives were assayed for opioid activity and found to be full agonists in bioassays based on inhibition of electrically evoked contractions of the guinea pig ileum (GPI) and of the mouse vas deferens (MVD). The obtained results suggest that the opioid activity of the tested glucoconjugates depend upon the ester bond position in the molecule. Whereas 1-O conjugate 5 was somewhat more potent than [Leu5]enkephalin in the GPI assay, the 6-O conjugates, with the exception of 1-O-benzyl derivative 11, were considerably less potent. All enkephalin derivatives were delta-receptor selective; in particular, the acetylated analog 8 was three times more delta-receptor selective than [Leu5]enkephalin.  相似文献   

13.
In order to assess the individual effects of each of the 3-methyl groups in residue 2 of [D-Pen2, D-Pen5]enkephalin on binding affinity to mu and delta opioid receptors, (2S,3S)methylcysteine ((3S)Me-D-Cys) and (2S,3R)methylcysteine ((3R)Me-D-Cys) were synthesized and incorporated into the analogs, [(3S)Me-D-Cys2, D-Pen5] enkephalin and [(3R)Me-D-Cys2, D-Pen5]enkephalin. Of these analogs, [(3S)Me-D-Cys2, D-Pen5]enkephalin appears from 1H n.m.r. spectra to assume a conformation similar to those of [D-Pen2, D-Pen5]enkephalin and the less delta receptor-selective, but more potent, [D-Cys2, D-Pen5]enkephalin. Assessment of binding affinity to mu and delta receptors revealed that [(3S)Me-D-Cys2, D-Pen5]enkephalin exhibits delta receptor affinity intermediate between [D-Pen2, D-Pen5]enkephalin and [D-Cys2, D-Pen5]enkephalin while its mu receptor affinity is similar to that of [D-Cys2, D-Pen5]enkephalin. These results suggest that, for [D-Pen2, D-Pen5]enkephalin, adverse steric interactions between the D-Pen2 pro-R methyl group and the mu receptor binding site lead to the low mu receptor binding affinity observed for this analog. By contrast, both the pro-R and pro-S D-Pen2 methyl groups lead to minor steric interactions which contribute to the somewhat lower delta receptor affinity of this compound.  相似文献   

14.
Fast-atom-bombardment mass spectra of enkephalins.   总被引:1,自引:0,他引:1       下载免费PDF全文
The positive- and negative-ion mass spectra of [methionine]enkephalin and [leucine]enkephalin have been obtained by using a fast-atom-bombardment source described previously by Barber, Bordoli, Sedgwick & Tyler [(1981) J. Chem. Soc. Chem. Commun., in the press]. This technique has allowed the spectra to be obtained without conversion of the enkephalins into volatile derivatives. The fast-atom-bombardment spectra show good pseudo-molecular-ion sensitivity and fragmentation that can be interpreted on the basis of the known molecular structure.  相似文献   

15.
The circular dichroism (CD) of the peptide hormone bradykinin and its analogues, [Phe(H4)5]-bradykinin, [Phe(H4)8]bradykinin, [Phe(H4)5,8]bradykinin, [TyrOMe5]bradykinin, [TyrOMe8]bradykinin and [TyrOMe5.8]bradykinin, is described. The comparison of the CD spectra of these analogues with each other, recorded under a variety of conditions (pH, solvent, temperature), allows the monitoring of the behaviour of the aromatic side-chains (phenylalanine, tyrosine) and an estimation of their respective spectral contributions in both spectral regions (320-250 nm, 250-190 nm) with good precision. Conformational non-equivalence of the residues Phe-5 and Phe-8 together with some overall conformational features of bradykinin are thus established.  相似文献   

16.
Enkephalin analogs containing a thiol activated by a thiomethyl (SCH3)*** or 3-nitro-2-pyridinesulfenyl (Npys) group were synthesized. Incubation of such S-activated enkephalin analogs as [D-Ala2, Leu(CH2S)SCH(3)5]enkephalin or [D-Ala2,Leu(CH2S)Npys5]enkephalin with guinea pig ileum (GPI) resulted in the continuous stimulation of the mu opiate receptors. This sustained GPI-activity was completely reversed with the antagonist naloxone, while subsequent washings elicited again the full enkephalin activity. When GPI showing full enkephalin activity was incubated with 1 mM dithiothreitol, about 70% of the activity was eliminated. Examination of enkephalin analogs containing Cys(Npys) at position 1, 5, or 6 suggested that no other thiols occur near the enkephalin binding site of the mu receptor. From these results, it is considered that only one thiol group exists near the binding site of the mu receptor in GPI. Similar results were also obtained for the mu receptors in mouse vas deferens.  相似文献   

17.
The range of delta-selectivity of linear and cyclic analogues of enkephalin in rat brain was found to be: [D-Pen2, L-Pen5] enkephalin (DPLPE) greater than [D-Pen2, D-Pen5] enkephalin (DPDPE) greater than [D-Thr2, Leu5] enkephalyl-Thr6 (DTLET) greater than [D-Ser2, Leu5] enkephalyl-Thr6 (DSLET). Saturation experiments performed with [3H]DPDPE and [3H]DTLET in NG108-15 cells and rat brain showed similar binding capacities for both the ligands, but the delta-affinity of [3H]DTLET (KD approximately 1.2 nM) was much better than that of [3H]DPDPE (KD approximately 7.2 nM). The rather low delta-affinity of DPDPE induced high experimental errors cancelling the benefit of its better delta-selectivity. Binding experiments in rat or guinea-pig brains showed, in both cases, the better delta-selectivity of [3H]DTLET compared to [3H]DSLET. The former peptide remains at this time the most appropriate radioactive probe for binding studies of delta-receptor.  相似文献   

18.
As a continuation of our program to study structure-activity relationships of opiate peptides, we report the syntheses and biological activities of a series of 14-membered cyclic dermorphin analogues closely related to enkephalin analogue Tyr-c[D-A2bu-Gly-Phe-Leu] incorporating a phenylalanine at the third position in place of glycine. In addition to two parent dermorphin analogues Tyr-c[D-A2bu-Phe-Phe-(L and D)-Leu], four stereoisomeric retro-inverso modified analogues Tyr-c[D-A2bu-Phe-gPhe-(S and R)-mLeu] with a reversed amide bond between residues four and five, and Tyr-c[D-Glu-Phe-gPhe-(L and D)-rLeu] with two reversed amide bonds between residues four and five, and between residue five and the side chain of residue two have been synthesized. The results from the guinea pig ileum (GPI) and mouse vas deferens (MVD) assays show that all analogues are superactive at either one or both opiate receptors and in general display higher activities as compared to the corresponding enkephalin analogues with a glycine at the third position. Results from the in vitro biological assays and conformational analysis using 1H-NMR spectroscopy (adjoining paper) will provide useful information to understand the role of the Phe3 aromatic side chain in dermorphin, and that of the Phe4 aromatic side chain in enkephalin, on opiate activity since these cyclic dermorphin analogues contain two Phe residues at both the third and fourth positions.  相似文献   

19.
Three N-glycoconjugates of the general formula H-Tyr-Gly-Gly-Phe-Leu-NH-R (R = carbohydrate residue) were synthesized in order to determine the influence of some carbohydrate molecules (6-amino-6-deoxy-D-glucopyranose, 2-amino-2-deoxy-D-glucopyranose, beta-D-glucopyranosylamine) on the biological activity, conformation, and stability of the opioid pentapeptide [Leu5]enkephalin. For the preparation of this compound different methods of peptide synthesis (active ester and mixed anhydride) were investigated. In comparison with [Leu5]enkephalin, all three N-glycoconjugates showed higher potency in the guinea pig ileum assay and lower potency in the mouse vas deferens assay, indicating a decrease in delta opioid receptor selectivity.  相似文献   

20.
Enkephalin convertase, an enkephalin-synthesizing carboxypeptidase present in adrenal medulla chromaffin granules, has also been detected in brain and pituitary. To determine whether these three carboxypeptidase activities represent the same enzyme, we purified and characterized enkephalin convertase from adrenal medulla, whole brain, and whole pituitary. Enzyme from all three tissues co-purifies on DEAE-cellulose, gel filtration, concanavalin A, and L-arginine affinity columns, resulting in a 135,000-fold, 110,000-fold, and 2,800-fold purification for bovine adrenal medulla, brain, and pituitary, respectively. Purified enkephalin convertase appears homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, showing a single band with an apparent molecular weight of 50,000 for enzyme isolated from all three tissues. Adrenal, brain, and pituitary enkephalin convertase are similarly inhibited by hexapeptide enkephalin precursors and active site-directed inhibitors. Both [Met]-and [Leu]enkephalin-Arg6 inhibit enkephalin convertase with Ki values between 50 and 80 microM, while [Met]-and [Leu]enkephalin-Lys6 are 3-fold less potent. Two active site-directed inhibitors, guanidinopropylsuccinic acid and guanidinoethylmercaptosuccinic acid, are potent inhibitors of all three enzymes with Ki values of 8-9 nM. A series of dansylated di-, tri-, and tetrapeptide substrates are hydrolyzed by enkephalin convertase with similar kinetic properties (Km, Vmax, and Kcat/Km) for the three enzymes. This evidence suggests that enkephalin convertase activity represents the same enzyme in adrenal medulla, brain, and pituitary. Enkephalin convertase may be involved in the production of other peptide neurotransmitters and hormones besides enkephalin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号