首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kitada  Yasuyuki 《Chemical senses》1994,19(3):265-277
Fibers of the frog glossopharyngeal nerve (water fibers) thatare sensitive to water also respond to CaCl2, MgCl2 and NaCl.In the present study, interaction among cations (Ca2+, Mg2+and Na+) on taste cell membrane in frogs was studied using transitionmetals (NiCl2, CoCl2 and MnCl2), which themselves are barelyeffective in producing neural response at concentrations below5 mM. Unitary discharges from single water fibers were recordedfrom fungiform papillae with suction electrode. Transition metalions (0.05–5.0 mM) had exclusively enhancing effects onthe responses to 50 mM Ca2+, 100 mM Mg2+ and 500 mM Na+. Theeffects of transition metal ions were always reversible. Therank order of effectiveness of transition metals at 1 mM inthe enhancement of the responses to 50 mM CaCl2, 100 mM MgCl2and 500 mM NaCl was NiCl2 > CoCl2 > MnCl2. The concentrationof transition metal ions effective to enhance salt responsewas almost the same among Ca2+, Mg2+ and Na+ responses. Theresults suggest that a common mechanism is involved in the enhancementof Ca2+, Mg2+ and Na+ taste responses. The enhanced Mg2+ responseand the enhanced Na+ response were greatly inhibited by theaddition of Ca2+ ions, and the enhanced Ca2+ response was inhibitedby the addition of Mg2+ or Na+ ions, suggesting that competitiveantagonism occurs between Ca2+ and Mg2+ ions and between Ca2+and Na+ ions in the presence of Ni2+ ions. Ni2+ ions had a dualeffect on the Ca2+ response induced by low concentration (0.1mM) of CaCl2: enhancement at lower concentrations (0.02–0.1mM) of NiCl2 and inhibition at higher concentrations (0.5–5mM)of NiCl2. The present results suggest that transition metalions do not affect the receptor-antagonist complex, but affectonly the receptor-agonist complex.  相似文献   

2.
Kitada  Yasuyuki 《Chemical senses》1994,19(5):401-411
Unitary discharges from single water fibers of the frog glossopharyngealnerve, caused by stimulation with 0.02–5 mM CaSO4, wererecorded from fungiform papillae with a suction electrode. NiSO4at concentrations of 0.2–2 mM, namely, at concentrationsthat are barely effective in producing impulses, had a dualaction on the Ca2+ response: NiSO4 caused both inhibition andenhancement of the Ca2+ response. In the present study, thisdual action of Ni2+ ions on the Ca2+ response was investigatedin detail. Single water fibers yielded a saturation type ofconcentration-response curve for CaSO4, which suggested thatsulfateions do not affect the Ca2+ response. Thus, sulfateswere used as test salts in the present study. At low concentrationsof Ca2+ ions, Ni2+ ions inhibited the Ca2+ response, but athigher concentrations of Co2+ ions they enhanced it. The resultscan be explained quantitatively by the hypothesis that Ni2+ions inhibit the Ca2+ response by competing with Ca2+ ions forthe Ca2+ receptor (Xca) that is responsible for the Ca2+ responseand that Ni2+ ions enhance the Ca2+ response by acting on amembrane element that interacts with Xca. Double-reciprocalplots of the data indicate that the enhancing action of Ni2+ions is saturated at 1–2 mM Ni2+ ions and that Ni2+ ionsat these concentrations increase the maximal response of theCa2+ response by 182%. Dissociation constants for the Ca-Xcacomplex and the Ni-Xca, complex were 4.2 x 10–5 M and7.6 x 10–5 M, respectively. The analysis suggests thatNi2+ ions enhance the Ca2+ response by affecting the Ca-Xcacomplex without altering the affinity of Xca, for Ca2+ ions.  相似文献   

3.
Kitada  Yasuyuki 《Chemical senses》1994,19(6):641-650
NiCl2 induces a response to cboline Cl and enhances the responseto CaCl2 in water-sensitiv fibers (water fibers) of the frogglossopharyngeal nerve. The Ni2+-induced choline+ response wasinhibited by Ca2+ ions and, conversely, the enhanced Ca2+ responseby Ni2+ ions was inhibited by choline+ ions. Hence, there existsa mutual antagonism between Ca2+ and choline+ ions. In the presentstudy, the inhibition of the Ni2+-induced choline+ responseby Ca2+ ions was investigated quantitatively. The assumptionwas made that receptors for choline (XCh) exist and that bindingof a choline+ ion to XCh, brings about a neural response. Itwas further assumed that the magnitude of the neural responseis proportional to the amount of choline-XCh, complex minussome constant (the threshold concentration of the choline-XCh,complex). The results from analysis of double-reciprocal plotwere consistent with the hypothesis that Ca2+ ions compete withcholine+ ions for XCh,. The dissociation constants for the choline-XCh,complex and the CaXCh, complex were obtained to be 0.6 M and7.4 x 10-5 M, respectively. This result indicates that the affinitiesof XCh, for choline+ and Ca2+ ions are very different. Furthermore,Mg2+ ions did not affect the Ni2+-induced choline+ response,an indication that the affinity of XCh, is not charge-specific,but is chemically specific. The identification of a competitiveinhibitor of the choline+ response provide* evidence for existenceof a choline-specific receptor at the surface of taste cellsthat are innervated by the water fibers of the frog glossopharyngealnerve. Differences between the features of the response to cholineCl in the chorda tympani nerve of the rat and those in the frogglossopharyngeal nerve are discussed.  相似文献   

4.
This study examines theCa2+ influx-dependent regulationof the Ca2+-activatedK+ channel(KCa) in human submandibulargland (HSG) cells. Carbachol (CCh) induced sustained increases in theKCa current and cytosolic Ca2+ concentration([Ca2+]i),which were prevented by loading cells with1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Removal of extracellularCa2+ and addition ofLa3+ orGd3+, but notZn2+, inhibited the increases inKCa current and[Ca2+]i.Ca2+ influx during refill (i.e.,addition of Ca2+ to cells treatedwith CCh and then atropine inCa2+-free medium) failed to evokeincreases in the KCa current but achieved internal Ca2+ storerefill. When refill was prevented by thapsigargin,Ca2+ readdition induced rapidactivation of KCa. These dataprovide further evidence that intracellularCa2+ accumulation provides tightbuffering of[Ca2+]iat the site of Ca2+ influx (H. Mogami, K. Nakano, A. V. Tepikin, and O. H. Petersen. Cell 88: 49-55, 1997). We suggestthat the Ca2+ influx-dependentregulation of the sustained KCacurrent in CCh-stimulated HSG cells is mediated by the uptake ofCa2+ into the internalCa2+ store and release via theinositol 1,4,5-trisphosphate-sensitive channel.

  相似文献   

5.
Calcium Antagonist TMB-8 Inhibits Cell Wall Formation and Growth in Pea   总被引:3,自引:0,他引:3  
The effects on auxin-stimulated growth and cell wall formationof 8-(N, N-diethylamino)-octyl-3, 4, 5-trimethoxybenzoate.HCI(TMB-8), an intracellular Ca2+ antagonist, were investigatedin abraded stem segments from aetiolated seedlings of Pisumsativum L. cv. Alaska. Incubation of segments at pH 6.0 with200 mmol m–3 TMB-8 resulted in a 50% inhibition of auxin-stimulatedgrowth. Added Ca2+ did not restore normal auxin-stimulated growth,presumably because of its well-known stiffening effect on thecell wall. In segments incubated at a pH (7–2) which preventedelongation, auxin promoted the incorporation of [3H]glucoseinto the cell wall relative to total uptake of label. TMB-8abolished about 60% of the total incorporation of label intocell walls in the presence of auxin, but was not effective inthe absence of auxin. Exogenous CaCl2 reversed the inhibitoryeffect of TMB-8 on relative cell wall incorporation in a parabolicmanner, with a 50% reversal at about 100 mmol m–3 andcomplete reversal at 1.0 mol m–3 Ca2+. Other ions tested(Mg2+, Mn2+, Cu2+, Zn2+) were without substantial effect atconcentrations of 0.5 mol m–3. Both apparent uptake ofCa2+ and consequent reversal of TMB-8 inhibition of cell wallincorporation were blocked by the Ca2+ channel blockers verapamiland La3+. The data provide further evidence that auxin-stimulatedgrowth is dependent upon continued cell wall incorporation,and suggest that a Ca2+ messenger system may be involved inthe promotory actions of auxin on cell wall synthesis and long-termgrowth. Key words: Auxin, calcium, cell wall synthesis  相似文献   

6.
Ion and saccharide concentrations in the upper and lower partsof the laminar pulvinus of the primary leaf of Phaseolus vulgariswere measured in relation to the circadian movement. Concentrations of K+, Na+, Ca2+, Mg2+, Cl, organic acid,NO3, H2PO4, fructose and fructose-yielding saccharidesin the pulvinus were 75–120, 0.3–0.7, 5–8,6–12, 40–60, 60–73, 19–35, 2–9and 1–5 mM, respectively, and the osmotic pressure ofthe pulvinus was considered to be due to these ions. The cell volume in the expanding part was larger than that inthe contracting part. The change of the cell volume alteredthe molar concentration in the cell sap and therefore the amountof solutes actually transported from the upper to the lowerpart and vice versa was estimated from the concentration expressedin moles per gram of dry weight. Results showed that K+, Cl, organic acid (or H+) andNO3 moved from the upper to lower parts or vice versain the pulvinus in relation to its deformation, keeping theelectroneutrality among those ions, whereas Ca2+ and Mg2+ didnot move. The difference in the K+ concentration between theupper and lower parts when the leaf was up or down amountedto 30% of the whole osmotic pressure. This lead to the conclusionthat the endogenous clock-controlled unequal distribution ofK+, Cl, organic acid (or H+) and NO3 in the pulvinuscould be the force for the circadian leaf movement. (Received August 7, 1979; )  相似文献   

7.
Ion Composition of the Chara Internode   总被引:2,自引:0,他引:2  
Ion compositions of the cytoplasm and the vacuole of Chara australiswere analyzed according to Kishimoto and Tazawa (1964) and Kiyosawa(1979a). The ions in the cytoplasm and the vacuole analyzedwere K+, Na+, Ca2+, Mg2+, Cl, NO3 and H2PO4.Assuming that the volume of the cytoplasm Vp is 10% of thatof the whole cell V, the concentrations of K+, Na+, Ca2+, Mg2+,Cl, NO3 and H2PO4 in the cytoplasm averaged70, 15, 13, 4.6, 31, 2.2 and 16 mM, respectively. If the volumeof the cytoplasm was assumed to be 5% of that of the whole cell,their averaged concentrations were 139, 31, 25, 9.2, 62, 4.4and 33 mM, respectively. The averaged ion compositions of thecell sap were K+, 111; Na+, 47; Ca2+, 4.4; Mg2+, 8.9; Cl,91; NO3, 3.3 and H2PO4, 6.0 mM. These values,taking the concentrations and the charges of the protein (Kiyosawa1979b) and amino acids (Sakano and Tazawa 1984) into accountand assuming the presence of some uni- or oligovalent anionsand/or small nonelectrolyte molecules, could explain fairlywell both the electroneutrality and the osmotic pressure ofthe cell, except when Vp/V = 5%. (Received May 18, 1987; Accepted September 29, 1987)  相似文献   

8.
The effect of Ca++ on various parameters of apple fruit senescencewas investigated. Distinct and specific changes in polypeptideand phosphoprotein patterns were observed in Ca++ treated ascompared to control fruits. A 70 kDa salt-extracted polypeptidebecame apparent in control fruits after 8 months of cold storagewhich was not apparent in Ca++-treated fruits until 12 months.The soluble protein profile of Ca++-treated fruits showed anaccumulation of a 30 kDa polypeptide while the control fruitsaccumulated a 60 kDa polypeptide. Autoradiographs of phosphorylatedpolypeptides revealed a 60 kDa membrane polypeptide becomingphosphorylated in the Ca++-treated and not in the control fruitprotein fractions. Transmission electron micrographs of thecell showed Ca++ to be effective in maintaining the cell wallstructure, particularly the middle lamella. Furthermore, increasein fruit Ca++ reduced CO2 and C2H2 evolution and altered chlorophyllcontent, ascorbic acid level and hydraulic permeability. 1Scientific Paper No: 7930, College of Agriculture and HomeEconomics Research Center, Washington State University, Pullman,Washington, Project 0321. 2Supported by grants from the National Science Foundation CB-8502215and Washington State Tree Fruit Research Commission to BWP. (Received September 3, 1987; Accepted March 3, 1988)  相似文献   

9.
Mitochondria show extensive movement along neuronal processes, but the mechanisms and function of this movement are not clearly understood. We have used high-resolution confocal microscopy to simultaneously monitor movement of mitochondria and changes in intracellular [Ca2+] ([Ca2+]i) in rat cortical neurons. A significant percentage (27%) of the total mitochondria in cortical neuronal processes showed movement over distances of >2 µM. The average velocity was 0.52 µm/s. The velocity, direction, and pattern of mitochondrial movement were not affected by transient increases in [Ca2+]i associated with spontaneous firing of action potentials. Stimulation of Ca2+ transients with forskolin (10 µM) or bicuculline (10 µM), or sustained elevations of [Ca2+]i evoked by glutamate (10 µM) also had no effect on mitochondrial transit. Neither removal of extracellular Ca2+, depletion of intracellular Ca2+ stores with thapsigargin, or inhibition of synaptic activity with TTX (1 µM) or a cocktail of CNQX (10 µM) and MK801 (10 µM) affected mitochondrial movement. These results indicate that movement of mitochondria along processes is a fundamental activity in neurons that occurs independently of physiological changes in [Ca2+]i associated with action potential firing, synaptic activity, or release of Ca2+ from intracellular stores. calcium transient; dendrites  相似文献   

10.
In apple fruit, active ATP-dependent microsomal Ca2$ uptakeand respiration-dependent mitochondrial Ca2$ uptake were observed. The mitochondrial Ca2$ uptake was depressed by the calmodulinantagonists chlorpromazine hydrochloride (CPZ) and N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamidehydrochloride (W-7). The Ca2$-ATPase from apple mitochondriawas also inhibited by CPZ or W-7. The apparent Km value forCa2$ in mitochondrial Ca2$ uptake (Km=0.35 mM) was similar tothat of mitochondrial Ca2$-ATPase (Km=0.32 mM). The inhibitoryeffect of W-7 on the activity of the mitochondrial Ca2$ uptakewas closely correlated with the inhibition by W-7 of mitochondrialCa2$-ATPase (r=0.996). These findings indicate that the mitochondrialuptake of Ca2$ in apple fruit depends on the calmodulin-mediatedactivation of Ca2$-ATPase. The microsomal Ca2$ uptake was depressed by CPZ, suggestingthat the microsomal Ca2$ uptake may also be modulated by calmodulin. 1 Contribution No. C-72, Fruit Tree Research Station. (Received June 7, 1982; Accepted October 19, 1982)  相似文献   

11.
A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is an important stimulus for cell contraction, migration, and proliferation. Depletion of intracellular Ca2+ stores opens store-operated Ca2+ channels (SOC) and causes Ca2+ entry. Transient receptor potential (TRP) cation channels that are permeable to Na+ and Ca2+ are believed to form functional SOC. Because sarcolemmal Na+/Ca2+ exchanger has also been implicated in regulating [Ca2+]cyt, this study was designed to test the hypothesis that the Na+/Ca2+ exchanger (NCX) in cultured human PASMC is functionally involved in regulating [Ca2+]cyt by contributing to store depletion-mediated Ca2+ entry. RT-PCR and Western blot analyses revealed mRNA and protein expression for NCX1 and NCKX3 in cultured human PASMC. Removal of extracellular Na+, which switches the Na+/Ca2+ exchanger from the forward (Ca2+ exit) to reverse (Ca2+ entry) mode, significantly increased [Ca2+]cyt, whereas inhibition of the Na+/Ca2+ exchanger with KB-R7943 (10 µM) markedly attenuated the increase in [Ca2+]cyt via the reverse mode of Na+/Ca2+ exchange. Store depletion also induced a rise in [Ca2+]cyt via the reverse mode of Na+/Ca2+ exchange. Removal of extracellular Na+ or inhibition of the Na+/Ca2+ exchanger with KB-R7943 attenuated the store depletion-mediated Ca2+ entry. Furthermore, treatment of human PASMC with KB-R7943 also inhibited cell proliferation in the presence of serum and growth factors. These results suggest that NCX is functionally expressed in cultured human PASMC, that Ca2+ entry via the reverse mode of Na+/Ca2+ exchange contributes to store depletion-mediated increase in [Ca2+]cyt, and that blockade of the Na+/Ca2+ exchanger in its reverse mode may serve as a potential therapeutic approach for treatment of pulmonary hypertension. sodium-calcium exchange; calcium homeostasis; vascular smooth muscle  相似文献   

12.
Imaging of intracellular calcium stores in single permeabilized lens cells   总被引:1,自引:0,他引:1  
Intracellular Ca2+ storesin permeabilized sheep lens cells were imaged with mag-fura 2 tocharacterize their distribution and sensitivity toCa2+-releasing agents. Inositol1,4,5-trisphosphate (IP3) orcyclic ADP-ribose (cADPR) releasedCa2+ from intracellularCa2+ stores that were maintainedby an ATP-dependent Ca2+ pump. TheIP3 antagonist heparin inhibitedIP3- but not cADPR-mediated Ca2+ release, whereas the cADPRantagonist 8-amino-cADPR inhibited cADPR- but notIP3-mediatedCa2+ release, indicating thatIP3 and cADPR were operatingthrough separate mechanisms. ACa2+ store sensitive toIP3, cADPR, and thapsigarginappeared to be distributed throughout all intracellular regions. Insome cells a Ca2+ storeinsensitive to IP3, cADPR,thapsigargin, and 2,4-dinitrophenol, but not ionomycin, was present ina juxtanuclear region. We conclude that lens cells containintracellular Ca2+ stores that aresensitive to IP3, cADPR, andthapsigargin, as well as a Ca2+store that appears insensitive to all these agents.  相似文献   

13.
Pancreatitis is an inflammatory disease of pancreatic acinar cells whereby intracellular calcium concentration ([Ca2+]i) signaling and enzyme secretion are impaired. Increased oxidative stress has been suggested to mediate the associated cell injury. The present study tested the effects of the oxidant, hydrogen peroxide, on [Ca2+]i signaling in rat pancreatic acinar cells by simultaneously imaging fura-2, to measure [Ca2+]i, and dichlorofluorescein, to measure oxidative stress. Millimolar concentrations of hydrogen peroxide increased cellular oxidative stress and irreversibly increased [Ca2+]i, which was sensitive to antioxidants and removal of external Ca2+, and ultimately led to cell lysis. Responses were also abolished by pretreatment with (sarco)endoplasmic reticulum Ca2+-ATPase inhibitors, unless cells were prestimulated with cholecystokinin to promote mitochondrial Ca2+ uptake. This suggests that hydrogen peroxide promotes Ca2+ release from the endoplasmic reticulum and the mitochondria and that it promotes Ca2+ influx. Lower concentrations of hydrogen peroxide (10–100 µM) increased [Ca2+]i and altered cholecystokinin-evoked [Ca2+]i oscillations with marked heterogeneity, the severity of which was directly related to oxidative stress, suggesting differences in cellular antioxidant capacity. These changes in [Ca2+]i also upregulated the activity of the plasma membrane Ca2+-ATPase in a Ca2+-dependent manner, whereas higher concentrations (0.1–1 mM) inactivated the plasma membrane Ca2+-ATPase. This may be important in facilitating "Ca2+ overload," resulting in cell injury associated with pancreatitis. oxidant stress; pancreatitis; calcium pump  相似文献   

14.
Microinjection of soluble sperm extract and Calcium Green-1 10 kDa-dextran conjugate (CG-1) into the mature central cell of Torenia fournieri induced a significant rise in cytosolic free calcium concentration ([Ca2+]i). The rise reached a maximum at 20 min after injection and then steadily declined. Nevertheless, a relatively high level of [Ca2+]i was maintained even 40 min after injection. Microinjection of sperm extract of maize into Torenia central cells, however, did not trigger any increase in [Ca2+]i, suggesting the possibility of distinct triggers in different species. We also injected caged inositol 1,4,5-triphosphate (InsP3) and caged cyclic ADP-ribose (cADPR) into Torenia central cells to compare the pattern of Ca2+ rise induced by the sperm extract. The results showed that [Ca2+]i elevation triggered by the release of InsP3 after photolysis appears much faster than that induced by sperm extract. The increase in [Ca2+]i reached a maximum at 70-80 s and dropped to the resting level within 300 s after photolysis. Microinjection of cADPR, however, did not induce any changes in [Ca2+]i. The results indicate that sperm extract might contain factors triggering the release of Ca2+ in the central cell.  相似文献   

15.
The mechanism by which Bcl-2 inhibits cell death is unknown. Ithas been suggested that Bcl-2 functions as an antioxidant. BecauseBcl-2 is localized mainly to the membranes of the endoplasmic reticulum(ER) and the mitochondria, which represent the main intracellularstorage sites for Ca2+, wehypothesized that Bcl-2 might protect cells against oxidant injury byaltering intracellular Ca2+homeostasis. To test this hypothesis, we examined the effect of oxidanttreatment on viability in normal rat kidney (NRK) cells and in NRKcells stably transfected with Bcl-2 in the presence or absence ofintracellular Ca2+, and wecompared the effect of Bcl-2 expression on oxidant-induced intracellular Ca2+ mobilizationand on ER and mitochondrial Ca2+pools. NRK cells transfected with Bcl-2 (NRK-Bcl-2) were significantly more resistant toH2O2-inducedcytotoxicity than control cells. EGTA-AM, an intracellularCa2+ chelator, as well as theabsence of Ca2+ in the medium,reducedH2O2-inducedcytotoxicity in both cell lines. Compared with controls, cellsoverexpressing Bcl-2 showed a delayed rise in intracellularCa2+ concentration([Ca2+]i)afterH2O2treatment. After treatment with theCa2+ ionophore ionomycin,Bcl-2-transfected cells showed a much quicker decrease after themaximal rise than control cells, suggesting stronger intracellularCa2+ buffering, whereas treatmentwith thapsigargin, an inhibitor of the ERCa2+-ATPases, transientlyincreased[Ca2+]iin control and in Bcl-2-transfected cells. Estimates of mitochondrial Ca2+ stores using an uncoupler ofoxidative phosphorylation show that NRK-Bcl-2 cells have a highercapacity for mitochondrial Ca2+storage than control cells. In conclusion, Bcl-2 may prevent oxidant-induced cell death, in part, by increasing the capacity ofmitochondria to store Ca2+.

  相似文献   

16.
Cell cycle-dependent calcium oscillations in mouse embryonic stem cells   总被引:2,自引:0,他引:2  
During cell cycle progression, somatic cells exhibit different patterns of intracellular Ca2+ signals during the G0 phase, the transition from G1 to S, and from G2 to M. Because pluripotent embryonic stem (ES) cells progress through cell cycle without the gap phases G1 and G2, we aimed to determine whether mouse ES (mES) cells still exhibit characteristic changes of intracellular Ca2+ concentration during cell cycle progression. With confocal imaging of the Ca2+-sensitive dye fluo-4 AM, we identified that undifferentiated mES cells exhibit spontaneous Ca2+ oscillations. In control cultures where 50.4% of the cells reside in the S phase of the cell cycle, oscillations appeared in 36% of the cells within a colony. Oscillations were not initiated by Ca2+ influx but depended on inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release and the refilling of intracellular stores by a store-operated Ca2+ influx (SOC) mechanism. Using cell cycle synchronization, we determined that Ca2+ oscillations were confined to the G1/S phase (70% oscillating cells vs. G2/M with 15% oscillating cells) of the cell cycle. ATP induced Ca2+ oscillations, and activation of SOC could be induced in G1/S and G2/M synchronized cells. Intracellular Ca2+ stores were not depleted, and all three IP3 receptor isoforms were present throughout the cell cycle. Cell cycle analysis after EGTA, BAPTA-AM, 2-aminoethoxydiphenyl borate, thapsigargin, or U-73122 treatment emphasized that IP3-mediated Ca2+ release is necessary for cell cycle progression through G1/S. Because the IP3 receptor sensitizer thimerosal induced Ca2+ oscillations only in G1/S, we propose that changes in IP3 receptor sensitivity or basal levels of IP3 could be the basis for the G1/S-confined Ca2+ oscillations. pluripotent; IP3; store operated Ca entry; IP3 receptor  相似文献   

17.
The L-type Ca2+ channel is the primary voltage-dependent Ca2+-influx pathway in many excitable and secretory cells, and direct phosphorylation by different kinases is one of the mechanisms involved in the regulation of its activity. The aim of this study was to evaluate the participation of Ser/Thr kinases and tyrosine kinases (TKs) in depolarization-induced Ca2+ influx in the endocrine somatomammotrope cell line GH3. Intracellular Ca2+ concentration ([Ca2+]i) was measured using a spectrofluorometric method with fura 2-AM, and 12.5 mM KCl (K+) was used as a depolarization stimulus. K+ induced an abrupt spike (peak) in [Ca2+]i that was abolished in the presence of nifedipine, showing that K+ enhances [Ca2+]i, preferably activating L-type Ca2+ channels. H89, a selective PKA inhibitor, significantly reduced depolarization-induced Ca2+ mobilization in a concentration-related manner when it was applied before or after K+, and okadaic acid, an inhibitor of Ser/Thr phosphatases, which has been shown to regulate PKA-stimulated L-type Ca2+ channels, increased K+-induced Ca2+ entry. When PKC was activated by PMA, the K+-evoked peak in [Ca2+]i, as well as the plateau phase, was significantly reduced, and chelerythrine (a PKC inhibitor) potentiated the K+-induced increase in [Ca2+]i, indicating an inhibitory role of PKC in voltage-dependent Ca2+ channel (VDCC) activity. Genistein, a TK inhibitor, reduced the K+-evoked increase in [Ca2+]i, but, unexpectedly, the tyrosine phosphatase inhibitor orthovanadate reduced not only basal Ca2+ levels but, also, Ca2+ influx during the plateau phase. Both results suggest that different TKs may act differentially on VDCC activation. Activation of receptor TKs with epidermal growth factor (EGF) or vascular endothelial growth factor potentiated K+-induced Ca2+ influx, and AG-1478 (an EGF receptor inhibitor) decreased it. However, inhibition of the non-receptor TK pp60 c-Src enhanced K+-induced Ca2+ influx. The present study strongly demonstrates that a complex equilibrium among different kinases and phosphatases regulates VDCC activity in the pituitary cell line GH3: PKA and receptor TKs, such as vascular endothelial growth factor receptor and EGF receptor, enhance depolarization-induced Ca2+ influx, whereas PKC and c-Src have an inhibitory effect. These kinases modulate membrane depolarization and may therefore participate in the regulation of a plethora of intracellular processes, such as hormone secretion, gene expression, protein synthesis, and cell proliferation, in pituitary cells. phosphatases; protein kinase A; protein kinase C; epidermal growth factor  相似文献   

18.
Pulmonary vasoconstriction and vascularmedial hypertrophy greatly contribute to the elevated pulmonaryvascular resistance in patients with pulmonary hypertension. A rise incytosolic free Ca2+ ([Ca2+]cyt)in pulmonary artery smooth muscle cells (PASMC) triggers vasoconstriction and stimulates cell growth. Membrane potential (Em) regulates[Ca2+]cyt by governing Ca2+influx through voltage-dependent Ca2+ channels. Thusintracellular Ca2+ may serve as a shared signaltransduction element that leads to pulmonary vasoconstriction andvascular remodeling. In PASMC, activity of voltage-gated K+(Kv) channels regulates resting Em. In thisstudy, we investigated whether changes of Kv currents[IK(V)], Em, and[Ca2+]cyt affect cell growth by comparingthese parameters in proliferating and growth-arrested PASMC. Serumdeprivation induced growth arrest of PASMC, whereas chelation ofextracellular Ca2+ abolished PASMC growth. Resting[Ca2+]cyt was significantly higher, andresting Em was more depolarized, inproliferating PASMC than in growth-arrested cells. Consistently, wholecell IK(V) was significantly attenuated in PASMCduring proliferation. Furthermore, Emdepolarization significantly increased resting[Ca2+]cyt and augmented agonist-mediatedrises in [Ca2+]cyt in the absence ofextracellular Ca2+. These results demonstrate that reducedIK(V), depolarized Em, and elevated [Ca2+]cyt may play a criticalrole in stimulating PASMC proliferation. Pulmonary vascular medialhypertrophy in patients with pulmonary hypertension may be partlycaused by a membrane depolarization-mediated increase in[Ca2+]cyt in PASMC.

  相似文献   

19.
With slight modifications, conventional assay procedures forK+, Na+, Ca2+, Mg2+, Cl, NO3, H2PO4, fructoseand fructose-yielding saccharides, and glucose were applicableto the extract of Phaseolus pulvini. About 10 ml of a hot-waterextract from about 30 mg fresh weight of the pulvini was sufficientfor separate measurement of the ions and saccharides named above. (Received August 7, 1979; )  相似文献   

20.
Goldberg, R., Liberman, M., Mathieu, C, Pierron, M. and Catesson,A. M. 1987. Development of epidermal cell wall peroxidases alongthe mung bean hypocotyl: possible involvement in the cell wallstiffening process.—J. exp. Bot. 38: 1378–1390. Ultrastructural investigation showed that in the epidermis ofmung bean hypocotyls, cell wall peroxidatic activities couldbe detected mainly below the maximal elongation zone. In theepidermis the peroxidatic activities were preferentially locatedin the radial cell walls. Cell wall peroxidases were then isolatedfrom epidermal strips and further characterized. The possiblepresence of a H2O2-generating system in the epidermis of mungbean hypocotyls was also investigated. When whole segments wereprocessed for electron microscopy, H2O2 could be detected cytochemicallyin the cell walls with the CeCl3 technique. A positive reactionwas obtained in the same location when specimens were incubatedin a 3-3'-diaminobenzidine medium for peroxidases in which H2O2was replaced by its possible precursors (NADH or NAD + malate).However, isolated epidermal cell walls could not generate H2O2at the expense of NADH although they were able to oxidize thereduced nicotinamide-adenine-dinucleotide. The possible relationshipsbetween peroxidase activities, H2O2, and Ca2+ ions are discussedwith respect to their involvement in the cell wall stiffeningprocess. Key words: Epidermis, cell wall, elongation, peroxidases  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号