首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have proposed that incorporation of docosahexaenoic acid (DHA) into phosphatidylethanolamine (PE) might enhance resistance to lipid peroxidation in vivo. In this study, we examined the relationship between the transbilayer distribution of PE and the oxidative stability of DHA in PE. Liposomes composed of a phospholipid mixture were used as models for biological membranes. To modulate the transbilayer distribution of PE obtained from the liver of rats fed DHA (PE-DHA), we used phosphatidylcholine (PC) with two types of acyl chain region: dipalmitoyl (PC16:0) or dioleoyl (PC18:1). The proportion of PE-DHA in the liposomal external layer was significantly higher in liposomes containing PC18:1 than in those containing PC16:0. This tendency was more pronounced in liposomes extruded using a polycarbonate filter with smaller pore sizes. Additionally, PE-DHA in the external layer of liposomes prepared using a filter with smaller pore sizes could protect DHA itself from 2,2(')-azobis(2-aminopropane)dihydrochloride-mediated lipid peroxidation.  相似文献   

2.
Little is known about the antigen specificity of CD1d-restricted T cells, except that they frequently recognize CD1d-expressing antigen-presenting cells in the absence of exogenous antigen. We previously demonstrated that the 24.8.A iNKT cell hybridoma was broadly reactive with CD1d-transfected cell lines and recognized the polar lipid fraction of a tumor cell extract. In the present study, the antigen recognized by the 24.8.A iNKT cell hybridoma was purified to homogeneity and identified as palmitoyl-oleoyl-sn-glycero-3-phosphoethanolamine (16:0-18:1 PE). The 24.8.A iNKT cell hybridoma recognized synthetic 16:0-18:1[cis] PE, confirming that this phospholipid is antigenic. Recognition correlated with the degree of unsaturation of the acyl chains. Using a panel of synthetic PEs, the 24.8.A iNKT cell hybridoma was shown to be activated by PEs that contained at least one unsaturated acyl chain. The configuration of the double bonds was important, as the 24.8.A iNKT cell hybridoma recognized unsaturated acyl chains in the cis, but not the trans, configuration. PEs with multiple double bonds were recognized better than those with a single double bond, and increasing acyl chain unsaturation correlated with increased binding of PE to CD1d. These data illustrate the potential importance of the acyl chain structure for phospholipid antigen binding to CD1d.  相似文献   

3.
AIMS: To characterize fatty acid and phospholipid analogue profiles of oral yeasts. METHODS AND RESULTS: Twenty-seven strains of oral yeasts were cultured on SDA and lipids of freeze-dried cells were extracted and analysed by FAB MS. The most abundant carboxylate anion was m/z 281 (C18 : 1). The most intense phospholipid analogue ions were of PE, PG, PA and PI. Pichia etchellsii contained molecular species of PG and PE, whereas Saccharomyces cerevisiae had PA, PG and PE analogues. Mass spectra revealed that S. cerevisiae and Candida glabrata were distinct from one another and from the other species tested. CONCLUSION: Oral yeasts largely differ with respect to their polar lipids. It is concluded that oral yeast species have distinctive fatty acid and phospholipid analogue anion profiles. SIGNIFICANCE AND IMPACT OF THE STUDY: FAB MS provided novel chemotaxonomic information.  相似文献   

4.
We examined the relationship between the transbilayer distribution of aminophospholipids, such as phosphatidylethanolamine (PE), PE plasmalogen and phosphatidylserine, and the oxidative stability of polyunsaturated fatty acids (PUFAs) in the aminophospholipids. To modulate the transbilayer distribution of aminophospholipid in liposomes, we used phosphatidylcholine (PC) with two types of acyl chain region: dipalmitoyl (PC16:0) or dioleoyl (PC18:1). In the smaller-sized liposomes, the proportions of aminophospholipid in the liposomal external layer were significantly higher in liposomes containing PC18:1 than in those containing PC16:0. Additionally, aminophospholipids in the external layer of smaller-sized liposomes were able to protect their component PUFAs from 2,2'-azobis(2-amidinopropane)dihydrochloride-mediated lipid peroxidation.  相似文献   

5.
Molecular dynamics (MD) computer simulations of five different hydrated unsaturated phosphatidylcholine lipid bilayers built up by 18:0/18:1(n-9)cis PC, 18:0/18:2(n-6)cis PC, 18:0/18:3(n-3)cis PC, 18:0/20:4(n-6)cis PC, and 18:0/22:6(n-3)cis PC molecules with 40 mol% cholesterol, and the same five pure phosphatidylcholine bilayers have been performed at 303 K. The simulation box of a lipid bilayer contained 96 phosphatidylcholines, 64 cholesterols, and 3840 water molecules (48 phosphatidylcholine molecules and 32 cholesterols per layer and 24 water molecules per phospholipid or cholesterol in each case). The lateral self-diffusion coefficients of the lipids in these systems and mass density profiles with respect to the bilayer normal have been analyzed. It has been found that the lateral diffusion coefficients of phosphatidylcholine molecules increase with increasing number of double bonds in one of the lipid chains, both in pure bilayers and in bilayers with cholesterol. It has been found as well that the lateral diffusion coefficient of phosphatidylcholine molecules of a lipid bilayer with 40 mol% cholesterol is smaller than that for the corresponding pure phosphatidylcholine bilayer.  相似文献   

6.
Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) of the myelin membrane exhibit heterogeneity with respect to metabolic turnover rate (Miller, S. L., Benjamins, J. A., and Morell, P. (1977) J. Biol. Chem. 252, 4025-4037). To test the hypothesis that this is due to differential turnover of individual molecular species (which differ in acyl chain composition), we have examined the relative turnover of individual molecular species of myelin PC and PE. Phospholipids were labeled by injection of [2-3H]glycerol into the brains of young rats. Myelin was isolated at 1, 15, and 30 days post-injection, lipids were extracted, and phospholipid classes were separated by thin-layer chromatography. The PC and PE fractions were hydrolyzed with phospholipase C, and the resulting diacylglycerols were dinitrobenzoylated and fractionated by reverse-phase high performance liquid chromatography. The distribution of radioactivity among individual molecular species was determined. The labeled molecular species of myelin PC were 16:0-16:0, 16:0-18:0, 16:0-18:1, and 18:0-18:1, with most of the label present in 16:0-18:1 and 18:0-18:1. Changes in distribution of label with time after injection indicated that 16:0-18:1 turned over more rapidly than 18:0-18:1. The labeled molecular species of myelin PE were 18:0-20:4, 18:1-18:1, 16:0-18:1, 18:0-18:2, and 18:0-18:1. As with myelin PC, 16:0-18:1 (and 18:1-18:1) turned over more rapidly than 18:0-18:1. The relative turnover of individual molecular species of PC in the microsomal fraction from forebrain was also examined. The molecular species profile was different from myelin PC, but again, 16:0-18:1 turned over more rapidly than the other molecular species. Thus, within the same membrane, individual molecular species of a phospholipid class are metabolized at different rates. Comparison of our results with previous studies of turnover of molecular classes of phospholipids indicates that in addition to polar head group composition (Miller et al., 1977), fatty acid composition is very important in determining the metabolic fate of a phospholipid.  相似文献   

7.
Summary Molecular species profiles were determined for both phosphatidylcholine (PC) and phosphatidylethanolamine (PE) of mitochondrial and microsomal membrane fractions from liver tissue of thermally-acclimated rainbow trout,Salmo gairdneri. The predominant molecular species of PC were 16:0/22:6, 16:0/18:1, 16:0/20:3 and 16:0/22:5, whereas predominant molecular species of PE were 18:1/20:4, 14:0/16:0, 18:0/22:6 and 18:1/22:6. PE possessed short chain saturates (primarily 14:0/16:0) and monoenes (primarily 14:0/16:1) not present in PC and larger proportions of polyunsaturated (18:0/22:6, 18:0/22:5 and 18:1/22:6. and diunsaturated molecular species than PC. Differences between membrane fractions were most evident in warm (20°C)-acclimated trout. Mitochondria contained higher proportions of long-chain, polyunsaturated molecular species of PE, but less of the corresponding species of PC than other membrane fractions. Rankings based on unsaturation index were accordingly: mitochondria heavy microsomes>light microsomes for PE, but heavy microsomes>light microsomes>-mitochondria for PC. Mitochondria were notable for high proportions of diunsaturated molecular species of both phosphatides. Growth at cold temperatures (5°C) was generally associated with a replacement of shorter chain mono- and dienoic molecular species (16:0/18:1, 16:1/18:1, 14:0/16:2 and 18:1/18:1 in the case of PC and 14:0/16:1, 14:0/16:2 and 16:1/18:1 for PE), and occasionally saturates, with long-chain, polyunsaturated molecular species (for PC, C36–38: 16:0/22:6, 16:1/22:6, 16:0/20:3 and 16:0/20:5; for PE, C38–40: 18:1/20:4, 16:1/22:6, 18:0/20:5, 18:2/20:4, 18:0/22:5 and 18:0/22:6). However, compositions of mitochondrial PE and PC from heavy microsomes were not significantly influenced by acclimation temperature. The role of phospholipase A2, in addition to other metabolic processes, in mediating these changes is discussed.Abbreviations ACL average chain length - UI unsaturation index  相似文献   

8.
We have determined the effect of two exercise-training intensities on the phospholipid profile of both glycolytic and oxidative muscle fibers of female Sprague-Dawley rats using electrospray-ionization mass spectrometry. Animals were randomly divided into three training groups: control, which performed no exercise training; low-intensity (8 m/min) treadmill running; or high-intensity (28 m/min) treadmill running. All exercise-trained rats ran 1,000 m/session for 4 days/wk for 4 wk and were killed 48 h after the last training bout. Exercise training was found to produce no novel phospholipid species but was associated with significant alterations in the relative abundance of a number of phospholipid molecular species. These changes were more prominent in glycolytic (white vastus lateralis) than in oxidative (red vastus lateralis) muscle fibers. The largest observed change was a decrease of approximately 20% in the abundance of 1-stearoyl-2-docosahexaenoyl-phosphatidylethanolamine [PE(18:0/22:6); P < 0.001] ions in both the low- and high-intensity training regimes in glycolytic fibers. Increases in the abundance of 1-oleoyl-2-linoleoyl phopshatidic acid [PA(18:1/18:2); P < 0.001] and 1-alkenylpalmitoyl-2-linoleoyl phosphatidylethanolamine [plasmenyl PE (16:0/18:2); P < 0.005] ions were also observed for both training regimes in glycolytic fibers. We conclude that exercise training results in a remodeling of phospholipids in rat skeletal muscle. Even though little is known about the physiological or pathophysiological role of specific phospholipid molecular species in skeletal muscle, it is likely that this remodeling will have an impact on a range of cellular functions.  相似文献   

9.
The aim of this study was to analyse individual polar lipid analogues, within each lipid family present, of fusobacteria using fast atom bombardment mass spectrometry (FAB-MS). Polar lipid extracts were prepared, washed and dried. Samples, dispersed in a matrix of m -nitrobenzyl alcohol, were analysed by negative ion FAB-MS using xenon as the reagent gas. Major anion peaks observed in the low mass region of mass/charge (m/z), 211, 221, 225, 227, 239, 241, 249, 251, 253, 255, 273, 277, 279, 281, 289 and 291, were consistent with the presence of C13:1, C14:3, C14:1, C14:0, C15:1, C15:0, C16:3, C16:2, C16:1, C16:0, unknown, C18:3, C18:2, C18:1, unknown and C19:3 carboxylate anions. In the high mass region, major anion peaks observed with m/z 644, 646, 648, 660, 662, 672, 673, 674, 686, 688, 689, 690, 698, 700, 701, 703, 714, 716, 717 and 719 were consistent with the presence of phosphatidylethanolamine (PE) (29:2), PE (29:1), PE (29:0), PE (30:1), PE (30:0), PE (31:2), first isotope of PE (31:2), PE (31:1), PE (32:2), PE (32:1), first isotope peak of PE (32:1), PE (30:0), PE (33:3), PE (33:2), phosphatidylglycerol (PG) (31:3), PG (31:2), PE (34:2), PE (34:1), PG (32:2) and PG (32:1). We conclude that FAB-MS can provide data on individual analogues of PE and PG from Fusobacterium spp. not readily obtained by other means. Furthermore, the phospholipid profile is diagnostic for the genus.  相似文献   

10.
Myxococcus xanthus cells glide on solid surfaces and are chemotactically stimulated by certain phosphatidylethanolamine species. The dif gene cluster consists of six genes, difABCDEG, five of which encode proteins homologous to known chemotaxis proteins. DifA and DifE are required for the biosynthesis of fibrils, an extracellular matrix comprised of polysaccharide and protein. Chemotactic stimulation by 1,2-O-Bis[11-(Z)-hexadecenoyl]-sn-glycero-3-phosphatidylethanolamine (16:1 PE) and dilauroyl PE (12:0 PE) requires fibrils. Although previous work has shown that difA and difE mutants are not stimulated by 12:0 PE, these results do not distinguish between a dependence on fibrils or a direct role in chemosensory transduction. Here we provide evidence that the Dif chemosensory pathway directly mediates PE sensory transduction. First, stimulation by and adaptation to 16:1 PE requires all of the dif genes, including difBDG, which are not essential for fibril biogenesis. Second, a specific residue within the first putative methylation domain of DifA is required for stimulation by 16:1 PE but not fibril biogenesis. Transmembrane signalling through a chimeric NarX-DifA chemoreceptor is required for fibril formation but not for stimulation by or adaptation to 16:1 PE. Third, difD and difE are required for stimulation by dioleoyl PE (18:1 PE) although the response does not require fibrils. Taken together these results argue that the Dif pathway mediates both matrix formation and lipid chemotaxis.  相似文献   

11.
Azospirillum-plant association is accompanied by biochemical changes in roots which, in turn, promote plant-growth and tolerance to water stress. To shed light on the possible factors underlying these effects, roots from Azospirillum brasilense Sp245-inoculated Triticum aestivum seedlings growing in darkness under osmotic stress were analyzed for phospholipid (PL) composition, fatty acid (FA) distribution profiles and degree of unsaturation of the major PL classes. Azospirillum inoculation diminished ion leakage and increased 2,3,5-tripheniltetrazolium reducing ability in roots of well irrigated and water-stressed wheat seedlings. Total root PL content remained unaltered in all treatments. Six PL classes were detected, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) comprising over 80% of the total. While water stress increased PC content and diminished that of PE, none of these changes were observed either under Azospirillum inoculation alone or when both treatments were combined. The major FAs found in both PC and PE were 16:0, 18:0, 18:1, 18:2, and 18:3. Higher PC and lower PE unsaturation than in well irrigated controls were observed in roots from Azospirillum-inoculated, water-stressed seedlings. Azospirillum inoculation could contribute to protect wheat seedlings from water stress through changes in the FA distribution profiles of PC and PE major root phospholipids.  相似文献   

12.
We have previously suggested that the omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA) may in part function by enhancing membrane lipid phase separation into lipid rafts. Here we further tested for differences in the molecular interactions of an oleic (OA) versus DHA-containing phospholipid with sphingomyelin (SM) and cholesterol (CHOL) utilizing (2)H NMR spectroscopy, differential scanning calorimetry, atomic force microscopy, and detergent extractions in model bilayer membranes. (2)H NMR and DSC (differential scanning calorimetry) established the phase behavior of the OA-containing 1-[(2)H(31)]palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (16:0-18:1PE-d(31))/SM (1:1) and the DHA-containing 1-[(2)H(31)]palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (16:0-22:6PE-d(31))/SM (1:1) in the absence and presence of equimolar CHOL. CHOL was observed to affect the OA-containing phosphatidylethanolamine (PE) more than the DHA-containing PE, as exemplified by >2 x greater increase in order measured for the perdeuterated palmitic chain in 16:0-18:1PE-d(31)/SM (1:1) compared to 16:0-22:6PE-d(31)/SM (1:1) bilayers in the liquid crystalline phase. Atomic force microscopy (AFM) experiments showed less lateral phase separation between 16:0-18:1PE-rich and SM/CHOL-rich raft domains in 16:0-18:1PE/SM/CHOL (1:1:1) bilayers than was observed when 16:0-22:6PE replaced 16:0-18:1PE. Differences in the molecular interaction of 16:0-18:1PE and 16:0-22:6PE with SM/CHOL were also found using biochemical detergent extractions. In the presence of equimolar SM/CHOL, 16:0-18:1PE showed decreased solubilization in comparison to 16:0-22:6PE, indicating greater phase separation with the DHA-PE. Detergent experiments were also conducted with cardiomyocytes fed radiolabeled OA or DHA. Although both OA and DHA were found to be largely detergent solubilized, the amount of OA that was found to be associated with raft-rich detergent-resistant membranes exceeded DHA by almost a factor of 2. We conclude that the OA-PE phase separates from rafts far less than DHA-PE, which may have implications for cellular signaling.  相似文献   

13.
The lipid composition of sea urchin gametes and embryos was examined in detail by micro thin-layer chromatography (tlc) and gas-liquid chromatography (glc). Lipids of unfertilized eggs contain 53.7% triglycerides, 33.2% phospholipids, and 9.4% cholesterol, while spermatozoa lipids consist of 65.0% phospholipids, 15.5% cholesterol, and no triglycerides. Phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), diphosphatidylglycerol (DPG), and lysophosphatidylcholine (LPC) were identified among the phospholipids of both eggs and spermatozoa. The major part of egg and embryo PE was present as plasmalogen. After fertilization and the first cleavage, phospholipid content decreased from 33.2 to 29.4%, but the amount of phospholipids returned to the 33.2% level by the blastula stage and reached 39.7% by the pluteus stage. Lipid class composition showed no qualitative changes during development, but concentrations of PE, PS, LPC, and cholesterol increased, while those of PC, PI, and triglycerides decreased during the process. The principal fatty acids of neutral and polar lipid fractions are 14:0, 16:0, 18:1, 18:4, 20:1, 20:4, and 20:5. Their relative content underwent some changes during development.  相似文献   

14.
1. Incorporation in vivo into tissue lipids of (1-14C)acetate added to the water in the incubation tank showed the same relative distribution pattern of 14C-activity among various phospholipids in the gills, the esophagus and the intestine, when the eel was incubated in sea-water; in fresh water this pattern was found only in the intestine, while both the gills and the esophagus showed a relative excess of 14C-label in phosphatidylethanolamine (PE). 2. Similar studies with (32P)phosphate also showed a relative excess of (32P)PE in both the gills and esophagus in fresh water compared to sea-water, and no such difference in the intestine. 3. As long as the labelled precursors were added to the water in the incubation tank both (14C)PE and (32P)PE were not identical to unlabelled PE on thin-layer chromatograms, and the 14C-labelled lipids contained predominantly C16:1 and C18:1 fatty acids. 4. However, when the two precursors were injected directly into the eel there was no longer any marked difference between the distribution patterns of radioactivity among gill phospholipids in fresh water and sea-water; there was no longer any difference between labelled and unlabelled PE on thin-layer chromatograms, and the 14C-labelled gill lipids contained predominantly C16:0 and C18:0 fatty acids. 5. The corresponding liver lipids were affected neither by a change in environmental salinity nor in precursor application.  相似文献   

15.
1. Studies were performed to determine if the inability of murine T cells to provide primary helper function at low temperature (27 degrees C) could be correlated with their inability to synthesize unsaturated fatty acids (UFAs). 2. In the absence of exogenous oleic acid (18:1), splenocytes responded to a T-dependent (TD) Ag (trinitrophenyl-keyhole limpet hemocyanin, TNP-KLH) at 37 degrees C but not at 27 degrees C. The addition of 150 microM 18:1 almost completely restored plaque-forming cell (PFC) responses to TNP-KLH at 27 degrees C but markedly suppressed PFC responses to the TD Ag at 37 degrees C. 3. During incubation at 27 degrees C, B cells converted 3- to 5-fold more stearic acid (18:0) to 18:1 and showed a greater accumulation of monounsaturated phospholipid molecular species than did T cells. 4. Following incubation in the presence of a rescuing dose of 18:1 (150 microM), both B and T cells accumulated large amounts of dioleoyl PC. 5. It is proposed that the absence of 18:1 synthesis in T cells is responsible for the unique low temperature susceptibility of this lymphocyte population.  相似文献   

16.
Exercise training influences phospholipid fatty acid composition in skeletal muscle and these changes are associated with physiological phenotypes; however, the molecular mechanism of this influence on compositional changes is poorly understood. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a nuclear receptor coactivator, promotes mitochondrial biogenesis, the fiber-type switch to oxidative fibers, and angiogenesis in skeletal muscle. Because exercise training induces these adaptations, together with increased PGC-1α, PGC-1α may contribute to the exercise-mediated change in phospholipid fatty acid composition. To determine the role of PGC-1α, we performed lipidomic analyses of skeletal muscle from genetically modified mice that overexpress PGC-1α in skeletal muscle or that carry KO alleles of PGC-1α. We found that PGC-1α affected lipid profiles in skeletal muscle and increased several phospholipid species in glycolytic muscle, namely phosphatidylcholine (PC) (18:0/22:6) and phosphatidylethanolamine (PE) (18:0/22:6). We also found that exercise training increased PC (18:0/22:6) and PE (18:0/22:6) in glycolytic muscle and that PGC-1α was required for these alterations. Because phospholipid fatty acid composition influences cell permeability and receptor stability at the cell membrane, these phospholipids may contribute to exercise training-mediated functional changes in the skeletal muscle.  相似文献   

17.
The content and composition of phospholipids and triacylglycerols (TAGs) in Bufo arenarum oocytes in stages III and IV of their oogenesis were studied. The total amount of phospholipids in stage IV oocytes is 0.5-fold higher than in stage III oocytes. In both cases, the main phospholipids are phosphatidylcholine (PC) and phosphatidylethanolamine (PE). A striking observation concerns the high level of diphosphatidylglycerol (DPG) in stage III oocytes, which could be indicative of a relatively larger mitochondrial population with respect to other oogenetic stages. A net increase in sphingomyelin content was found during oogenesis. This fact could be related to the role of this phospholipid in the signal transductional pathways. In PC, palmitic (16:0), linoleic (18:2) and oleic (18:1) are the major fatty acids for both types of oocytes, while in PE the main acyl groups are 18:1, 16:0, arachidonic acid (20:4n6) and 18:2. PE is more unsaturated than PC and both phospholipids are more unsaturated in stage III oocytes than in stage IV oocytes. The amount of triacylglycerols is 0.3-fold higher in stage IV oocytes than in stage III oocytes. In both stages, the main fatty acids are 18:2, 18:1 and 16:0. During oogenesis, a significant increase in 18:1 and 18:3n3, and a decrease in 18:2 of TAG were found. The unsaturation index of TAGs from stage IV oocytes is higher than that from stage III oocytes. The TAG increase during oogenesis is consistent with the putative use of these lipids as a source of energy in embryo development.  相似文献   

18.
The distribution of phospholipids and fatty acyl composition of individual phospholipids in sarcoplasmic reticulum from fast skeletal muscle of hypothyroid and euthyroid (control) rats have been determined. Hypothyroidism resulted in a 24% decrease in the phosphatidylethanolamine (PE) content and a concomitant increase in the phosphatidylcholine (PC) content of the sarcoplasmic reticulum. The amounts of other phospholipids and cholesterol remained unaffected. Fatty acyl compositions of PE and PC were quantitatively different, but hypothyroidism affected these compositions similarly. Changes included an increase in the proportions of docosahexaenoic (22:6(n - 3)), arachidonic (20:4(n - 6)), icosatrienoic (20:3(n - 6)) and stearic (18:0) acids and a decrease in those of linoleic (18:2(n - 6)), palmitic (16:0) and oleic (18:1(n - 9)) acids. The effects of hypothyroidism on the phospholipid distribution could be reversed by treatment of hypothyroid animals with thyroid hormone for a period of 14 days (10 micrograms T3/100 g body weight per 2 days). The fatty acyl composition of the phospholipids was also restored to the euthyroid values by this treatment. Exceptions were 18:2 and 22:6 in PE, in which case reversal was significant but not complete, and 18:2, 20:4 and 22:6 in PC. The levels of these acids in PC were not reversed to the euthyroid values after the 14-day treatment, but rather the opposite occurred.  相似文献   

19.
Incorporation of vitamin E (α-tocopherol) was measured in total membranes of pulmonary artery endothelial cells (PAEC) following treatment with eight synthetic phosphatidylethanolamines (PE) (Palmitoyloleoyl, 16:0–18:1 PE1; distearoyl, 18:0–18:0 PE2; dioleoyl, 18:1–18:1 PE3; stearoyl- linoleoyl, 18:0–18:2 PE4; dilinoleoyl, 18:2–18:2 PE5; stearoyl-arachiod-nyl, 18:0–20:4 PE6; diarachidonyl, 20:4–20:4 PE7; and stearoyl-docosahexenoyl, 18:0–22:6 PE8). Endogenous PE content of native membranes was 0.88 ± 0.01 nmol/mg protein. Incorporation of PE irrespective of fatty acid content significantly (P < 0.02) increased the PE content of total membranes. Vitamin E incorporation in control membranes was 63 ± 9 nmol/mg protein. Incorporations of vitamin E in PE1- to PE7-treated cells were significantly (P < 0.05) increased compared to controls and were comparable to each other. Vitamin E incorporation into PE8-treated cells was threefold greater (P < 0.001) thatn controls and twofold greater (P < 0.001) than PE1- to PE7-treated cells. Increased PE content results in increased vitamin E incorporation into PAEC membranes irrespective of the fatty acids present on the acyl chain, and maximal incorporation of vitamin E in PE8-treated cells may relate to the increased carbon chain length rather than to the degree of unsaturation at the sn2 position. © 1993 Wiley-Liss, Inc.  相似文献   

20.
The molecular species composition of red blood cell diacyl-phosphatidylcholine (PC), diacyl-phosphatidylethanolamine (PE) and alkenylacyl-PE (plasmalogen PE) has been analyzed in normolipidemic and hyperlipidemic donors. In all three phospholipid subclasses the percentages of the species 16:0/20:4 were increased in hyperlipidemic patients. In diacyl-PE, 18:1/20:4 was also elevated. No changes were observed in the other quantitatively important molecular species containing arachidonic acid at sn-2, namely 18:0/20:4. The rise in 16:0/20:4 in diacyl-PC and diacyl-PE of hyperlipidemic donors was accompanied by a fall in molecular species with linoleic acid (18:2) at sn-2 (in particular 18:1/18:2). In alkenylacyl-PE the elevation of 16:0/20:4 was compensated by a decrease in species with docosatetraenoic acid (22:4) at sn-2 in particular by a fall in 16:0/22:4. Among all donors, the percentages of 16:0/20:4 in diacyl-PC and PE were positively associated with plasma total cholesterol levels. The changes in molecular species composition of PC and PE in hyperlipidemia are expected to alter the function of erythrocyte membrane transport proteins and--if present also in other cell types--to affect eicosanoid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号