首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blood concentration of PGE2, F2a, 6 keto PGF1a (6kF1a), TxB2 and 13, 14 dehydro 15 keto PGE2 (13, 14 OH 15 k E2) were measured in renal artery and vein of a patient with a PGs producing nephroblastoma. The tumor tissue produced PGs in the following order: PGF2a greater than PGE2 greater than TxB2 greater than 6kF1a greater than 13, 14 OH 15 k E2. However, renal artery concentration of the substances were as follows: 13, 14 OH 15 k E2 greater than TxB2 greater than 6kF1a greater than PGF2a greater than PGE2. Since arterial concentration is critical to postulating a calcium mobilizing effect on bone tissue, PGE2 arterial level seems to be too low to exert a pathogenetic role on hypercalcemia, at least in the patient reported here.  相似文献   

2.
Radiotracer studies and radioimmunoassay measurements demonstrate that minced tissues of human decidua produce chiefly thromboxane B2 (TxB2) (70% of total eicosanoids) and small amounts of prostaglandin F2 alpha (PGF2 alpha) (13%) PGD2 (8%), 6-keto-PGF1 alpha (5%) and PGE2 (4%). Inhibition of thromboxane synthesis with a specific inhibitor (OKY-1581: sodium (E)-3-[4(-3-pyridylmethyl)-phenyl]-2-methyl propenoate) increased prostaglandin formation in general, with the main product being PGF2 alpha (38%), a nonenzymic derivative of PGH2. Crude particulate fractions prepared from the same tissue synthesized two major products from [3H]arachidonate, TxB2 and 6-keto-PGF1 alpha (54 and 30%, respectively) and some PGF2 alpha and PGE2 (8-8%). However, in the presence of reduced glutathione (GSH), PGE2 became the main product (81%) (TxB2, 15%; PGF2 alpha, 2%; and 6-keto-PGF1 alpha, 2%). Half-maximal stimulation of PGE2 synthesis occurred at 46 microM GSH. The GSH concentration of tissue samples was found to be 110 +/- 30 microM. We conclude that human first trimester decidua cells possess the key enzymes of prostaglandin and thromboxane synthesis. Apparently, the production of these compounds is controlled by a specific mechanism in the tissue, which keeps PGE and prostacyclin synthesis in a reversibly suppressed state, whereas the formation of thromboxane is relatively stimulated.  相似文献   

3.
L Wilson  L S Huang 《Prostaglandins》1983,25(5):725-731
Uterine prostaglandins (PGs) increase markedly at term in the pregnant rat. To assess the contribution of the fetal-placental unit (FPU) on uterine tissue and uterine venous blood PG concentrations, each uterine horn of 14 unilaterally pregnant rats at day 21 of pregnancy were compared. In addition, 7 bilaterally pregnant rats were studied. Uterine tissue and uterine venous plasma PGF, PGE, 6-Keto-PGF1 (6KF) and thromboxane B2 (TxB2) and systemic plasma progesterone, estradiol and estrone were determined by radioimmunoassay. Uterine concentrations of PGs (ng/mg DNA) were always greater on the pregnant side of unilaterally pregnant rats (p less than .05) although the PGF levels were elevated to a lesser extent than were PGE, TxB2 or 6KF. However, no differences were detected between uterine tissue from the pregnant side of unilaterally pregnant compared to bilaterally pregnant rats. In addition, no differences were found in uterine venous plasma PGs adjacent or opposite the pregnant uterine horn and in systemic plasma progesterone, estradiol and estrone levels in unilaterally vs bilaterally pregnant rats. These data suggest that the presence of the FPU is associated with an increased capacity of uterine tissue to produce PGE, TxB2 and 6KF, and to a lesser degree PGF, and thus may contribute to the increase in uterine PGs periparturition.  相似文献   

4.
L Wilson  L S Huang 《Prostaglandins》1984,28(1):103-110
Previous studies in our laboratory have shown that 24 hours of estradiol treatment significantly enhanced uterine prostaglandin (PG)F, PGE and thromboxane B2 (TxB2) levels but had no effect on 6-Keto-PGF1 alpha (6KF) concentrations in ovariectomized-pregnant rats. One explanation for the lack of an augmentation in 6KF was a temporal difference in response (i.e. 6KF increased and decreased within the 24 hour period). To test this possibility rats were ovariectomized on day 19 of pregnancy and sacrificed 0, 4, 8, 12, 16, 20 and 24 hours after estradiol treatment. Uterine tissue and venous plasma were analyzed for PGs by radioimmunoassay. No significant (p greater than .05) alterations were detected for any of the uterine PGs at 0, 4, 8 and 12 hours. However, at 16 hours PGF, TxB2 and PGE all showed significant (p less than .05) increases (2.4, 3.4 and 2.1 fold, respectively) compared to 12 hours. In contrast, no significant augmentation in 6KF levels (p greater than .05, 1.3 fold) was detected at 16 compared to 12 hours although it was enhanced relative to 0 and 4 hours. In addition, PGF, TxB2 and PGE, but not 6KF, showed further increases 24 hours after estradiol administration. No alterations were found (p greater than .05) for any of the PGs in uterine venous plasma at the time points studied. In summary, uterine PGF, PGE and TxB2 net production appears to be more enhanced by estradiol treatment than 6KF at the time points studied. In addition, there is a slight, but significant, difference in the temporal response characteristics of 6KF compared to the other PGs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The effect of various anti-inflammatory drugs on the production of prostaglandins E2 and F2 alpha, 6 keto PGF1 alpha and thromboxane B2 by bovine articular chondrocytes was measured by radioimmunoassay. While indomethacin and meclofenamic acid caused a dose-dependent inhibition of all prostanoids measured, the effects of hydrocortisone and colchicine varied with respect to different prostanoids. Hydrocortisone (10(-7)M - 10(-13)M) both in the presence and absence of added arachidonic acid, resulted in an inhibition of prostaglandins E2 and F2 alpha, and to a lesser extent, 6 keto PGF 1 alpha, but TxB2 production was only slightly inhibited by the drug in the absence of arachidonic acid and markedly increased in its presence. Colchicine (10(-7)M-10(-3)M) had the opposite effect, causing an inhibition of TxB2 and stimulating PGE2 and 6 keto PGF1 alpha production. These findings suggest that certain anti-inflammatory drugs may, in addition to their action on phospholipase A2 and cyclo-oxygenases, exert potent effects at the level of the different synthetases. In order to see whether these alterations in relative prostanoid levels affected proteoglycan metabolism, the effect of anti-inflammatory drugs on proteoglycan synthesis by cultured chondrocytes was tested using 35SO4 labeling methodology. The results showed that at the concentrations tested (10(-5)M to 10(-7)M), indomethacin, dexamethasone, hydrocortisone and colchicine inhibited 35SO4 incorporation into newly synthesized proteoglycan molecules both in the presence (10(-6)M) and absence of exogenous arachidonic acid. In the same concentration range chloroquine had no effect. These results do not support the hypothesis of direct prostanoid involvement in the modulation of proteoglycan synthesis in articular cartilage.  相似文献   

6.
Uterine prostaglandins (PGs) increase markedly at term in the pregnant rat. To assess the contribution of the fetal-placental unit (FUP) on uterine tissue and uterine venous blood PG concentrations, each uterine horn of 14 unilaterally pregnant rats at day 21 of pregnancy were compared. In addition, 7 bilaterally pregnant rats were studied. Uterine tissue and uterine venous plasma PGF, PGE, 6-Keto-PGF1 (6KF) and thromboxane B2 (TxB2) and systematic plasma progesterone, estradiol and estrone were determined by radioimmunoassay. Uterine concentrations of PGs (ng/mg DNA) were always greater on the pregnant side of unilaterally pregnant rats (p<.05) although the PGF levels were elevated to a lesser extent than were PGE, TxB2 or 6KF. However, no differences were detected between uterine tissue from the pregnant side of unilaterally pregnant compared to bilaterally pregnant rats. In addition, no differences were found in uterine venous plasma PGs adjacent or opposite the pregnant uterine horn and in systematic plasma progesterone, estradiol and estrone levels in unilaterally vs bilaterally pregnant rats. These data suggest that the presence of the FPU is associated with an increased capacity of uterine tissue to produce PGE, TxB2 and 6KF, and to a lesser degree PGF, and thus may contribute to the increase in uterine PGs periparturition.  相似文献   

7.
It has been reported that hyperventilation (HV) increases the release of vasodilative prostaglandins (PGs) from animal lungs. However, it has not yet been clarified whether or not the results obtained from animal experiments are applicable to humans. To confirm this point, we performed this study. Healthy male volunteers, aged 22–28 years, were divided into two groups. Group I (n=11) breathed room air and showed respiratory alkalosis. Group II(n=11) breathed room air containing 5% CO2 and maintained normal arterial blood pH. Each subject hyperventilated voluntarily and vigorously for 10 min. The mean values of respiratory rates, tidal volumes and minute volumes during HV were 42.1±6.2 breaths/min, 1390±280 ml and 58.5±15.2 l/min, respectively. Arterial and venous blood samples were drawn simultaneously before and after HV from brachial artery and medial cubital vein, respectively. Plasma 6-keto PGF1 α, a metabolite of PGI2, and PGE2 were measured by radioimmunoassay (RIA). After HV, concentrations of 6-keto PG F1 α and PGE2 in both arterial and venous blood were increased significantly. There were no significant differences in the levels of 6-keto PGF1 α and PGE2 between two groups, nor between arterial and venous blood either before or after HV. We concluded that voluntary HV stimulates the release of PGI2 and PGE2 from lung in humans and respiratory alkalosis has no significant effect on the release of PGs.  相似文献   

8.
Experiments were designed to determine the chronological alterations in placental and uterine prostaglandin F and E (PGF and PGE) during pregnancy in the rat. Pregnant rats (sperm in the vagina = day 0) were sacrified at days 15, 18,19, 20, 21 and delivery (day 21 ) and placental and uterine tissues assayed (RIA) for PGF and PGE immediately (“ ”) or after 1 hour incubation (“ ”). Uterine content of PGF and PGE (ng PG/mg DNA) was increased significantly by day 19 and further increases were seen through delivery. Incubation of uterine tissue resulted in enhanced net production of PGF and PGE (p <.05) per mg DNA (as judged by tissue content and release into the incubation medium) by day 18 of pregnancy vs. day 15. Net production peaked around the time of delivery thus paralleling the alterations in tissue content .By contrast, no differences with gestational age were found in placental content of PGF and PGE , the concentrations throughout late gestation remaining in the range of uterine PGs at day 15. However, production of PGs per mg placental DNA increased markedly during incubation with significant enhancement detected by day 19 vs. 15, achieving levels even greater than the uterus .The and findings for the uterus are consistent with the hypothesis that increases in uterine PGs levels at the end of pregnancy may play an important role in parturition. The experiences with placental tissue suggest that the potential for PG production per placental cell may also increase in late gestation and thereby contribute to the augmented intrauterine availability of PGs at that time.  相似文献   

9.
Previous studies in our laboratory have shown that 24 hours of estradiol treatment significantly enhanced uterine prostaglandin (PG)F, PGE and thromboxane B2 (TxB2) leels but had no effect on 6-Keto-PGF (6KF) concentrations in ovariectomized-pregnant rats. One explanatior for the lack of an augmentation in 6KF was a temporal differences in response (i.e. 6KF increased and decreased within the 24 hour period). To test this possibility rats were ovariectomized on day 19 of pregnancy and sacrificed 0, 4, 8, 12, 16, 20 and 24 hours after estradiol treatment. Uterine tissue and venous plasma were analyzed for PGs by radioimmunoassay. No significant (p > .05) alterations were detected for any of the uterine PGs at 0, 4, 8 and 12 hours. However, at 16 hours PGF, TxB2 and PGE all showed significant (p > .05) increases (2.4, 3.4 and 2.1 fold, respectively) compared to 12 hours. In contrast, no significant augmentation in 6KF levels (p > .05, 1.3 fold) was detected at 16 compared to 12 hours although it was enhanced relative to 0 and 4 hours. In addition, PGF, TxB2 and PGE, but not 6KF, showed further increases 24 hours after estradiol administration. No alterations were found (p > .05) for any of the PGs in uterine venous plasma at the time points studied. In summary, uterine PGF, PGE and TxB2 net production appears to be more enhanced by estradiol treatment than 6KF at the time points studied. In addition, there is a slight, but significant, difference in the temporal response characteristics of 6KF compared to the other PGs. The data suggest that the dramatic increase in uterine PGF, PGE and TxB2 levels at parturition in the rat are probably significantly related to enhanced levels of estradiol. However, the majority of the increase in uterine 6KF levels at labor is more likely caused by factors other than augmented plasma estradiol.  相似文献   

10.
Radioimmunoassay measurements of prostaglandins (PGs) E2, F2 alpha, 6-keto-PGF1 alpha and thromboxane (Tx) B2 in 24 h urine specimens from a male and a female healthy volunteer on several consecutive days revealed a dramatic increase of PGE2, PGF2 alpha, 6-keto-PGF1 alpha on days, upon which they had sexual intercourse; only TxB2 remained stable. Furthermore, the PGE2/PGF2 alpha ratio rose to values greater than 0.5 on days with sexual intercourse. This was found to be due to contamination of the urine samples by seminal fluid. Two 24 h urine samples from each of 26 healthy male and female volunteers (HV) revealed higher (p less than 0.01) mean PGE2 and PGF2 alpha values in males than in females. The results show that the interpretation of the urinary PG excretion as a measure of renal PG synthesis should be considered carefully, and that a PGE2/PGF2 alpha ratio greater than 0.5 indicates probable seminal contamination of urine.  相似文献   

11.
Z Zhang  D L Davis 《Prostaglandins》1991,42(2):151-162
Prostaglandins (PGs) are believed to play important roles in the establishment of pregnancy. Glandular and stromal cells were isolated from pig endometrium on days 11 through 19 of pregnancy and cultured in the presence of estradiol-17 beta (E2) and progesterone (P4) to determine the effect of day of pregnancy and steroids on the secretion of PGE and PGF2 alpha. Estradiol at concentrations between .01 and 1 microM did not affect PGE and PGF2 alpha secretion into the medium by glandular and stromal cells. Progesterone (.1 microM) suppressed (P less than .001) PGE and PGF2 alpha production from both cell types. Glandular cells secreted more (P less than .01) PGF2 alpha than PGE, whereas stromal cells collected on days 11, 12, 13, and 19 secreted more (P less than .05) PGE than PGF2 alpha. Stromal cells isolated from tissues collected on day 13 of pregnancy produced PGs with higher (P less than .01) PGE:PGF2 alpha ratio than those from tissues harvested on other days of pregnancy. Glandular cells isolated from tissues collected on days 13 and 19 and stromal cells isolated from tissue collected on day 13 of pregnancy secreted more (P less than .05) PGE and PGF2 alpha than cells isolated on other days of pregnancy. We conclude that: 1) P4 has a suppressing effect on PG secretion; 2) endometrial glandular and stromal cells each produce a unique profile of PGs; and 3) endometrial cells harvested on different days of pregnancy secrete different amounts of PGE and PGF2 alpha.  相似文献   

12.
Glucocorticoid effect on arachidonic acid metabolism in vivo   总被引:1,自引:0,他引:1  
Glucocorticoids have been shown in in vitro systems to inhibit the release of arachidonic acid metabolites, namely prostaglandins (PGs) and leukotrienes, apparently, via the induction of a phospholipase A2 inhibitory protein, called lipocortin. On the basis of these in vitro results, it has been suggested that inhibition of eicosanoid production is, at least partially, responsible for the well-known anti-inflammatory effect of glucocorticoids. There is, however, no firm evidence proving that glucocorticoids also inhibit prostaglandin or leukotriene synthesis in vivo. In a series of studies, we have investigated the effects of anti-inflammatory steroids on the production of six different cyclo-oxygenase products in vivo. Urinary prostaglandin (PG) E2(1), PGF2 alpha, thromboxane B2 (TxB2), 6-keto-PGF1 alpha, and the major urinary metabolites of the E and F PGs, PGE-M and PGF-M, respectively, were determined by radioimmunoassay and by GC-MS. Administration of pharmacological doses of dexamethasone to rabbits failed to inhibit urinary excretion rates of PGE2, TxB2, 6-keto-PGF1 alpha and that of PGE-M and PGF-M. In contrast, urinary PGF2 alpha was slightly reduced by dexamethasone. In further experiments the effect of dexamethasone was studied in humans. Urinary excretion rates of PGE2, PGE-M, PGF-M, 2,3-dinor TxB2 and 2,3-dinor 6-keto-PGF1 alpha were not suppressed by dexamethasone. Collagen-induced platelet TxB2 formation and platelet aggregation was also unaltered. To test one possible explanation for the apparent discrepancy between in vitro and in vivo effects of glucocorticoids on arachidonic acid metabolites we investigated the effects of dexamethasone in vivo on basal and on antidiuretic hormone-stimulated renal PG synthesis. Dexamethasone treatment failed to inhibit both basal and antidiuretic hormone-stimulated PGE2 and PGF2 alpha production. We conclude that glucocorticoids in vivo do not decrease the basal rate of total body, kidney and platelet prostanoid synthesis, and that dexamethasone does not inhibit renal PG production when it is elevated by antidiuretic hormone, a physiological stimulus. Thus, a differential effect of glucocorticoids on basal vs stimulated PG synthesis cannot account for the discrepancy between in vivo and in vitro effects.  相似文献   

13.
We studied the effects of acute hypoxia (Fi02=0.09–0.11, 20 min,.) on transpulmonary plasma prostaglandin (PG) concentrations in ten anaesthetized, paralyzed, artificially ventilated dogs. Concentrations of 6-keto-PGF1α, TxB2, PGE2, PGF2α, and 13, 13-dihydro-15-keto-PGF2α were measured from the pulmonary artery and abdominal aorta using radioimmunoassay. In an additional six dogs, the effects of arachidonic acid (AA) infusions (100 mg/kg/min) during normoxia and acute hypoxia were determined. Compared to normoxic conditions, acute hypoxia increased pulmonary artery pressure (p<0.0), decreased both the arterial oxygen tension (Pa02) and the alveolar-to-arterial oxygen tension gradient (A-aD02) (p <0.05), but did not affect transpulmonary plasma PG concentrations. AA infusions significantly (p <0.05) increased 6-keto-PGF1α independent of Fi02. Acute hypoxia failed to elicit a pulmonary pressor response in the AA-treated animals although Pa02 and A-aD02 decreased (p<0.5). These data in healthy dogs suggest that (1) acute hypoxia does not alter net pulmonary PG metabolism, (2) prostacyclin synthesis is stimulated by increased plasma AA concentrations and (3) this effect may block normal pressor responses to hypoxic stimuli.  相似文献   

14.
A method of tissue superfusion has been used to measure prostanoid production by the ovine cervix during late pregnancy and at parturition. In late pregnancy (105–135 days of gestation) cervical tissue produced relatively large amounts of prostaglandin E (PGE); in comparison, the production rates of prostaglandin F (PGF), 13, 14-dihydro-15-oxo-prostaglandin F (PGFM) and 6-oxo-prostaglandin F were generally low. Thromboxane B2 (TXB2) production was minimal and often unmeasurable. There were significant increases in the production rates of PGE and 6-oxo-PGF by cervical tissue taken immediately after delivery, when compared to late pregnancy. Mean production rates of PGE increased from 19.8 ± 4.1 to 43.8 ± 7.4 ng/g. dry wt./min; 6-oxo-PGF production rates increased more than three-fold from 10.0 ± 2.7 to 34.6 ± 9.8 ng/g. dry wt./min (means ± S.E.M.). There were no significant differences in the rates of production of PGF, PGFM and TXB2 by the two groups.  相似文献   

15.
The release of prostaglandin(PG) and thromboxane(TX) was examined in the six different areas of the normal dog kidney, i.e., renal arterial and venous strips(RA and RV), superficial and deep cortical slices (SC and DC) and outer and inner medullary slices(Om and IM). These tissues were incubated in Krebs-bicarbonate buffer(pH 7.4, 37°C), and the released PGE2, PGF2α, 6-keto-PGF1α and TXB2(as stable metabolites of PG12 and TXA2, respectively) were determined by radioimmunoassay. In RA, RV, SC and DC, 6-keto-PGF1α was predominant, however, there were no quantitative differences between RA and RV, or SC and DC. The release of 6-keto-PGF1α reached a maximum in IM, similar to findings on the release of PGE2 and PGF2α. The release of TXB was uniform in OM and IM. The amount of PGE2, PGF2α, 6-keto-PGF1α and TXB2 released from IM was 2800, 400, 60 and 50 times higher, respectively, than the extent of the release from the cortical slices.These results suggest that PG12 as well as PGE2 and PGF2α, may be involved in renal PG, and that TXA2 is biosynthesized in the normal dog kidney.  相似文献   

16.
Uteroplacental production of eicosanoids in ovine pregnancy   总被引:3,自引:0,他引:3  
Dramatic cardiovascular alterations occur during normal ovine pregnancy which may be associated with increased prostaglandin production, especially of uteroplacental origin. To study this, we examined (Exp 1) the relationships between cardiovascular alterations, e.g., the rise in uterine blood flow and fall in systemic vascular resistance, and arterial concentrations of prostaglandin metabolites (PGEM, PGFM and 6-keto-PGF1 alpha) in nonpregnant (n = 4) and pregnant (n = 8) ewes. To determine the potential utero-placental contribution of these eicosanoids in pregnancy, we also studied (Exp 2) the relationship between uterine blood flow and the uterine venous-arterial concentration differences of PGE2, PGF2 alpha, PGFM, 6-keto-PGF1 alpha, and TxB2 in twelve additional late pregnant ewes. Pregnancy was associated with a 37-fold increase in uterine blood flow and a proportionate (27-fold) fall in uterine vascular resistance (p less than 0.01). Arterial concentrations of PGEM were similar in nonpregnant and pregnant ewes (316 +/- 19 and 245 +/- 38 pg/ml), while levels of PGFM and PGI2 metabolite 6-keto-PGF1 alpha were elevated 23-fold (31 +/- 14 to 708 +/- 244 pg/ml) and 14-fold (12 +/- 4 to 163 +/- 78 pg/ml), respectively (p less than 0.01). Higher uterine venous versus uterine arterial concentrations were observed for PGE2 (397 +/- 36 and 293 +/- 22 pg/ml) and 6-keto-PGF1 alpha (269 +/- 32 and 204 +/- 32 pg/ml), p less than 0.05, but not PGF2 alpha or TxB2. Although PGFM concentrations appeared to be greater in uterine venous (1197 +/- 225 pg/ml) as compared to uterine arterial (738 +/- 150 pg/ml) plasma, this did not reach significance (0.05 less than p less than 0.1). In normal ovine pregnancy arterial levels of PGI2 are increased, which may in part reflect increased uteroplacental production. Moreover the gravid ovine uterus also appears to produce PGE2 and metabolize PGF2 alpha.  相似文献   

17.
Microsomal prostaglandin E synthase (mPGES)-1 is one of several prostaglandin E synthases involved in prostaglandin H2 (PGH2) metabolism. In the present report, we characterize the contribution of mPGES-1 to cellular PGH2 metabolism in murine macrophages by studying the synthesis of eicosanoids and expression of eicosanoid metabolism enzymes in wild type and mPGES-1-deficient macrophages. Thioglycollate-elicited macrophages isolated from mPGES-1-/- animals and genetically matched wild type controls were stimulated with diverse pro-inflammatory stimuli. Prostaglandins were released in the following order of decreasing abundance from wild type macrophages stimulated with lipopolysaccharide: prostaglandin E2 (PGE2)>thromboxane B2 (TxB2)>6-keto prostaglandin F1alpha (PGF1alpha), prostaglandin F(2alpha) (PGF2alpha), and prostaglandin D2 (PGD2). In contrast, we detected in mPGES-1-/- macrophages a >95% reduction in PGE2 production resulting in the following altered prostaglandin profile: TxB2>6-keto PGF1alpha and PGF2alpha>PGE2, despite the comparable release of total prostaglandins. No significant change in expression pattern of key prostaglandin-synthesizing enzymes was detected between the genotypes. We then further profiled genotype-related differences in the eicosanoid profile using macrophages pre-stimulated with lipopolysaccharide followed by a 10-min incubation with 10 microm [3H]arachidonic acid. Eicosanoid products were subsequently identified by reverse phase high pressure liquid chromatography. The dramatic reduction in [3H]PGE2 formation from mPGES-1-/- macrophages compared with controls resulted in TxB2 and 6-keto PGF1alpha becoming the two most abundant prostaglandins in these samples. Our results also suggest a 5-fold increase in 12-[3H]hydroxyheptadecatrienoic acid release in mPGES-1-/- samples. Our data support the hypothesis that mPGES-1 induction in response to an inflammatory stimulus is essential for PGE2 synthesis. The redirection of prostaglandin production in mPGES-1-/- cells provides novel insights into how a cell processes the unstable endoperoxide PGH2 during the inactivation of a major metabolic outlet.  相似文献   

18.
Slow reacting substance (SRS) injected into the pulmonary artery released prostaglandin E (PGE) and F (PGF) and the 15-keto-13, 14-dihydro PG metabolites from non-sensitized and ovalbumin sensitized, isolated, perfused guinea pig lungs. PGs were also released from lungs incubated with SRS. Sensitized lungs released more PGs in both types of preparations. Indomethacin inhibited the effect of SRS. Passively sensitized human lung fragments, in parallel to guinea pig lung, released PGE, PGF and the metabolites when incubatted with SRS or antigen. In experiments, SRS and arachidonic acid given intravenously increased the airway insufflation pressure in anesthetized guinea pigs. These effects, but not the action of injected PGF and histamine, were abolished by indomethacin. The results indicate that one of the modes of SRS action is by release of PGs, and are consistent with the hypothesis that PGs are predominantly “secondary” mediators (in the temporal sense) of the antigen-antibody reaction.  相似文献   

19.
The purpose of the present study was to determine if the acute alterations in uterine prostanoid levels at the end of pregnancy are influenced locally by the fetoplacental unit (FPU). Unilaterally pregnant rats were killed on Days 20 and 21 of pregnancy (delivery = Day 21.5) and uterine tissue was removed and analyzed for prostaglandin (PG) E, PGF, thromboxane B2 (TxB2), and 6-keto-PGF1 alpha (6KF) by radioimmunoassay. A significant (P less than 0.05) main effect of Day (20 vs. 21) and Uterine Horn (nonpregnant vs. pregnant), but no interaction for PGE, PGF, and TxB2 was detected. In contrast, a significant interaction (P less than 0.05) of Day with Uterine Horn was found for uterine 6KF levels. Examination of the simple main effects indicated an enhanced level (P less than 0.05) of 6KF in uterine tissue adjacent compared to opposite the FPU at Days 20 and 21. However, uterine 6KF levels in the nonpregnant, but not pregnant, uterine horn were greater at Day 21 compared to Day 20 of pregnancy. The lack of a significant interaction of the main effects for PGE, PGF, and TxB2 suggests that the increased levels of these PGs between Days 20 and 21 were proportional in the nonpregnant and pregnant uterine horn. Therefore, the factor(s) responsible for the augmentation in these uterine PG levels between Days 20 and 21 is(are) most likely arriving via systemic circulation. In addition, the proportionate increases in uterine PGs imply that the FPU is not conferring upon adjacent uterine tissue any unique ability to respond to systemic factors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The capacity to synthesize both prostaglandins E1 (PGE1) and E2 (PGE2) has been determined in human lung mucoepidermoid carcinoma homogenates when [14C]-fatty acid precursors were added to the incubation medium. Only 10% of the total radioactivity recovered in PGs was found in PGF1 alpha and PGF2 alpha. The experiments were principally focused to inhibit the PGE2 synthesis either with pure eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids or with mixtures of both n-3 fatty acids obtained from fish oil. The results demonstrated that significant inhibitions were found when using 25 microM or a higher concentration of pure EPA or DHA in the incubation medium; however, 5 microM of mixtures of different EPA/DHA ratio caused the same inhibition. The results suggest that EPA and DHA, when added together, may enforce their inhibitory effect on PGE2 synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号