首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of glial cell-line derived neurotrophic factor (GDNF) and neurotrophins in the development of locus coeruleus noradrenergic neurons was evaluated. We found that two neurotrophic factors previously reported to prevent the degeneration of lesioned adult central noradrenergic neurons, GDNF and neurotrophin 3 (NT3), do not play significant roles in the prenatal development of locus coeruleus noradrenergic neurons, as demonstrated by: (1) the lack of alterations in double Gdnf/Nt3 null mutant mice; and (2) the lack of survival-promoting effects of GDNF and/or NT3 in rat E13.5 primary cultures. In contrast, null mutant mice for TrkB, the tyrosine kinase receptor for brain-derived neurotrophic factor and neurotrophin 4, displayed a clear loss of locus coeruleus noradrenergic neurons. In accordance with this, treatment of rat E13.5 primary cultures with TrkB ligands prevented the early loss of noradrenergic neurons and maintained their survival for up to 6 days in vitro. Moreover, an additional 5-10-fold increase in the number of tyrosine hydroxylase positive noradrenergic neurons was detected after 12 hours in culture. This second effect of TrkB ligands involved neither proliferation nor survival, because the number of BrdU- or TUNEL-positive noradrenergic neurons did not change and the effect was elicited by delayed administration of either factor. Because TrkB ligands increased the number of tyrosine hydroxylase-positive cells expressing Phox2a, a paired homeodomain protein required for the development of locus coeruleus noradrenergic neurons, but did not affect the number of Phox2a-positive tyrosine hydroxylase-negative cells, our results suggest that the second effect of TrkB ligands may involve promoting or inducing a noradrenergic phenotype. In summary, our findings suggest that, unlike NT3 and GDNF, TrkB ligands are required and sufficient to promote the development of central noradrenergic neurons.  相似文献   

2.
BDNF activates trkB receptors to regulate neuronal survival, differentiation, and proliferation. Mutations in the BDNF gene, altered BDNF expression, and altered trkB expression are associated with degenerative and psychiatric disorders. The full-length trkB receptor (trkB.tk(+)) undergoes autophosphorylation to activate intracellular signaling pathways. The truncated trkB receptor (trkB.t1) is abundantly expressed in the brain but lacks the catalytic tyrosine kinase domain. TrkB.t1 is a dominant-negative receptor that inhibits trkB.tk(+) signaling. While this is an important function of trkB.t1, it is only one of its many functions. TrkB.t1 sequesters and translocate BDNF, induces filopodia and neurite outgrowth, stimulates intracellular signaling cascades, regulates Rho GTPase signaling, and modifies cytoskeletal structures. TrkB.t1 is an active signaling molecule with regulatory effects on neurons and astrocytes.  相似文献   

3.
Mechanism of TrkB-mediated hippocampal long-term potentiation   总被引:18,自引:0,他引:18  
The TrkB receptor tyrosine kinase and its ligand, BDNF, have an essential role in certain forms of synaptic plasticity. However, the downstream pathways required to mediate these functions are unknown. We have studied mice with a targeted mutation in either the Shc or the phospholipase Cgamma (PLCgamma) docking sites of TrkB (trkB(SHC/SHC) and trkB(PLC/PLC) mice). We found that hippocampal long-term potentiation was impaired in trkB(PLC/PLC) mice, but not trkB(SHC/SHC) mice. BDNF stimulation of primary neurons derived from trkB(PLC/PLC) mice fully retained their ability to activate MAP kinases, whereas induction of CREB and CaMKIV phosphorylation was strongly impaired. The opposite effect was observed in trkB(SHC/SHC) neurons, suggesting that MAPKs and CREB act in parallel pathways. Our results provide genetic evidence that TrkB mediates hippocampal plasticity via recruitment of PLCgamma, and by subsequent phosphorylation of CaMKIV and CREB.  相似文献   

4.
We studied the expression of neurotrophins and their Trk receptors in the chicken cochlea. Based on in situ hybridization, brain-derived neurotrophic factor (BDNF) is the major neurotrophin there, in contrast to the mammalian cochlea, where neurotrophin-3 (NT-3) predominates. NT-3 mRNA labeling was weak and found only during a short time period in the early cochles. During embryogenesis, BDNF mRNA was first seen in early differentiating hair cells. Afferent cochlear neurons expressed trkB mRNA from the early stages of gangliogenesis onward. In accordance, in vitro, BDNF promoted survival of dissociated neurons and stimulated neuritogenesis from ganglionic explants. High levels of BDNF mRNA in hair cells and trkB mRNA in cochlear neurons persisted in the mature cochlea. In addition, mRNA for the truncated TrkB receptor was expressed in nonneuronal cells, specifically in supporting cells, located adjacent to the site of BDNF synthesis and nerve endings. Following acoustic trauma, regenerated hair cells acquired BDNF mRNA expression at early stages of differentiation. Truncated trkB mRNA was lost from supporting cells that regenerated into hair cells. High levels of BDNF mRNA persisted in surviving hair cells and trkB mRNA in cochlear neurons after noise exposure. These results suggest that in the avian cochlea, peripheral target-derived BDNF contributes to the onset and maintenance of hearing function by supporting neuronal survival and regulating the (re)innervation process. Truncated TrkB receptors may regulate the BDNF concentration available to neurites, and they might have an important role during reinnervation. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 1019–1033, 1997  相似文献   

5.
Neurotrophins are candidate molecules for regulating dendritogenesis. We report here on dendritic growth of rat visual cortex pyramidal and interneurons overexpressing 'brain-derived neurotrophic factor' BDNF and 'neurotrophin 4/5' NT4/5. Neurons in organotypic cultures were transfected with plasmids encoding either 'enhanced green fluorescent protein' EGFP, BDNF/EGFP or NT4/5/EGFP either at the day of birth with analysis at 5 days in vitro, or at 5 days in vitro with analysis at 10 days in vitro. In pyramidal neurons, both TrkB ligands increased dendritic length and number of segments without affecting maximum branch order and number of primary dendrites. In the early time window, only infragranular neurons were responsive. Neurons in layers II/III became responsive to NT4/5, but not BDNF, during the later time window. BDNF and NT4/5 transfectants at 10 days in vitro had still significantly shorter dendrites than adult pyramidal neurons, suggesting a massive growth spurt after 10 days in vitro. However, segment numbers were already in the range of adult neurons. Although this suggested a role for BDNF, long-term activity-deprived, and thus BDNF-deprived, pyramidal cells developed a dendritic complexity not different from neurons in active cultures except for higher spine densities on neurons of layers II/III and VI. Neutralization of endogenous NT4/5 causes shorter and less branched dendrites at 10 days in vitro suggesting an essential role for NT4/5. Neutralization of BDNF had no effect. Transfected multipolar interneurons became identifiable during the second time window. Both TrkB ligands significantly increased number of segments and branch order towards the adult state with little effects on dendritic length. The results suggested that early in development BDNF and NT4/5 probably accelerate dendritogenesis in an autocrine fashion. In particular, branch formation was advanced towards the adult pattern in pyramidal cells and interneurons.  相似文献   

6.
Brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase B (trkB) influence neuronal survival, differentiation, synaptogenesis, and maintenance. Using in situ hybridization we examined the spatial and temporal expression of mRNAs encoding these proteins during diverse stages of life in the human hippocampus and inferior temporal cortex. We examined six postnatal time points: neonatal (1-3 months), infant (4-12 months), adolescent (14-18 years), young adult (20-24 years), adult (34-43 years), and aged (68-86 years). Within the hippocampus, levels of BDNF mRNA did not change significantly with age. However, levels of both the full-length form of trkB (trkB TK+) mRNA and the truncated form of trkB (trkB TK-) decreased over the life span (p < 0.05). In the temporal cortex, BDNF and trkB TK+ mRNA levels were highest in neonates and decreased with age (r = -0.4 and r = -0.7, respectively, both p < 0.05). In contrast, TrkB TK- mRNA levels remained constant across the life span in the temporal cortex. The peak in both BDNF and trkB TK+ mRNA expression in the neonate temporal cortex differs from that previously described for the frontal cortex where both mRNAs peak in expression during young adulthood. The increase in BDNF and trkB TK+ mRNA in the temporal cortex of the neonate suggests that neurotrophin signaling is important in the early development of the temporal cortex. In addition, since BDNF and both forms of its high affinity receptor are expressed throughout the development, maturation, and aging of the human hippocampus and surrounding neocortex they are likely to play roles not only in early growth but also in maintenance of neurons throughout life.  相似文献   

7.
Neurotrophins and tyrosine receptor kinase (Trk) receptors are expressed in skeletal muscle, but it is unclear what functional role Trk-mediated signaling plays during postnatal life. Full-length TrkB (trkB.FL) as well as truncated TrkB (trkB.t1) were found to be localized primarily to the postsynaptic acetylcholine receptor- (AChR-) rich membrane at neuromuscular junctions. In vivo, dominant-negative manipulation of TrkB signaling using adenovirus to overexpress trkB.t1 in mouse sternomastoid muscle fibers resulted in the disassembly of postsynaptic AChR clusters at neuromuscular junctions, similar to that observed in mutant trkB+/- mice. When TrkB-mediated signaling was disrupted in cultured myotubes in the absence of motor nerve terminals and Schwann cells, agrin-induced AChR clusters were also disassembled. These results demonstrate a novel role for neurotrophin signaling through TrkB receptors on muscle fibers in the ongoing maintenance of postsynaptic AChR regions.  相似文献   

8.
Abstract: A clonal cell line stably expressing trkB (TrkB/PC12) was established from rat pheochromocytoma PC12 cells. Brain-derived neurotrophic factor (BDNF), as well as nerve growth factor (NGF), stimulates neurite outgrowth in TrkB/PC12 cells. However, the morphology of BDNF-differentiated cells was clearly different from NGF-differentiated cells. BDNF treatment brought about longer and thicker neurites and induced a flattened soma and an increase in somatic size. This is not explained enough by the quantitative difference in the strength between TrkA and TrkB stimulation, because the level of BDNF-stimulated tyrosine phosphorylation of TrkB was similar to that of TrkA stimulated with NGF in PC12/TrkB cells. There was no difference in major tyrosine phosphorylated proteins induced by NGF and BDNF. Signal proteins such as phosphatidylinositol 3-kinase, phospholipase C-γ1, Shc, and mitogen-activated protein kinase seem to be involved in both TrkA- and TrkB-mediated signaling pathways. However, a tyrosine-phosphorylated 38-kDa protein (pp38) was detected in anti-pan-Trk immunoprecipitation only after NGF stimulation. Immunoprecipitation using three distinct anti-pan-Trk antibodies suggests that pp38 is not a fragment of TrkA. These data indicate that TrkA has a unique signal transduction pathway that is not stimulated through TrkB in TrkB/PC12 cells and suggest distinct functions among neurotrophin receptors.  相似文献   

9.
10.
Brain derived neurotrophic factor (BDNF) is a potent mediator of cell survival and differentiation and can reverse neuronal injury associated with Parkinson’s disease (PD). Tropomyosin receptor kinase B (trkB) is the high affinity receptor for BDNF. There are two major trkB isoforms, the full-length receptor (trkB.tk+) and the truncated receptor (trkB.t1), that mediate the diverse, region specific functions of BDNF. Both trkB isoforms are widely distributed throughout the brain, but the isoform specific distribution of trkB.t1 and trkB.tk+ to human neurons is not well characterized. Therefore, we report the regional and neuronal distribution of trkB.tk+ and trkB.t1 in the striatum and substantia nigra pars compacta (SNpc) of human autopsy tissues from control and PD cases. In both PD and control tissues, we found abundant, punctate distribution of trkB.tk+ and trkB.t1 proteins in striatum and SNpc neurons. In PD, trkB.tk+ is decreased in striatal neurites, increased in striatal somata, decreased in SNpc somata and dendrites, and increased in SNpc axons. TrkB.t1 is increased in striatal somata, decreased in striatal axons, and increased in SNpc distal dendrites. We believe changes in trkB isoform distribution and expression levels may be markers of pathology and affect the neuronal response to BDNF.  相似文献   

11.
SUMMARY 1. The signaling pathways activated by trkB neurotrophin receptor have been studied in detail in cultured neurons, but little is known about the pathways activated by trkB in intact brain. TrkB is a tyrosine kinase and protein phosphorylation is a key regulatory process in the neuronal signal transduction pathways.2. We have investigated trkB signaling in the transgenic mice overexpressing trkB in postnatal neurons (trkB.TK) using phosphoproteomics.3. We found that several proteins are overphosphorylated on tyrosine residues in the brain of trkB.TK mice and identified some of these proteins.4. We demonstrate that the well characterized signaling molecules mitogen-activated protein kinase (MAPK) and cyclic AMP responsive element binding protein (CREB) were phosphorylated at a higher level in the brain of trkB.TK mice when compared to the wild type littermates. Furthermore, we found that β-actin was tyrosine phosphorylated in the brain of the transgenic mice.5. Our results demonstrate that phosphoproteomics is a sensitive approach to investigate signaling pathways activated in mouse brain.  相似文献   

12.
13.
14.
Analyses of single and double mutants of members of the neurotrophin family and their receptors are reviewed. These data demonstrate that the two neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3), and their high-affinity receptors trkB and trkC, are the sole support for the developing afferent innervation of the ear. Neurotrophins are first expressed in the otocyst around the time afferent sensory neurons become postmitotic. They are crucial for the survival of certain topologically distinct populations of sensory neurons. BDNF supports all sensory neurons to the semicircular canals, most sensory neurons to the saccule and utricle, and many sensory neurons to the apex and middle turn of the cochlea. In contrast, NT-3 supports few sensory neurons to the utricle and saccule, all sensory neurons to the basal turn of the cochlea and most sensory neurons to the middle and apical turn. Some topologically restricted effects reflect the pattern of neurotrophin distribution as revealed by in situ hybridization (e.g., loss of all innervation to the semicircular canal sensory epithelia in BDNF or trkB mutants). However, other topologically restricted effects cannot be explained on the basis of current knowledge of neurotrophin or neurotrophin receptor distribution. Data on mutants also support the notion that BDNF may play a role in neonatal plastic reorganization of the pattern of innervation in the ear and possibly the brainstem. In contrast, data obtained thus far on the ability of neurotrophins to rescue adult sensory neuron after insults to cochlear hair cells are less compelling. The ear is a model system to test the interactions of the two neurotrophins, BDNF and NT-3, with their two high-affinity receptors, trkB and trkC.  相似文献   

15.
16.
A M Davies  L Minichiello    R Klein 《The EMBO journal》1995,14(18):4482-4489
Neurotrophins promote neuronal survival by signalling through Trk receptor tyrosine kinases: nerve growth factor signals through TrkA, brain-derived neurotrophic factor (BDNF) and neurotrophin (NT)4 through TrkB and NT3 through TrkC. Although studies in some, but not all, cell lines indicate that NT3 can also signal through TrkA and TrkB, it is not known if such signalling can occur in neurons. We show that NT3 can promote the in vitro survival of sensory and sympathetic neurons isolated from embryos that are homozygous for a null mutation in the trkC gene. During the mid-embryonic period, NT3 promoted the survival of as many trigeminal and nodose neurons as the preferred neurotrophins, NGF and BDNF. However, later in development, these neurons lost their ability to respond to NT3. NT3 also promoted the survival of almost all sympathetic neurons, but no decrease in effectiveness was observed during development. Trigeminal neurons from trkC-/- trkA-/- embryos did not respond to NT3 and nodose neurons from trkB-/- embryos likewise failed to respond to NT3. These results show that NT3 can signal through TrkA and TrkB in neurons at certain stages of development and may explain why the phenotype of NT3-/- mice is more severe than that of trkC-/- mice.  相似文献   

17.
In utero immune deprivation of the neurotrophic molecule nerve growth factor (NGF) results in the death of most, but not all, mammalian dorsal root ganglion (DRG) neurons. The recent identification of trk, trkB, and trkC as the putative high affinity receptors for NGF, brain-derived neurotrophic factor, and neurotrophin-3, respectively, has allowed an examination of whether their expression by DRG neurons correlates with differential sensitivity to immune deprivation of NGF. In situ hybridization demonstrates that virtually all neurons expressing trk are lost during in utero NGF deprivation. Most, if not all, neurons expressing trkB and trkC survive this treatment. In contrast, the low affinity NGF receptor, p75NGFR, is expressed in both NGF deprivation-resistant and -sensitive neurons. These experiments show that DRG neurons expressing trk require NGF for survival. Furthermore, at least some of the DRG neurons that do not require NGF express the high affinity receptor for another neurotrophin. Finally, these experiments provide evidence that trk, and not p75NGFR, is the primary effector of NGF action in vivo.  相似文献   

18.
The trkB tyrosine protein kinase is a receptor for neurotrophin-4.   总被引:22,自引:0,他引:22  
R Klein  F Lamballe  S Bryant  M Barbacid 《Neuron》1992,8(5):947-956
Neurotrophin-4 is a novel member of the nerve growth factor family of neurotrophins recently isolated from Xenopus and viper DNA. We now report that the Xenopus NT-4 protein (XNT-4) can mediate some of its biological properties through gp145trkB, a murine tyrosine protein kinase previously identified as a primary receptor for the related brain-derived neurotrophic factor (BDNF). XNT-4 displaces 125I-labeled BDNF from binding to cells expressing gp145trkB receptors, induces their rapid phosphorylation on tyrosine residues, and causes the morphologic transformation of NIH 3T3 cells when coexpressed with gp145trkB. Moreover, XNT-4 induces the differentiation of PC12 cells into sympathetic-like neurons only if they ectopically express gp145trkB receptors. None of these biochemical or biological effects could be observed when XNT-4 was added to cells expressing the related receptors. Replacement of one of the extracellular cysteines (Cys-345) of gp145trkB by a serine residue prevents its activation by XNT-4 but not by BDNF. Therefore, XNT-4 and BDNF may interact with at least partially distinct domains within the gp145trkB receptor.  相似文献   

19.
20.
1. Neurotrophins and serotonin have both been implicated in the pathophysiology of depression and in the mechanisms of antidepressant treatments. 2. Brain-derived neurotrophic factor (BDNF) influences the growth and plasticity of serotonergic (5-HT) neurons via the activation of trkB receptor. 3. Transgenic mice overexpressing the full-length trkB receptor (TrkB.TK+) and showing increased trkB activity in brain, and their wild type (WT) littermates, were injected with the antidepressant fluoxetine or saline, and analyzed behaviorally in the forced swimming test paradigm and biochemically for the concentrations of brain monoamines and their metabolites. 4. The TrkB.TK+ mice displayed increased latency to immobility in the forced swim test, suggesting resistance to behavioral despair. 5. Fluoxetine increased the latency to immobility in wild-type mice to a similar level as seen in the trkB.TK+ mice after saline treatment, but had no further behavioral effect in the swimming behavior of the trkB.TK+ mice. 6. Only minor differences in the levels of brain monoamines and their metabolites were observed between the transgenic and wild-type mice. 7. These data, together with other recent observations, suggest that trkB activation may play a critical role in the behavioral responses to antidepressant drugs in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号