首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
ABSTRACT. From the host plant-spider mite complex Phaseolus lunatus—Tetranychus urticae Koch a volatile chemical is emitted that acts as a kairomone for the predatory mite Phytoseiulus persimilis Athias-Henriot (Sabelis et al. , 1984a). This kairomone is apparently a byproduct of a vital physiological process and/or it has a function in the biology of the spider mite as well.
The spider mite—host plant complex also emits a volatile spider-mite dispersing pheromone. This is shown in the present study where spider mites were introduced into an odour patch on a horizontal screen in a vertical airflow olfactometer. When spider-mite infested leaves of Lima bean are offered, the spider mites walk mainly straight and soon reach the edge of the screen. On the other hand, when clean Lima bean leaves are offered, the mites walk tortuously most of the time and reach the edge of the screen much later. Artificially damaged plants elicit the same response as undamaged plants. Differences in spider-mite behaviour are observed in the vertical airflow olfactometer when odour of either clean or spider-mite infested leaves is offered. A comparison of the behaviour in these two situations with that when no odour was offered suggests that Lima bean leaves emit a volatile kairomone that activates T. urticae and makes them return after losing the stimulus. A Y-tube olfactometer experiment confirms the existence of this kairomone.
At a low ratio of dispersing pheromone to plant kairomone, the spider mites behave as if only kairomone is present, walking mainly tortuously. At a high ratio they disperse. No aggregation-pheromonal effect is observed.
The possibility that the spider-mite dispersing pheromone acts as a kairomone for P. persimilis is discussed.  相似文献   

2.
Fecundity and survival of the two-spotted spider mite,Tetranychus urticae Koch, were examined on bean (Phaseolus vulgaris L.) plants that had been subjected to mite feeding injury in the laboratory. Different numbers ofT. urticae were restricted on the first two leaves of young bean plants, and spider-mite fecundity and survivorship was assayed on the third leaf. Each plant received four recently enclosed females, one female from each of four mite lineages. Using changes in the ratio of root mass to shoot mass of bean plants as a continuous measure of plant stress from spider-mite feeding, fecundity was positively related to stress for three out of four experiments. In two out of four experiments, survival of females was also positively related to stress, but reached an asymptote at slight or moderate stress levels. No evidence for induced resistance in beans was found. Mite lineage and the interaction between lineage and stress affected female survival but not fecundity. The implications of these results for understanding spider-mite outbreaks are discussed.  相似文献   

3.
We recently reported evidence for increased diapause incidence in the spider mite Tetranychus urticae in presence of the predatory mite Typhlodromus pyri. This effect may arise from (1) selective predation on non-diapause spider mites, (2) predator-induced diapause in spider mites, or (3) both. Using a different strain of T. urticae, we first recovered increased diapause incidence in association with predators. Then, we tested for selective feeding in two-choice experiments with equal numbers of non-diapause and diapause spider mites. We found that the predatory mite had a significant preference for the latter. This indicates that increased diapause incidence in association with predatory mites is not due to selective predation. Therefore, predator-mediated physiological induction of diapause seems a more likely explanation. The cues leading to induction appear to relate to the predators, not their effects, since predation simulated by spider-mite removal or puncturing did not significantly affect diapause incidence. Why spider mites benefit from this response, remains an open question.This revised version was published online in May 2005 with a corrected cover date.  相似文献   

4.
The behavior of the two-spotted spider mite, Tetranychus urticae Koch and the predatory mite Phytoseiulus persimilis A.-H. was investigated in laboratory experiments with transgenic Bt-eggplants, Solanum melongena L., producing the Cry3Bb toxin and corresponding isogenic, non-transformed eggplants. In bitrophic experiments, dual-choice disc tests were conducted to reveal the effects of transgenic eggplants on host plant preference of T. urticae. Adult spider mite females were individually placed on leaf discs (2 cm diameter) and were observed during five days. Females occurred significantly more frequently on transgenic halves on which also significantly more T. urticae eggs were found. The effects of a Cry3Bb-eggplant fed prey on the feeding preference of P. persimilis were investigated in tritrophic experiments. Sixteen spider mite females, eight of which had been taken from transgenic and eight from isogenic eggplants, were offered to well-fed females of P. persimilis and numbers of respective spider mites consumed were registered 12 h later when the predators were offered new spider mites again. This procedure was repeated six times. The results revealed that predatory mites consumed significantly less Bt-fed spider mites than prey that had been raised on control eggplants. These results indicate that eggplants expressing the Cry3Bb toxin for resistance against the Colorado potato beetle are more preferred by spider mites but are less preferred by their predator P. persimilis. Possible consequences of these findings for biological control of spider mites on eggplants are discussed.  相似文献   

5.
The behavioural response of the predatory mite Phytoseiulus persimilis to volatiles from several host plants of its prey, spider mites in the genus Tetranychus, was investigated in a Y-tube olfactometer. A positive response to volatiles from tomato leaves and Lima bean leaves was recorded, whereas no response was observed to volatiles from cucumber leaves, or leaves of Solanum luteum and Solanum dulcamara.Different results were obtained for predators that differed in rearing history. Predators that were reared on spider mites (Tetranychus urticae) on Lima bean leaves did respond to volatiles from Lima bean leaves, while predators that had been reared on the same spider mite species but with cucumber as host plant did not respond to Lima bean leaf volatiles. This effect is compared with the effect of rearing history on the response of P. persimilis to volatile allelochemicals of prey-infested plant leaves.  相似文献   

6.
7.
The Spical strain of the predatory mite Neoseiulus californicus (McGregor) is used as a biological control agent, but little is known about its preferred prey and host plants in Japan. Here we studied the development, reproduction and prey consumption of the Spical strain when fed on eggs of five different spider mite species deposited on both their laboratory-rearing plant and cherry, on which all five spider mite species developed well. The developmental periods of immature N. californicus females and males were significantly affected by the prey species they fed on, but not by the plants. No difference was found between males and females. The developmental period was shorter on eggs of two Tetranychus species than on eggs of Panonychus ulmi. Immature females had a higher predation rate than immature males. Preoviposition period, oviposition period and the number of eggs laid per female were not significantly affected by either the plants or the type of prey eggs. The postoviposition period and total adult longevity were shorter on eggs of P. ulmi than of the other four prey species, but there was no effect of plant substrate. The postoviposition period of the Spical strain was much longer than that of other N. californicus strains or other predatory mite species: the postoviposition period of the Spical strain was more than three times longer than the oviposition period, accounting for more than 75% of the total adult longevity. This suggests that the females need multiple mating to reach full egg load, but this remains to be tested. Total consumption by N. californicus adults was lower for eggs of P. ulmi than for eggs of the other four species, apparently because of the shorter postoviposition period when fed on eggs of P. ulmi. The intrinsic rates of natural increase (r m) on the rearing plant did not differ among prey species, whereas those on cherry were significantly different: the value was higher on Tetranychus urticae eggs than on eggs of other species. Only when N. californicus fed on T. urticae eggs, the r m-values were significantly different between the rearing plant and cherry (higher on cherry). Thus, the Spical strain of N. californicus could feed on eggs of all five spider mite species, deposited on a variety of plants with similar r m-values, suggesting that it could be successfully used to control spider mites in orchards and various crop fields of Japan.  相似文献   

8.
The effect of either untreated or treated adults of the spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) by Beauveria bassiana (Bals.) Vuillemin (Ascomycota: Hypocreales) DEBI008 at 1×106 (conidia/ml) was investigated on developmental stages and life table parameters of Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) under laboratory conditions. Four time intervals (0, 24, 48 and 72 h post-inoculation of spider mites) were considered for studying the predator characteristics as different treatments. Duration of each life stage, longevity, reproduction rate, intrinsic rate of natural increase (r m ), net reproductive rate (R 0), mean generation time (T) and finite rate of increase (λ) of the P. persimilis were calculated on both untreated and B. bassiana treated spider mite adults. Data analysis showed that longevity and fecundity of predatory mites fed on untreated and treated mites (time interval 0) were higher in comparison with other time intervals after inoculation. The entomopathogenic fungus adversely affected longevity and fecundity of the predatory mite. Fertility life table parameters of predatory mites fed on T. urticae treated by B. bassiana at different time intervals showed that T, R 0, λ and r m are strongly affected by the fungus presence and these parameters had significant differences among time treatments. The least r m value was observed in the time interval of 72 h post-inoculation. The fitness of T. urticae was affected by B. bassiana 24, 48 and 72 h post-inoculation of mite adults, and consequently it caused decreased longevity of P. persimilis and accordingly a decrease in the intrinsic rate of natural increase of the predator.  相似文献   

9.
Associations between mites and leaf domatia have been widely reported, but little is known about their consequences for either plants or mites. By excising domatia from leaves of the laureltinus, Viburnum tinus L. (Caprifoliaceae), in the garden and laboratory, we showed that domatia alter the abundance, distribution, and reproduction of potential plant mutualists. Over 4 months, leaves with domatia on six garden shrubs had 2–36 times more predatory and microbivorous mites, and more mite eggs than leaves without domatia. However, this effect varied among plants and was weaker on one shrub with few mites on its leaves. Domatia also influenced the distribution of mites on leaves. A significantly higher fraction of mites, representing all life stages, was found in vein axils of leaves with domatia than in vein axils on leaves without domatia. Single-leaf experiments in the laboratory showed that domatia enhanced reproduction by the predatory mite, Metaseiulus occidentalis, especially at low relative humidity (30–38%). When domatia were removed, oviposition was reduced significantly only at low relative humidity, suggesting that domatia provide mites with refuge from environmental extremes on the leaf surface. Moreover, the use of domatia by predatory mites may reduce the impact of some plant enemies. In two experiments where prey consumption was measured, M. occidentalis ate significantly higher percentages of the eggs of the two-spotted spider mite (Tetranychus urticae). Our results are consistent with the viewpoint that mite-domatia associations are mutualistic. By directly aiding and abetting the third trophic level, plants with leaf domatia may increase the efficiency of some predaceous and microbivorous mites in consuming plant enemies.  相似文献   

10.
This study characterizes the timing of feeding, moving and resting for the two-spotted spider mite, Tetranychus urticae Koch and a phytoseiid predator, Phytoseiulus persimilis Athias-Henriot. Feeding is the interaction between T. urticae and plants, and between P. persimilis and T. urticae. Movement plays a key role in locating new food resources. Both activities are closely related to survival and reproduction. We measured the time allocated to these behaviours at four ages of the spider mite (juveniles, adult females immediately after moult and adult females 1 and 3 days after moult) and two ages of the predatory mite (juveniles and adult females). We also examined the effect of previous spider mite-inflicted leaf damage on the spider mite behaviour. Juveniles of both the spider mite and the predatory mite moved around less than their adult counterparts. Newly emerged adult female spider mites spent most of their time moving, stopping only to feed. This represents the teneral phase, during which adult female spider mites are most likely to disperse. With the exception of this age group, spider mites moved more and fed less on previously damaged than on clean leaves. Because of this, the spider mite behaviour was initially more variable on damaged leaves. Phytoseiulus persimilis rested at all stages for a much larger percentage of the time and spent less time feeding than did T. urticae; the predators invariably rested in close proximity to the prey. Compared to adult predators, juveniles spent approximately four times as long handling a prey egg. The predator-prey interaction is dependent upon the local movement of both the predators and prey. These details of individual behaviours in a multispecies environment can provide an understanding of population dynamics.  相似文献   

11.
Spider mites are serious pests on many economically important plant species, because they may reduce plant productivity and, at high mite densities, overexploit and even kill the host plants. We have conducted a series of greenhouse experiments to quantify the effects of two-spotted spider mites (Tetranychus urticae) on host plants (Phaseolusvulgaris). The average amount of chlorophyll per cm2 leaf area was used as a measure of plant condition. It was shown that chlorophyll concentration decreases with plant age and intensity of spider mite feeding. Damage caused by spider mites was assessed visually, using the Leaf Damage Index (LDI) defined by, and a mathematical relationship between the visual measurements and the amount of chlorophyll/cm2 was fitted to data. The relationship may serve as a short-cut to estimate overall plant injury, expressed as the relative loss of chlorophyll/cm2 leaf area caused by spider mites (D). D takes values between 0 (no injury) and 1 (all leaves dead). A highly significant positive relationship between the instantaneous spider mite density and D was found, even though D is expected to reflect the cumulated density of mites (mite-days). A model of plant growth incorporating information about plant age and D predicts that plant area has a maximum when plant age is about 60 days, and that plant area decreases exponentially with an increase in D. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Studies on the reproduction, longevity and life table parameters of Iphiseius degenerans (Berlese) were carried out under laboratory conditions of 25 ± 1 °C, 75 ± 5% RH and 16L:8D h. As food sources for the predatory mite, Ricinus communis L. pollen, all stages of the spider mite Tetranychus urticae Koch, Frankliniella occidentalis (Pergande) larvae, and Ephestia kuehniella Zeller eggs were selected. All diets were accepted as food by the adult mites. Female longevity ranged from 29.5 to 42.4 days, the highest value was recorded on a diet of Ephestia eggs. The highest percentage of females escaping the experimental arena was observed on the diet consisting of thrips larvae. The highest oviposition rate (1.9 eggs/female.day) was recorded when the predator was fed on spider mites on an artificial substrate. For other diets, oviposition rates ranged from 1.0 to 1.3 eggs/female.day. The intrinsic rate of natural increase (r m) of I. degenerans varied between 0.015 and 0.142 females/female.day. The diet consisting of castor bean pollen resulted in the highest population growth whereas the diet on spider mites brushed off onto a bean leaf arena resulted in the slowest population growth. This can be explained by the inability of the predator to cope with the webbing of T. urticae, and the high escape rate of the progeny when reared on spider mites. The percentage of females in the offspring ranged from 40 to 73%.This revised version was published online in May 2005 with a corrected cover date.  相似文献   

13.
The biological control of red spider mite using the predatory mite Phytoseiulus persimilis was investigated in 1971, 1972 and 1974. Experiments in small glasshouse compartments showed that the predator should be introduced when the leaf damage index is < 0–3. Uniform and/or patch introductions of P. persimilis at different rates were made into naturally occurring red spider mite infestations on commercial nurseries. In eleven of the seventeen experiments good control was achieved. Introduction of the predator soon after damage appeared on the crop was essential. Poor control was obtained when the predator failed to establish itself, where very large numbers of diapausing mites emerged and built up rapidly or where the predator, introduced into patches, failed to colonize infested plants elsewhere in the crop. When spider mites and predators were introduced on to one-fifth or one-tenth of the plants in a propagating house, a satisfactory interaction was maintained for 4–6 wk after planting out. The predators then died unless red spider mites emerged from diapause or were introduced. Petroleum oil sprays were sometimes used successfully in the presence of the predator to reduce high red spider mite infestations and re-establish the biological equilibrium.  相似文献   

14.
To examine how rhizobia affect the chemical and nutrient status in leaves of soybean (Glycine max L.), and how rhizobia change plant susceptibility to a generalist spider mite (Tetranycus urticae), we cultivated root-nodulating soybeans (R+) and their non-nodulating mutant (R−) in a common garden. We experimentally fertilized the plants with nitrogen to examine effects of rhizobia on the plant traits and plant susceptibility to spider mites at different nitrogen levels. R+ plants produced more leaves containing greater nitrogen and less total phenolics than R− plants. Spider mites fed on R+ leaves produced more eggs than those fed on R− leaves. The positive effect of rhizobia on spider mite fecundity could be due to an increase in foliar N content and/or to a decrease in concentration of phenolics. Although root nodule mass did not differ among different nitrogen levels, ureide-N, an indicator of nitrogen provided by rhizobia, in xylem sap decreased at moderate and high soil nitrogen levels. Therefore, we expected that rhizobia effects on egg production of the spider mite would decrease in high soil nitrogen conditions. However, the effect of rhizobia was still maintained even at high soil nitrogen levels. Thus, soil nitrogen and rhizobia may independently affect the reproductive performance of the spider mite.  相似文献   

15.
Spider-Mite Problems and Control in Taiwan   总被引:3,自引:0,他引:3  
Problems with spider mites first appeared in Taiwan in 1958, eight years after the importation of synthetic pesticides, and the mites evolved into major pests on many crops during the 1980s. Of the 74 spider mite species recorded from Taiwan 10 are major pests, with Tetranychus kanzawai most important, followed by T. urticae, Panonychus citri, T. cinnabarinus, T. truncatus and Oligonychus litchii. Most crops suffer from more than one species. Spider mites reproduce year-round in Taiwan. Diapause occurs only in high-elevation areas. Precipitation is the most important abiotic factor restricting spider-mite populations. Control is usually accomplished by applying chemicals. Fifty acaricides are currently registered for the control of spider mites. Acaricide resistance is a serious problem, with regional variation in resistance levels. Several phytoseiid mites and a chrysopid predator have been studied for control of spider mites with good effect. Efforts to market these predators should be intensified so that biological control can be a real choice for farmers.  相似文献   

16.
To test the hypothesis that pest species diversity enhances biological pest control with generalist predators, we studied the dynamics of three major pest species on greenhouse cucumber: Western flower thrips, Frankliniella occidentalis (Pergande), greenhouse whitefly, Trialeurodes vaporariorum (Westwood), and two-spotted spider mites, Tetranychus urticae Koch in combination with the predator species Amblyseius swirskii Athias-Henriot. When spider mites infested plants prior to predator release, predatory mites were not capable of controlling spider mite populations in the absence of other pest species. A laboratory experiment showed that predators were hindered by the webbing of spider mites. In a greenhouse experiment, spider mite leaf damage was lower in the presence of thrips and predators than in the presence of whiteflies and predators, but damage was lowest in the presence of thrips, whiteflies and predators. Whitefly control was also improved in the presence of thrips. The lower levels of spider mite leaf damage probably resulted from (1) a strong numerical response of the predator (up to 50 times higher densities) when a second and third pest species were present in addition to spider mites, and (2) from A. swirskii attacking mobile spider mite stages outside or near the edges of the spider mite webbing. Interactions of spider mites with thrips and whiteflies might also result in suppression of spider mites. However, when predators were released prior to spider mite infestations in the absence of other pest species, but with pollen as food for the predators, we found increased suppression of spider mites with increased numbers of predators released, confirming the role of predators in spider mite control. Thus, our study provides evidence that diversity of pest species can enhance biological control through increased predator densities.  相似文献   

17.
Summary Pattern of population growth and characteristics of habitat utilization and of migration by two species of spider mites were studied under experimental conditions. The population growth ofOligonychus ununguis (Jacobi) on a chestnut occurred only on a single mite-release leaf over a long period, and few individuals moved away. Most of the 2nd progeny generation females of this species emigrated from the mite-release leaf as well as the sapling by means of ballooning threads. During this growth period, population density on the mite-release leaf levelled off, whereas that on the sapling increased. In contrast, the foundress ofPanonychus citri (McGregor) on citrus actively moved over several neighbouring leaves, and until the 2nd progeny generation females emerged, individuals were distributed over all the sapling leaves by means of walking. Emigration from the sapling was not observed until the 2nd progeny females emerged, and after that the mites emigrated by means of ballooning threads. The population density ofP. citri on the sapling levelled off and was rather decreased on the mite-release leaf at the time of mite emigration. Comparing the changing pattern of the relative degree of aggregation (m */m) measured in two different units between these two species, the pattern ofm */m in 1 cm2 on the mite release leaf inO. ununguis resembled that of the unit of leaves on the sapling inP. citri. This result as well as behavioural observations indicate that migration ofO. ununguis is the movement from leaf to leaf and that ofP. citri from sapling to sapling. It is, therefore, concluded that the boundary of the microhabitat is a single leaf forO. ununguis but sapling or foliage forP. citri. This work was presented in Annual Meeting of Jap. Soc. Appl. Ent. Zool., 1981 in Okayama.  相似文献   

18.
Only few factors influencing pest populations can be studied in the laboratory, but many population‐driving factors interact in the field. Therefore, complementary laboratory and field approaches are required for reliable predictions of real‐world patterns and processes. Laboratory and field experiments with the red spider mite, Oligonychus ilicis McGregor (Acari: Tetranychidae), and the coffee leaf miner, Leucoptera coffeella Guérin‐Méneville (Lepidoptera: Lyonetiidae), on coffee plants, Coffea arabica L. (Rubiaceae), were combined to study the relative importance of biotic interactions, including resource preferences and natural‐enemy impact, and habitat factors, such as agroforestry type and management intensity, on coffee pest densities. In the laboratory, leaf discs cut from undamaged coffee plants were significantly preferred by red spider mites over those from plants infested with conspecific mites, leaf rust pathogens [Hemileia vastatrix Berkeley & Broome (Uredinales)], or coffee leaf miners, resulting in higher reproductive success. Similarly, undamaged plants were preferred by coffee leaf miners over red spider mite‐infested plants. However, in the field, red spider mite densities were positively correlated with coffee leaf miner and leaf rust densities, thereby contrasting with laboratory predictions. Hence, our study suggests that the importance of resource preferences and fitness expected based on laboratory experiments was suppressed by environmental conditions in the field, though other unassessed biotic interactions could also have played a role. Furthermore, intensified agroforestry was characterized by higher red spider mite densities, whereas densities of its major natural enemy, the predatory mite Amblyseius herbicolus Chant (Acari: Phytoseiidae), were not related to agroforestry management. Densities of coffee leaf miner and its main natural enemy, a eulophid parasitoid (Hymenoptera), were not affected by management practices. In conclusion, patterns found in the laboratory did not hold for the field, emphasizing the difficulties of extrapolating small‐scale experiments to larger spatial scales and the need to combine both approaches.  相似文献   

19.
We examined voluntary-falling behaviour by adult females of the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) and one of its major predators Neoseiulus californicus McGregor (Acari: Phytoseiidae). Experiments were conducted using a setup in which mites could only move onto one of two landing points by falling. Significantly more T. urticae females fell onto available food leaves compared to non-food or heavily infested leaves, whereas significantly fewer females fell onto leaves with the predatory mite N. californicus compared to leaves without the predator. This suggests that spider mites can actively choose on which patch to land on the basis of food quality and predation risk on the patch. Using the same experimental setup, starved N. californicus females never fell, suggesting that falling T. urticae females gain the potential advantage of predator avoidance.  相似文献   

20.
The response of the predatory mite Amblyseius longispinosus (Acari: Phytoseiidae) to the webnest of the spider mite nanjingensis (Acari: Tetranychidae) was examined using two-choice tests in the laboratory. A. longispinosus females were found significantly more often on leaves with webnests than on leaves without webnests and were often observed searching under the webbing. Because spider mites and their eggs were removed from the webnests before experiments, predators responded to stimuli associated with webbing, mite feeding damage and other residues in the webnests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号