首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atrial natriuretic peptide (ANP) and transforming growth factor (TGF)-beta play important counterregulatory roles in pulmonary vascular adaptation to chronic hypoxia. To define the molecular mechanism of this important interaction, we tested whether ANP-cGMP-protein kinase G (PKG) signaling inhibits TGF-beta1-induced extracellular matrix (ECM) expression and defined the specific site(s) at which this molecular merging of signaling pathways occurs. Rat pulmonary arterial smooth muscle cells (PASMCs) were treated with ANP (1 muM) or cGMP (1 mM) with or without pretreatment with PKG inhibitors KT-5823 (1 muM) or Rp-8-bromo-cGMP (Rp-8-Br-cGMP 50 muM), then exposed to TGF-beta1 (1 ng/ml) for 5-360 min (for pSmad nuclear translocation and protein analysis) or 24 h (for ECM mRNA expression). Nuclear translocation of pSmad2 and pSmad3 was assessed by fluorescent confocal microscopy. ANP and cGMP inhibited TGF-beta1-induced pSmad2 and pSmad3 nuclear translocation and expression of periostin, osteopontin, and plasminogen activator inhibitor-1 mRNA and protein, but not TGF-beta1-induced phosphorylation of Smad2 and Smad3. KT-5823 and Rp-8-Br-cGMP blocked ANP/cGMP-induced activation of PKG and inhibition of TGF-beta1-stimulated nuclear translocation of pSmad2 and pSmad3 in PASMCs. These results reveal for the first time a precise site at which ANP-cGMP-PKG signaling exerts its antifibrogenic effect on the profibrogenic TGF-beta1 signaling pathway: by blocking TGF-beta1-induced pSmad2 and pSmad3 nuclear translocation and ECM expression in PASMCs. Blocking nuclear translocation and subsequent binding of pSmad2 and pSmad3 to TGF-beta-Smad response elements in ECM genes may be responsible for the inhibitory effects of ANP on TGF-beta-induced expression of ECM molecules.  相似文献   

2.
3.
Transforming growth factor-beta1 is essential to maintain T cell homeostasis, as illustrated by multiorgan inflammation in mice deficient in TGF-beta1 signaling. Despite the physiological importance, the mechanisms that TGF-beta1 uses to regulate T cell expansion remain poorly understood. TGF-beta1 signals through transmembrane receptor serine/threonine kinases to activate multiple intracellular effector molecules, including the cytosolic signaling transducers of the Smad protein family. We used Smad3(-/-) mice to investigate a role for Smad3 in IL-2 production and proliferation in T cells. Targeted disruption of Smad3 abrogated TGF-beta1-mediated inhibition of anti-CD3 plus anti-CD28-induced steady state IL-2 mRNA and IL-2 protein production. CFSE labeling demonstrated that TGF-beta1 inhibited entry of wild-type anti-CD3 plus anti-CD28-stimulated cells into cycle cell, and this inhibition was greatly attenuated in Smad3(-/-) T cells. In contrast, disruption of Smad3 did not affect TGF-beta1-mediated inhibition of IL-2-induced proliferation. These results demonstrate that TGF-beta1 signals through Smad3-dependent and -independent pathways to inhibit T cell proliferation. The inability of TGF-beta1 to inhibit TCR-induced proliferation of Smad3(-/-) T cells suggests that IL-2 is not the primary stimulus driving expansion of anti-CD3 plus anti-CD28-stimulated T cells. Thus, we establish that TGF-beta1 signals through multiple pathways to suppress T cell proliferation.  相似文献   

4.
5.
6.
This study explores the relationship between anti-proliferative signaling by transforming growth factor-beta (TGF-beta) and insulin-like growth factor-binding protein-3 (IGFBP-3) in human breast cancer cells. In MCF-7 cells, the expression of recombinant IGFBP-3 inhibited proliferation and sensitized the cells to further inhibition by TGF-beta1. To investigate the mechanism, we used T47D cells that lack type II TGF-beta receptor (TGF-betaRII) and are insensitive to TGF-beta1. After introducing the TGF-betaRII by transfection, the basal proliferation rate was significantly decreased. Exogenous TGF-beta1 caused no further growth inhibition, but immunoneutralization of endogenous TGF-beta1 restored the proliferation rate almost to the control level. The addition of IGFBP-3 did not inhibit the proliferation of control cells but caused dose-dependent inhibition in TGF-betaRII-expressing cells when exogenous TGF-beta1 was also present. Similarly, receptor-expressing cells showed dose-dependent sensitivity to exogenous TGF-beta1 only in the presence of exogenous IGFBP-3. This indicates that in these cells, anti-proliferative signaling by exogenous IGFBP-3 requires both the TGF-betaRII and exogenous TGF-beta1. To investigate this synergism, the phosphorylation of TGF-beta signaling intermediates, Smad2 and Smad3, was measured. Phosphorylation of each Smad was stimulated by TGF-beta1 and, independently, by IGFBP-3 with the two agents together showing a cumulative effect. These data suggest that IGFBP-3 inhibitory signaling requires an active TGF-beta signaling pathway and implicate Smad2 and Smad3 in IGFBP-3 signal transduction.  相似文献   

7.
8.
Secreted protein, acidic and rich in cysteine (SPARC) is a multifunctional secreted protein that regulates cell-cell and cell-matrix interactions, leading to alterations in cell adhesion, motility, and proliferation. Although SPARC is expressed in epithelial cells, its ability to regulate epithelial cell growth remains largely unknown. We show herein that SPARC strongly inhibited DNA synthesis in transforming growth factor (TGF)-beta-sensitive Mv1Lu cells, whereas moderately inhibiting that in TGF-beta-insensitive Mv1Lu cells (i.e., R1B cells). Overexpression of dominant-negative Smad3 in Mv1Lu cells, which abrogated growth arrest by TGF-beta, also attenuated growth arrest stimulated by SPARC. Moreover, the extracellular calcium-binding domain of SPARC (i.e., SPARC-EC) was sufficient to inhibit Mv1Lu cell proliferation but not that of R1B cells. Similar to TGF-beta and thrombospondin-1, treatment of Mv1Lu cells with SPARC or SPARC-EC stimulated Smad2 phosphorylation and Smad2/3 nuclear translocation: the latter response to all agonists was abrogated in R1B cells or by pretreatment of Mv1Lu cells with neutralizing TGF-beta antibodies. SPARC also stimulated Smad2 phosphorylation in MB114 endothelial cells but had no effect on bone morphogenetic protein-regulated Smad1 phosphorylation in either Mv1Lu or MB114 cells. Finally, SPARC and SPARC-EC stimulated TGF-beta-responsive reporter gene expression through a TGF-beta receptor- and Smad2/3-dependent pathway in Mv1Lu cells. Collectively, our findings identify a novel mechanism whereby SPARC inhibits epithelial cell proliferation by selectively commandeering the TGF-beta signaling system, doing so through coupling of SPARC-EC to a TGF-beta receptor- and Smad2/3-dependent pathway.  相似文献   

9.
Transforming growth factor-beta (TGF-beta) and its family are potent and multi-functional cytokines that affect various fundamental biological events. TGF-beta has a unique signaling pathway that is carried by Smad family, and many recent studies showed the extensive crosstalk between Smad pathway and other signaling pathway. There were also clear evidences for the involvement of oxidative events in TGF-beta signaling pathway. To elucidate the role of oxidative events in carrying TGF-beta signals, we examined the effect of various antioxidants on TGF-beta activities in osteoblastic cell line. Among the examined compounds, we found nordihydroguaiaretic acid (NDGA) has a unique and strong inhibitory effect on various TGF-beta activities. Since the majority of TGF-beta activities are mediated by Smad, we questioned whether NDGA blocks the Smad signaling pathway. The result showed that NDGA inhibits the translocation of Smad2 to the nucleus. Further study revealed the strong inhibitory effect of NDGA on the phosphorylation of Smad2. This result may be important for designing chemical modulators of TGF-beta and its family related events and may provide new insights into the action mechanism of antioxidant.  相似文献   

10.
We previously found that bikunin (bik), a Kunitz-type protease inhibitor, suppresses transforming growth factor-beta1 (TGF-beta1)-stimulated expression of urokinase-type plasminogen activator (uPA) in human ovarian cancer cells that lack endogenous bik. In the present study, we tried to elucidate the mechanism by which bik also inhibits plasminogen activator inhibitor type-1 (PAI-1) and collagen synthesis using human ovarian cancer cells. Here, we show that (a) there was an enhanced production of both uPA and PAI-1 in HRA cells in response to TGF-beta1; (b) the overexpression of bik in the cells or exogenous bik results in the inhibition of TGF-beta1 signaling as measured by phosphorylation of the downstream signaling effector Smad2, nuclear translocation of Smad3, and production of PAI-1 and collagen; (c) bik neither decreased expression of TGF-beta receptors (TbetaRI and TbetaRII) in either cell types nor altered the specific binding of 125I TGF-beta1 to the cells, indicating that the effects of bik in these cells are not mediated by ligand sequestration; (d) TbetaRI and TbetaRII present on the same cells exclusively form aggregates in TGF-beta1-stimulated cells; (e) co-treatment of TGF-beta1-stimulated cells with bik suppresses TGF-beta1-induced complex formation of TbetaRI and TbetaRII; and (f) a chondroitin-4-sulfate side chain-deleted bik (deglycosylated bik) does not inhibit TGF-beta1 signaling or association of type I/type II receptor. We conclude that glycosylated bik attenuates TGF-beta1-elicited signaling cascades in cells possibly by abrogating the coupling between TbetaRI and TbetaRII and that this probably provides the mechanism for the suppression of uPA and PAI-1 expression.  相似文献   

11.
Transforming growth factor-beta1 (TGF-beta1) belongs to a family of multifunctional cytokines that regulate a variety of biological processes, including cell differentiation, proliferation, and apoptosis. The effects of TGF-beta1 are cell context and cell cycle specific and may be signaled through several pathways. We examined the effect of TGF-beta1 on apoptosis of primary human central airway epithelial cells and cell lines. TGF-beta1 protected human airway epithelial cells from apoptosis induced by either activation of the Fas death receptor (CD95) or by corticosteroids. This protective effect was blocked by inhibition of the Smad pathway via overexpression of inhibitory Smad7. The protective effect is associated with an increase in the cyclin-dependent kinase inhibitor p21 and was blocked by the overexpression of key gatekeeper cyclins for the G1/S interface, cyclins D1 and E. Blockade of the Smad pathway by overexpression of the inhibitory Smad7 permitted demonstration of a TGF-beta-mediated proapoptotic pathway. This proapoptotic effect was blocked by inhibition of the p38 MAPK kinase signaling with the inhibitor SB-203580 and was associated with an increase in p38 activity as measured by a kinase assay. Here we demonstrate dual signaling pathways involving TGF-beta1, an antiapoptotic pathway mediated by the Smad pathway involving p21, and an apoptosis-permissive pathway mediated in part by p38 MAPK.  相似文献   

12.
Atrial natriuretic peptide, besides its role in the regulation of volume homeostasis, has been noted to exert cytoprotective effects in several cell types from hypoxia. The present study was performed to explore the effect of ANP on high glucose-activated transforming growth factor-beta1 (TGF-beta1), Smad and collagen synthesis in renal proximal epithelial cells. Cultured NRK-52E cells were divided into five groups: (1) normal glucose (5.5 mM), (2) high glucose (35 mM), (3) D-mannitol (29.5 mM), (4) high glucose plus ANP (10(-6)-10(-9) M), and (5) high glucose plus ANP (10(-6) M) and guanylate cyclase inhibitor LY83583 (10(-7) M) groups. Messenger RNA levels of TGF-beta1, Smad2, and collagens were measured by RT-PCR. ELISA, immunocytochemistry and Western blotting were used to detect protein levels of TGF-beta1, Smad2, phospho-Smad 2/3 and collagen type 1. We found high glucose to significantly increase mRNA levels of TGF-beta1, Smad 2, collagen types I and III and protein levels of TGF-beta1, phospho-Smad 2/3 and collagen type 1, but mannitol did not affect their expression. The addition of ANP significantly attenuated high glucose-enhanced mRNA and protein levels of TGF-beta1, Smad and collagens. LY83583 blocked the influence of ANP on high glucose-activated TGF-beta1, Smad and collagen synthesis. This is the first study to demonstrate that activation of TGF-beta1, Smad and collagen synthesis stimulated by high glucose can also be inhibited by exogenous ANP in renal tubular epithelial cells.  相似文献   

13.
14.
The transforming growth factor beta (TGF-beta) superfamily, including the bone morphogenetic protein (BMP) and TGF-beta/activin A subfamilies, is regulated by secreted proteins able to sequester or present ligands to receptors. KCP is a secreted, cysteine-rich (CR) protein with similarity to mouse Chordin and Xenopus laevis Kielin. KCP is an enhancer of BMP signaling in vertebrates and interacts with BMPs and the BMP type I receptor to promote receptor-ligand interactions. Mice homozygous for a KCP null allele are hypersensitive to developing renal interstitial fibrosis, a disease stimulated by TGF-beta but inhibited by BMP7. In this report, the effects of KCP on TGF-beta/activin A signaling are examined. In contrast to the enhancing effect on BMPs, KCP inhibits both activin A- and TGF-beta1-mediated signaling through the Smad2/3 pathway. These inhibitory effects of KCP are mediated in a paracrine manner, suggesting that direct binding of KCP to TGF-beta1 or activin A can block the interactions with prospective receptors. Consistent with this inhibitory effect, primary renal epithelial cells from KCP mutant cells are hypersensitive to TGF-beta and exhibit increased apoptosis, dissociation of cadherin-based cell junctions, and expression of smooth muscle actin. Furthermore, KCP null animals show elevated levels of phosphorylated Smad2 after renal injury. The ability to enhance BMP signaling while suppressing TGF-beta activation indicates a critical role for KCP in modulating the responses between these anti- and profibrotic cytokines in the initiation and progression of renal interstitial fibrosis.  相似文献   

15.
Vascular proliferative disorders are characterized by migration and proliferation of vascular smooth muscle cells (SMCs), loss of expression of SMC phenotype, and enhanced extracellular matrix synthesis (e.g., type I collagen). We report here that bone morphogenetic protein-7 (BMP-7), a member of the transforming growth factor-beta (TGF-beta) superfamily, is capable of inhibiting both serum-stimulated and growth factor-induced (platelet-derived growth factor [PDGF-BB] and TGF-beta1) cell growth as measured by (3)H-thymidine uptake into DNA synthesis and cell number in primary human aortic smooth muscle (HASM) cell cultures. Concomitantly, addition of BMP-7 stimulates the expression of SMC-specific markers, namely alpha-actin and heavy chain myosin as examined by RT-PCR and Northern blot analyses. The collagen type III/I ratio that becomes lower with the transdifferentiation of SMCs into myofibroblasts is also maintained in BMP-7-treated cultures as compared to untreated controls. Studies on the mechanism of action indicate that BMP-7 treatment inhibits cyclin-dependent kinase 2 (cdk-2) that was stimulated during PDGF-BB-induced proliferation of SMCs and upregulates the expression of the inhibitory Smad, Smad6, which was shown to inhibit TGF-beta superfamily signaling. These results collectively suggest that BMP-7 maintains the expression of vascular SMC phenotype and may prevent vascular proliferative disorders, thus potentially acting as a palliative after damage to the vascular integrity.  相似文献   

16.
17.
18.
Transforming growth factor (TGF)-beta1, a crucial molecule in metastatic bone cancer, stimulates collagenase-3 expression in the human breast cancer cell line, MDA-MB231. Cycloheximide inhibited this stimulation, indicating that de novo protein synthesis was essential for this response. We examined whether mitogen-activated protein kinase (MAPK) and/or Smad pathways are involved in TGF-beta1-stimulated collagenase-3 expression in MDA-MB231 cells. Biochemical blockade of extracellular regulated kinase-1/2 and p38 MAPK pathways partially abolished TGF-beta1-stimulated collagenase-3 mRNA expression; whereas overexpression of a dominant negative form of Smad3 completely blocked the TGF-beta1-response. These data indicate that TGF-beta1-induced MAPK and Smad pathways are involved in TGF-beta1-stimulated collagenase-3 expression in MDA-MB231 cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号