首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of ten Bacteroides fragilis strains isolated from intestinal and non-intestinal infections, normal flora and environment to adhere to human colon carcinoma cells, Caco-2, was examined. The adherence capacity varied among the strains tested from strongly adherent (76-100%) to non- or weakly adherent (0-25%). Negative staining with Indian ink showed that all the strains were capsulated, although strain 1032 (strongly adherent and originated from bacteremia) had the highest rate of capsulated cells in the culture. All strains studied presented an electron-dense layer and no fimbrial structures in their surface after PTA negative staining. The analysis of the strains with ruthenium red showed the presence of an acidic polysaccharide and also surface vesicles in all of them. The strain 1032 presented an aggregative adherence pattern toward Caco-2 cells monolayers. It could be seen trapped by elongated microvilli and surrounded by extracellular material in the scanning electron microscope. Treatment with sodium periodate (100 mM/1 h) reduced significantly its adherence capacity and also the expression of an electron-dense layer and of the capsule, detected with PTA and Indian ink staining, respectively. We suggest that the capsular polysaccharide might mediate the adherence of the B. fragilis to Caco-2 cells.  相似文献   

2.
Bioluminescence ATP analysis has been used to assess bacterial adhesion with hydrophobic polystyrene tubes as the attachment surface. The assay was performed at 37 degrees C and pH 6.8 with a 10 min incubation period. A variation of more than 200-fold was observed in the adherence capacity of 34 urinary isolates of Escherichia coli, and organisms could be classified as strongly or weakly adherent. All strains capable of strong adhesion possessed both type 1 fimbriae and flagella, and maximum adhesion was expressed during the exponential growth phase. Attachment was in all cases virtually eliminated by addition of 2.5% (w/v) D-mannose to the incubation buffer. Conversely, strains which were deficient in type 1 fimbriae or flagella, or both, were weakly adherent during all phases of growth. There was no correlation between adherence of E. coli to polystyrene and adherence to buccal or uroepithelial cells, but there was a significant association with adherence to uromucoid (P less than 0.002).  相似文献   

3.
An assay was developed to measure the number of Listeria monocytogenes cells adhering to stainless steel, and was used to investigate the adherence of 111 strains of the organism, which included representatives with respect to serotype, carriage of plasmids, source and persistence in the food processing environment. Growth and adherence curves of four L. monocytogenes strains over 48 h were obtained. While the growth curves of all four micro-organisms were seen to reach similar levels at stationary phase, there was still substantial variation among the adherence curves. In addition, a scatter-graph of growth vs adherence counts at 24 h showed poor correlation. These factors indicated that interstrain variation in adherence at stationary phase is due to factor(s) intrinsic to each strain of L. monocytogenes. Persistent strains were found to adhere in significantly greater numbers than sporadic strains, and variation was also found among serotypes, with serotype 1/2c showing significantly greater adherence than serotypes 1/2a and 4b; 4b strains were significantly higher than those of 1/2a strains. No significant difference was found between strains according to source or plasmid carriage.  相似文献   

4.
Listeria monocytogenes is a significant food-borne pathogen that is capable of adhering to and producing biofilms on processing equipment, making it difficult to eliminate from meat-processing environments and allowing potential contamination of ready-to-eat (RTE) products. We devised a fluorescence-based microplate method for screening isolates of L. monocytogenes for the ability to adhere to abiotic surfaces. Strains of L. monocytogenes were incubated for 2 days at 30 degrees C in 96-well microplates, and the plates were washed in a plate washer. The retained cells were incubated for 15 min at 25 degrees C with 5,6-carboxyfluorescein diacetate and washed again, and then the fluorescence was read with a plate reader. Several enzymatic treatments (protease, lipase, and cellulase) were effective in releasing adherent cells from the microplates, and this process was used for quantitation on microbiological media. Strongly adherent strains of L. monocytogenes were identified that had 15,000-fold-higher levels of fluorescence and 100,000-fold-higher plate counts in attachment assays than weakly adherent strains. Strongly adherent strains of L. monocytogenes adhered equally well to four different substrates (glass, plastic, rubber, and stainless steel); showed high-level attachment on microplates at 10, 20, 30, and 40 degrees C; and showed significant differences from weakly adherent strains when examined by scanning electron microscopy. A greater incidence of strong adherence was observed for strains isolated from RTE meats than for those isolated from environmental surfaces. Analysis of surface adherence among Listeria isolates from processing environments may provide a better understanding of the molecular mechanisms involved in attachment and suggest solutions to eliminate them from food-processing environments.  相似文献   

5.
The main objective of this study was to compare the adherence properties of four Pseudomonas fluorescens isolates from different ecological niches (human tissue, rhizosphere, drinking water, and cow milk). The substrates used to test P. fluorescens adherence were as follows: cultured human respiratory epithelial cells A549, immobilized plant fibronectin-like protein, and polystyrene. For all the experiments, bacteria were grown at 27 degrees C. The adherence assay to human cells was performed at 37 degrees C, whereas adherence to fibronectin and polystyrene was done at 27 degrees C. The four strains tested adhered to A549 cells but showed different adherence patterns. At 3 h, the milk isolate showed an aggregative adherence phenotype, whereas the three other isolates showed a diffuse adherence pattern. With a longer incubation time of 24 h, the aggregative pattern of the milk isolate disappeared, the adherence of the clinical strain increased, the adherence of the water isolate decreased, and morphological changes in A549 cells were observed with the clinical, water, and soil isolates. The four strains tested formed biofilms on polystyrene dishes. The clinical and milk isolates were the more efficient colonizers of polystyrene surfaces and also the more adherent to immobilized plant fibronectin-like protein. There was no relation between bacterial surface hydrophobicity and P. fluorescens adherence to the substrates tested. The main conclusions of these results are that P. fluorescens is an adherent bacterium, that no clear correlation exists between adherence and ecological habitat, and that P. fluorescens can adhere well to substrates not present in its natural environment.  相似文献   

6.
A model to study the adherence ofPasteurella multocida to porcine upper respiratory tract cells is described. The ability of 27 differentP. multocida isolates to adhere to isolated tracheal epithelial cells was examined. The mean number of adherent bacterial cells was significantly greater (p<0.005) for capsular type A cells than for capsular type D cells. No significant differences were observed between toxigenic and nontoxigenic isolates, or between isolates exhibiting different somatic antigens. However, isolates from pigs without atrophic rhinitis showed only 65% of the adherence of isolates from pigs with atrophic rhinitis. Adherence ofP. multocida to porcine tracheal cells decreased with animal age; adherence to cells from adults was only half of the adherence to cells from newborn animals. The data indicate that, in the present experimental conditions, theP. multocida strains tested possess different abilities to attach to porcine upper respiratory tract cells.  相似文献   

7.
Campylobacter fetus is a Gram-negative bacterial pathogen of humans and ungulates and is normally transmitted via ingestion of contaminated food or water with infection resulting in mild to severe enteritis. However, despite clinical evidence that C. fetus infection often involves transient bacteremic states from which systemic infection may develop and the frequent isolation of C. fetus from extra-intestinal sites, this organism displays very poor invasiveness in in vitro models of infection. In this study, immunofluorescence microscopy and gentamicin protection assays were used to investigate the ability of six clinical isolates and one reference strain of C. fetus to adhere to and invade the human intestinal epithelial cell line, INT 407. During an initial 4-h infection period, all C. fetus strains were detected intracellularly using both techniques, though adherence and internalization levels were very low when determined from gentamicin protection assays. Microscopy results indicated that during a 4-h infection period, four of the five clinical strains tested were adherent to 41.3-87.3% of INT 407 cells observed and that 25.2-34.6% of INT 407 cells contained intracellular C. fetus. The C. fetus reference strain displayed the lowest levels of adherence and internalization. A modified infection assay revealed that C. fetus adherence did not necessarily culminate in internalization. Despite the large percentage of INT 407 cells with adherent bacteria, the percentage of INT 407 cells with intracellular bacteria remained unchanged when incubation was extended from 4 h to 20 h. However, microscopy of INT 407 cells 24 h postinfection (p.i.) revealed that infected host cells contained clusters of densely packed C. fetus cells. Gentamicin protection assays revealed that intracellular C. fetus cells were not only viable 24 h p.i. but also that C. fetus had increased in number approximately three- to fourfold between 4 and 24 h p.i., indicative of intracellular replication. Investigation of the role of the host cell cytoskeleton revealed that pretreatment of host cells with cytochalasin D, colchicine, vinblastine, taxol, or dimethyl sulfoxide (DMSO) did not impact upon C. fetus adherence or internalization of INT 407 cells. Microscopy indicated neither rearrangement nor colocalization of either microtubules or microfilaments in INT 407 cells in response to C. fetus adherence or internalization. Together, these data indicate that clinical isolates of C. fetus are capable of adhering, entering, and surviving within the nonphagocytic epithelial cell line, INT 407.  相似文献   

8.
Listeria monocytogenes is a significant food-borne pathogen that is capable of adhering to and producing biofilms on processing equipment, making it difficult to eliminate from meat-processing environments and allowing potential contamination of ready-to-eat (RTE) products. We devised a fluorescence-based microplate method for screening isolates of L. monocytogenes for the ability to adhere to abiotic surfaces. Strains of L. monocytogenes were incubated for 2 days at 30°C in 96-well microplates, and the plates were washed in a plate washer. The retained cells were incubated for 15 min at 25°C with 5,6-carboxyfluorescein diacetate and washed again, and then the fluorescence was read with a plate reader. Several enzymatic treatments (protease, lipase, and cellulase) were effective in releasing adherent cells from the microplates, and this process was used for quantitation on microbiological media. Strongly adherent strains of L. monocytogenes were identified that had 15,000-fold-higher levels of fluorescence and 100,000-fold-higher plate counts in attachment assays than weakly adherent strains. Strongly adherent strains of L. monocytogenes adhered equally well to four different substrates (glass, plastic, rubber, and stainless steel); showed high-level attachment on microplates at 10, 20, 30, and 40°C; and showed significant differences from weakly adherent strains when examined by scanning electron microscopy. A greater incidence of strong adherence was observed for strains isolated from RTE meats than for those isolated from environmental surfaces. Analysis of surface adherence among Listeria isolates from processing environments may provide a better understanding of the molecular mechanisms involved in attachment and suggest solutions to eliminate them from food-processing environments.  相似文献   

9.
Adherence of three strains of group A streptococci and their fosfomycin-resistant mutants to HEp-2 tissue culture cells was compared with some cell-surface characteristics, i.e. ultrastructure and hydrophobicity. Among Fosr mutants, both well-adhering and weakly adhering mutants were found. Clonal analysis of the mutants proved their greater stability in the adherence. Well-adhering parent strains of streptococci and Fosr mutants exhibited surface fibrillae in contrast to weakly adhering Fosr mutants which were devoid of fibrillae or contined fibrillae of lower electron density. Decrease of adherence of Fosr mutants of two strains was accompanied by a decrease of their hydrophobicity.  相似文献   

10.
All study strains ofBacteroides gingivalis, B. asaccharolyticus, andB. melaninogenicus subspecies possessed numerous pilus-like fibers and capsule-like outer surface structures. The capsular morphology varied between the different species and subspecies.B. gingivalis strongly agglutinated 16 erythrocyte species studied.B. asaccharolyticus showed variable and weak agglutination of only a few erythrocyte species.B. melaninogenicus subsp.intermedius strains strongly agglutinated rabbit erythrocytes and exhibited variable, often weak agglutination of 8 other erythrocyte species. Preparations of capsular polysaccharide or lipopolysaccharide fromB. gingivalis failed to agglutinate human erythrocytes, while pili preparations from the same organisms possessed marked hemagglutinating activity.B. gingivalis cells adhered in high numbers to human buccal epithelial cells, whereas strains ofB. asaccharolyticus failed to show measurable adherence. Oral strains ofB. melaninogenicus subsp.intermedius feebly adhered to the buccal epithelial cells. Pretreatment ofB. gingivalis cells with serum or saliva prevented the adherence to epithelial cells. Our findings suggest that cell surfaces with distinct properties exist on the various black-pigmentedBacteroides species and subspecies and this may accout for markedly differing ability of these organisms to attach to mammalian cells.  相似文献   

11.
Cell strains and cell lines rat mammary (Rama) 350-353 have been isolated from the slowly adherent stromal fraction of enzymatically digested rat mammary glands. Primary cultures of this fraction yield fat cels on extended culture. Their proportion can be increased with horse serum or growth hormone in the medium, and this increase is associated with a 100-fold or more increase in the release of radioimmunoassayable prostaglandins of the E type (PGE). The stromal cell strains and lines that are capable of yielding fat cells also secrete elevated levels (greater than 100 ng/mg/24 hr) of PGE; the fast-sticking epithelial fraction in primary cultures and the epithelial cell lines derived from it secrete 10-100 times less. Chromatography and radioisotopic labeling of the culture media from Rama 352 cells identify the PG as PGE2. PGE2 with insulin and hydrocortisone maximally stimulates [3H]DNA synthesis of epithelial cell lines and primary cultures from normal and tumorous glands by 2-4-fold at concentrations (10-20 ng/ml) well below those released by the preadipocytic stromal cells (20-100 ng/ml). Medium exposed to most cultured cells stimulates [3H]DNA synthesis of one epithelial cell line, Rama 25, by 2-4-fold. Prevention of the synthesis of PGE2 in Rama 352 cultures with indomethacin or flurbiprofen abolishes the mitogenic activity present in the culture medium, and the PG receptor antagonist polyphloretin phosphate inhibits completely the mitogenic activity for Rama 25 cells. Myoepithelial-like cell lines normally secrete moderate levels of PGE (10-100 ng/mg/24 hr) but the mitogenic activity for Rama 25 cells released from one such line, Rama 29, is not abolished by preventing the synthesis of PG's nor by PG-receptor antagonists.  相似文献   

12.
Previous studies have demonstrated that the ability of lactobacilli to attach to and colonize uroepithelial surfaces is an important characteristic that enhances interference against uropathogenic bacteria. This adherence capacity was found to vary amongst lactobacillus strains and with the type of growth medium used to culture the organisms. The present study was undertaken to examine further the effect of culture media and growth phase on lactobacillus adherence to uroepithelial cells in vitro. In addition, a freeze substitution technique was developed to examine the morphology of strainsLactobacillus casei ssrhamnosus RC-17,L. casei GR-1, andL. acidophilus T-13 in relation to growth conditions and adhesion. A growth curve was plotted for strain GR-1, and adherence was found to be lowest for bacteria in early log phase (39 bacteria per uroepithelial cell) and highest in stationary phase (59 bacteria per uroepithelial cell). Strains RC-17 and GR-1 attached in high numbers to uroepithelial cells, whereas T-13 was poorly adherent. The latter formed a long, relatively dense, fibrous capsule after growth in brain heart infusion yeast extract agar, unlike strains GR-1 and RC-17, which formed a short, tightly bound, electron-dense capsule which surrounded the cells in a radial fashion. Growth of RC-17 in batch cultures of human urine, with and without addition of carbohydrates, resulted in formation of an irregular, fibrous extracellular matrix. These experiments illustrate that growth phase and culture conditions affect the extracellular structure of lactobacilli and also affect the adherence capacity of these bacteria. Structural changes mediated by availability of nutrients may partly explain why lactobacilli vary between species and between hosts in their colonization of the urogenital tract.  相似文献   

13.
Biofilm formation and adherence properties of 13 bacterial strains commonly found in wastewater treatment systems were studied in pure and mixed cultures using a crystal violet microtiter plate assay. Four different culture media were used, wastewater, acetate medium, glucose medium and diluted nutrient broth. The medium composition strongly affected biofilm formation. All strains were able to form pure culture biofilms within 24 h in at least one of the tested culture media and three strains were able to form biofilm in all four culture media, namely Acinetobacter calcoaceticus ATCC 23055, Comamonas denitrificans 123 and Pseudomonas aeruginosa MBL 0199. The adherence properties assessed were initial adherence, cell surface hydrophobicity, and production of amyloid fibers and extracellular polymeric substances. The growth of dual-strain biofilms showed that five organisms formed biofilm with all 13 strains while seven formed no or only weak biofilm when cocultured. In dual-strain cultures, strains with different properties were able to complement each other, giving synergistic effects. Strongest biofilm formation was observed when a mixture of all 13 bacteria were grown together. These results on attachment and biofilm formation can serve as a tool for the design of tailored systems for the degradation of municipal and industrial wastewater.  相似文献   

14.
In early log phase cultures of several of the drug-resistant mutants of Crithidia fasciculata that we have previously obtained, a high percentage of cells attach in pairs at the base of the flagellum. This process, which we have termed “flagellar adherence,” lasts for several hours in some cases and occasionally involves changes in cell morphology. The attachment occurs optimally in gently agitated cultures. Flagellar adherent pairs can be disassociated by vigorous agitation; the pairs reappear in the culture within one to three h after disassociation. These paired forms can be clearly distinguished from the normal cell division forms. Clones of flagellar adherent-competent mutant strains are uniformly able to form these pairs in culture. A low percentage of flagellar adherent forms can be induced in wild type cells by glucose starvation.  相似文献   

15.
The effect of variations in Neisseria meningitidis pili on bacterial interactions with three epithelial cell lines as well as human umbilical vein endothelial cells was studied using a panel of seven strains expressing Class I or Class II pili. Comparison of adherence of piliated and pilus-deficient variants of each strain to epithelial cells suggested that Class I pili may mediate bacterial adherence with all three epithelial cell lines. In contrast, Class II pili of the strains used did not increase bacterial adherence to Hep-2 larynx carcinoma cells, although an increase in adherence to Chang conjunctival and A549 lung carcinoma epithelial cells was observed in the Class II pili-expressing strains. In addition to these interclass functional variations, differences in adherence to epithelial cells were also observed among Class I and Class II strains. Functionally different pilin variants of one Class I strain, MC58, were obtained by single colony isolation. One piliated variant was identified which had concurrently lost the ability to adhere to both Chang and Hep-2 cells ('non-adherent' phenotype; adherence of less than 2 bacteria per cell). In addition, several adherent pilin variants were isolated from non-adherent Pil- and Pil+ bacteria by selection on Chang cells (adherence of 10-25 bacteria per cell). In contrast to epithelial cells, all variant pili, whether of Class I or Class II, adhered to endothelial cells in substantially larger numbers (greater than 50 bacteria per cell) and therefore implied the existence of distinct mechanisms in pilus-facilitated interactions of N. meningitidis with endothelial and epithelial cells.  相似文献   

16.
A study of the major pathogenic characteristics of Vibrio mimicus was carried out with 77 strains isolated from aquatic environments in Okayama, Japan. Of the strains tested, 96% demonstrated in vitro adherence to the rabbit intestinal mucosa, of which 36, 20, and 43% belonged to the strongly, moderately, and weakly adhesive groups, respectively. Of the 27 strains which appeared to be enterotoxigenic in the experiments using rabbit ileal loops, 74% belonged to the strongly adhesive group. All strains of V. mimicus at early log phase showed cell-mediated hemagglutination, and 70% of strongly hemagglutinative strains belonged to the strongly adhesive group, implying a possible correlation between cell-mediated hemagglutination and bacterial adherence. However, no significant correlation could be detected in the production of putative exocellular pathogenic factors and bacterial adherence or enterotoxigenicity.  相似文献   

17.
The adherence to hamster tracheal epithelium, of mucoid and nonmucoid clinical isolates ofPseudomonas aeruginosa from cystic fibrosis patients, was studied using tracheal organ cultures. Tracheal cultures were infected with 107 colony-forming units per ml of either mucoid or nonmucoid clinical isolates ofP aeruginosa. The tracheal explants were rinsed at various time intervals to remove nonadherent bacteria, fixed, and prepared for transmission-and scanning-electron microscopy. Mucoid isolates were seen adhering to the ciliated epithelium as early as 4 h after initiation of infection, whereas nonmucoid isolates were only observed adhering at 6 to 8 h after infection. Mucoid organisms were found as clusters of bacteria embedded in an extensive extracellular matrix. The nonmucoid isolates were generally found as single organisms with no evidence of an extracellular matrix. These results suggest that the prevalence of mucoid isolates ofP. aeruginosa in cystic fibrosis may be due to adherent properties of the mucoid organism.  相似文献   

18.
In the present work, the adhesion of 43 human lactobacilli isolates to mucin has been studied. The most adherent strains were selected, and their capacities to adhere to three epithelial cell lines were studied. All intestinal strains and one vaginal isolate adhered to HT-29 cells. The latter was the most adherent to Caco-2 cells, although two of the intestinal isolates were also highly adherent. Moreover, five of the eight strains strongly adhered to HeLa cells. The binding of an Actinomyces neuii clinical isolate to HeLa cells was enhanced by two of the lactobacilli and by their secreted proteins, while those of another two strains almost abolished it. None of the strains were able to interfere with the adhesion of Candida albicans to HeLa cells. The components of the extracellular proteome of all strains were identified by MALDI-TOF/MS. Among them, a collagen-binding A precursor and aggregation-promoting factor-like proteins are suggested to participate on adhesion to Caco-2 and HeLa cells, respectively. In this way, several proteins with LysM domains might explain the ability of some bacterial supernatants to block A.?neuii adhesion to HeLa cell cultures. Finally, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) could explain the good adhesion of some strains to mucin.  相似文献   

19.
In adherent cells, cell-substratum interactions are essential for the propagation of some growth factor signaling events. However, it has not been resolved to what extent different types of extracellular matrix regulate the signals elicited by different soluble ligands. Our previous work has shown that prolactin signaling in mammary epithelium requires a specific cell interaction with the basement membrane and does not occur in cells plated on collagen I. We have now investigated whether the proximal signaling pathways triggered by insulin, epidermal growth factor (EGF), and interferon-gamma are differentially regulated in primary mammary epithelial cell cultures established on basement membrane and collagen I. Two distinct signaling pathways triggered by insulin exhibited a differential requirement for cell-matrix interactions. Activation of insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase was restricted to cells contacting basement membrane, whereas the phosphorylation of Erk occurred equally in cells on both substrata. The amplitude and duration of insulin-triggered IRS-1 phosphorylation and its association with phosphatidylinositol 3-kinase were strongly enhanced by cell-basement membrane interactions. The mechanism for inhibition of IRS-1 phosphorylation in cells cultured on collagen I may in part be mediated by protein-tyrosine phosphatase activity since vanadate treatment somewhat alleviated this effect. In contrast to the results with insulin, cell adhesion to collagen I conferred greater response to EGF, leading to higher levels of tyrosine phosphorylation of the EGF receptor and Erk. The mechanism for increased EGF signaling in cells adhering to collagen I was partly through an increase in EGF receptor expression. The interferon-gamma-activated tyrosine phosphorylation of Jak2 and Stat3 was independent of the extracellular matrix. It is well recognized that the cellular environment determines cell phenotype. We now suggest that this may occur through a selective modulation of growth factor signal transduction resulting from different cell-matrix interactions.  相似文献   

20.
In the study we examined the production of cytotonic and cytotoxic toxins and the presence of a type III secretion system (TTSS) in 64 Aeromonas spp. strains isolated from fecal specimens of patients with gastroenteritis. We observed that contact of the bacteria with host epithelial cells is a prerequisite for their cytotoxicity at 3 h incubation. Cell-contact cytotoxic activity of the strains was strongly associated with the presence of the TTSS. Culture supernatants of the strains induced low cytotoxicity effects at the same time of incubation. Cell-free supernatants of 61 (95%) isolates expressed cytotoxic activity which caused the destruction of HEp-2 cells at 24 h. Moreover, 44% strains were cytotonic towards CHO cells and 46% of strains invaded epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号