首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have isolated a new type of temperature-sensitive mutant of simian virus 40 (SV40) that is capable of productive infection in permissive cells but not of maintenance of viral DNA integration in transformed cells at the conditional temperature. Virus development is induced when cells transformed by this mutant are shifted to temperatures above 39 degrees C, but is not induced below this temperature. The plaque-purified, temperature-sensitive mutant virus confers heat inducibility to new host cells, indicating that the conditional function is a property of the viral genome. Unlike previously described temperature-sensitive SV40 mutants, in (ts)-1501 is capable of productive infection in permissive cells at the conditional temperature. The morphology, growth, and oncogenicity of in (ts)-1501-transformed cells at 37 degrees C are similar to those of cell lines transformed by wild-type SV40. HK10-c2(in(ts)-1501), a cloned cell line, transformed at 37 degrees C by the mutant virus, exhibits a transient increase in DNA synthesis before cell death at the conditional temperature. Many properties of in(ts)-1501 are analogous to those of the heat-inducible mutants of bacteriophages in which a heat-inactivated protein is responsible for the stable integration of the prophage in the bacterial chromosome.  相似文献   

2.
3.
Simian adenovirus 7 gave an abortive infection in simian marmoset lymphoblastoid cells, B 95-8 and M 81 (transformed by Epstein Barr Virus) whereas non transformed simian lymphocytes could not replicate this virus. Electron dense incomplete particles with a lower density than standard virus in CsCl gradients were isolated. Virus yields were low and the percentage of cells containing viral antigen as measured by immunofluorescence was 0.01% for B 95-8 cells and still less for the M 81 cells. After a single passage in either lymphoblastic cell lines, they had a reduced oncogenicity in vivo. The polypeptide pattern analysis by PAGE showed some modifications.  相似文献   

4.
Chinese hamster lung (CHL) cells transformed by wild-type simian virus 40 (cell line CHLWT15) or transformed by the simian virus 40 mutants tsA30 (cell lines CHLA30L1 and CHLA30L2) or tsA239 (cell line CHLA239L1) were used to determine the rates of turnover and synthesis of the T-antigen protein and the rate of turnover of the phosphate group(s) attached to the T-antigen at both the permissive and restrictive temperatures. The phosphate group turned over several times within the lifetime of the protein to which it was attached, with the exception of the phosphate group in the tsA transformants at 40 degrees C, which turned over at the same rate as the T-antigen protein. The steady-state levels of the T-antigens (molecular weights, 92,000 [92K] and 17K) and the amount of simian virus 40-specific RNA was also determined in each of the lines. The CHLA30L1 line contained two to three times more early simian virus 40 RNA than the CHLA30L2 line; although neither line formed colonies in agar at 40 degrees C, CHLA30L1 overgrew a normal monolayer at 40 degrees C. The rate of 92K-T-antigen synthesis was 1.5 times faster in CHLA30L1 than in CHLA30L2 at 33 degrees C and 4 times faster at 40 degrees C. The different phenotype of these two presumably isogenic cell lines seem to be related to the levels of the T-antigens. The ratios of the 92K T-antigen to the 17K T-antigens were similar in the two lines. Transformed CHL cell lines, unlike transformed mouse 3T3 cell lines, were found to contain very small amounts of the 56K T-antigen.  相似文献   

5.
Temperature-sensitive mutants of Sindbis virus were employed to investigate the nature of the viral event(s) which induces chick-embryo cells to produce interferon. Chick embryo cells induced by the parental heat-resistant strain of Sindbis virus produced essentially equal amounts of interferon at 29 and 42 C. An RNA and three RNA+ strains [temperature-sensitive mutants unable (RNA) and able (RNA+) to make ribonucleic acid] produced interferon at 29 C but not at 42 C. It is concluded that viral RNA per se and the replication of viral RNA do not induce interferon production by chick embryo cells.  相似文献   

6.
BHK-21 cells infected with temperature-sensitive mutants of herpes simplex virus type 1 strain KOS representing 16 complementation groups were tested for susceptibility to complement-mediated immune cytolysis at permissive (34 degrees C) and nonpermissive (39 degrees C) temperatures. Only cells infected by mutants in complementation group E were resistant to immune cytolysis in a temperature-sensitive manner compared with wild-type infections. The expression of group E mutant cell surface antigens during infections at 34 and 39 degrees C was characterized by a combination of cell surface radioiodination, specific immunoprecipitation, and gel electrophoretic analysis of immunoprecipitates. Resistance to immune lysis at 39 degrees C correlated with the absence of viral antigens exposed at the cell surface. Intrinsic radiolabeling of group E mutant infections with [14C]glucosamine revealed that normal glycoproteins were produced at 34 degrees C but none were synthesized at 39 degrees C. The effect of 2-deoxy-D-glucose on glycosylation of group E mutants at 39 degrees C suggested that the viral glycoprotein precursors were not synthesized. The complementation group E mutants failed to complement herpes simplex virus type 1 mutants isolated by other workers. These included the group B mutants of strain KOS, the temperature-sensitive group D mutants of strain 17, and the LB2 mutant of strain HFEM. These mutants should be considered members of herpes simplex virus type 1 complementation group 1.2, in keeping with the new herpes simplex virus type 1 nomenclature.  相似文献   

7.
We report the characterization of three mutants of simian virus 40 with mutations that delete sequences near the 3' end of the gene encoding large tumor antigen (T antigen). Two of these mutants, dl1066 and dl1140, exhibit an altered viral host range. Wild-type simian virus 40 is capable of undergoing a complete productive infection on several types of established African green monkey kidney lines, including BSC40 and CV1P. dl1066 and dl1140 grow on BSC40 cells at 37 degrees C. However, both mutants fail to form plaques on BSC40 cells at 32 degrees C or on CV1P cells at any temperature. These mutants are capable of replicating viral DNA in the nonpermissive cell type, indicating a defect in an activity of T antigen not related to its replication function. Furthermore this defect can be complemented in trans by the wild type or by a variety of DNA replication-negative T antigen mutants, so long as they produce a normal carboxyl-terminal region of the molecule. Our data are consistent with the hypothesis that the C-terminal region of T antigen constitutes a functional domain. We propose that this domain encodes an activity that is required for simian virus 40 productive infection on the CV1P cell line, but not on BSC40.  相似文献   

8.
We previously reported the construction of Marek's disease virus (MDV) strains having mutations in various genes that map to the unique short (US) region of the viral genome (J.L. Cantello, A.S. Anderson, A. Francesconi, and R.W. Morgan, J. Virol. 65:1584-1588, 1991; M.S. Parcells, A.S. Anderson, and R.W. Morgan, Virus Genes 9:5-13, 1994; M.S. Parcells, A.S. Anderson, and R.W. Morgan, J. Virol. 68:8239-8253, 1994). These strains were constructed by using a high-passage-level serotype 1 MDV strain which grew well in chicken embryo fibroblasts. Despite the growth of the parent and mutant viruses in cell culture, in vivo studies were limited by poor growth of these strains in chickens. One of the mutants studied lacked 4.5 kbp of US region DNA and contained the lacZ gene of Escherichia coli inserted at the site of the deletion. The deletion removed MDV homologs to the US1, US2, and US10 genes of herpes simplex virus type 1 as well as three MDV-specific open reading frames. We now report the construction of a mutant MDV containing a similar deletion in the US region of the highly oncogenic RB1B strain. This mutant, RB1B delta 4.5lac, had a growth impairment in established chicken embryo fibroblasts similar to that described previously for MDVs lacking a functional US1 gene. In chickens, RB1B delta 4.5lac showed decreased early cytolytic infection, mortality, tumor incidence, and horizontal transmission. Several lymphoblastoid cell lines were established from RB1B delta 4.5lac-induced tumors, and virus reactivated from these cell lines was LacZ+. These results indicate that the deleted genes are nonessential for the transformation of chicken T cells or for the establishment and maintenance of latency. On the basis of the growth impairment observed for RB1B delta 4.5lac in cell culture and in vivo, we conclude that deletion of these genes affects the lytic replication of MDV. This is the first MDV mutant constructed in the RB1B oncogenic strain, and the methodology described herein provides for the direct examination of MDV-encoded determinants of oncogenicity.  相似文献   

9.
Twelve G protein-coupled receptors, including chemokine receptors, act as coreceptors and determinants for the cell tropisms of human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). We isolated HIV-1 variants from T-cell-line (T)- and macrophage (M)-tropic (i.e., dualtropic) (R5-R3-X4) HIV-1 strains and also produced six HIV-1 mutants carrying single-point amino acid substitutions at the tip of the V3 region of the Env protein of HIV-1. These variants and three mutants infected brain-derived CD4-positive cells that are resistant to M-, T-, or dualtropic (R5, X4, or R5-X4) HIV-1 strains. However, a factor that determines this cell tropism has not been identified. This study shows that primary brain-derived fibroblast-like cell strains, BT-3 and BT-20/N, as well as a CD4-transduced glioma cell line, U87/CD4, which were susceptible to these HIV-1 variants and mutants and the HIV-2ROD strain, expressed mRNA of an orphan G protein-coupled receptor (GPCR), GPR1. When a CD4-positive cell line which was strictly resistant to infection with diverse HIV-1 and HIV-2 strains was transduced with GPR1, the cell line became susceptible to these HIV-1 variants and mutants and to an HIV-2 strain but not to T- or dualtropic HIV-1 strains, and numerous syncytia formed after infection. These results indicate that GPR1 functions as a coreceptor for the HIV-1 variants and mutants and for the HIV-2ROD strain in vitro.  相似文献   

10.
The elevation of culture temperatures of C6 cells that were persistently infected with the Lec strain of the subacute sclerosing panencephalitis (SSPE) virus (C6/SSPE) resulted in immediate selective inhibition of membrane (M) protein synthesis. This phenomenon was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total cytoplasmic lysates and immunoprecipitation with monoclonal antibody against the M protein in short-time labeling experiments. The synthesis of various viral mRNAs in the presence of actinomycin D decreased gradually at similar rates after a shift to 39 degrees C. No specific disappearance of the mRNA coding for the M protein was observed when viral RNAs isolated from the infected cells were compared before and after a shift up by Northern blot analysis. Results of pulse-chase experiments did not show any significant difference in M protein stability between 35 and 39 degrees C. This rapid block of M protein synthesis was observed not only in Vero cells that were lytically infected with plaque-purified clones from the Lec strain, clones isolated from C6/SSPE cells and the standard Edmonston strain of measles virus but also in CV1, MA160, and HeLa cells that were lytically infected with the Edmonston strain. Poly(A)+ RNAs that were extracted from C6/SSPE cells before and after a shift to 39 degrees C produced detectable phospho, nucleocapsid, and M proteins in cell-free translation systems at 32 degrees C. Even higher incubation temperatures did not demonstrate the selective depression of M protein synthesis described above in vitro. All these data indicate that M protein synthesis of measles virus is selectively suppressed at elevated temperatures because of an inability of the translation apparatus to interact with the M protein-encoded mRNA.  相似文献   

11.
  相似文献   

12.
Simian virus 40 early region mutants which are partially or completely replication defective were tested for their ability to transform postcrisis mouse fibroblasts. All mutants tested were capable of generating anchorage-independent transformants. We have previously reported the presence of a variant tumor antigen of 100,000 Mr (100K protein) generated upon transformation by wild-type simian virus 40 virions which correlates with anchorage-independent growth (Chen et al., Mol. Cell. Biol. 1:994-1006, 1981). In this study, none of the mutants tested produced the 100K variant protein at early (before the fifth) passage. Long-term passage (greater than 20 weeks) permitted the expression of this 100K variant in half of the transformants. Thus the phenotype of these mutants is different from both wild-type simian virus 40 (frequently production of 100K by the third passage, and always by the tenth passage) and the origin-minus class of mutants (no production of 100K at any passage).  相似文献   

13.
The diketo acid L-708,906 has been reported to be a selective inhibitor of the strand transfer step of the human immunodeficiency virus type 1 (HIV-1) integration process (D. Hazuda, P. Felock, M. Witmer, A. Wolfe, K. Stillmock, J. A. Grobler, A. Espeseth, L. Gabryelski, W. Schleif, C. Blau, and M. D. Miller, Science 287:646-650, 2000). We have now studied the development of antiviral resistance to L-708,906 by growing HIV-1 strains in the presence of increasing concentrations of the compound. The mutations T66I, L74M, and S230R emerged successively in the integrase gene. The virus with three mutations (T66I L74M S230R) was 10-fold less susceptible to L-708,906, while displaying the sensitivity of the wild-type virus to inhibitors of the RT or PRO or viral entry process. Chimeric HIV-1 strains containing the mutant integrase genes displayed the same resistance profile as the in vitro-selected strains, corroborating the impact of the reported mutations on the resistance phenotype. Phenotypic cross-resistance to S-1360, a diketo analogue in clinical trials, was observed for all strains. Interestingly, the diketo acid-resistant strain remained fully sensitive to V-165, a novel integrase inhibitor (C. Pannecouque, W. Pluymers, B. Van Maele, V. Tetz, P. Cherepanov, E. De Clercq, M. Witvrouw, and Z. Debyser, Curr. Biol. 12:1169-1177, 2002). Antiviral resistance was also studied at the level of recombinant integrase. Single mutations did not appear to impair specific enzymatic activity. However, 3' processing and strand transfer activities of the recombinant integrases with two (T66I L74M) and three (T66I L74M S230R) mutations were notably lower than those of the wild-type integrase. Although the virus with three mutations was resistant to inhibition by diketo acids, the sensitivity of the corresponding enzyme to L-708,906 or S-1360 was reduced only two- to threefold. As to the replication kinetics of the selected strains, the replication fitness for all strains was lower than that of the wild-type HIV-1 strain.  相似文献   

14.
The structural proteins of three mutants of simian virus 40 (SV40) which differ in plaque size, temperature sensitivity, oncogenicity, host cell restriction, and immunological properties were studied. The polypeptide components of these SV40 strains could not be distinguished by their polyacrylamide gel electrophoretic patterns. When the dissociated virions of two of the mutants were analyzed by the isoelectric focusing technique in a urea gradient, the capsid protein peaks were found to differ significantly in their isoelectric points. The capsid protein of the small-plaque mutant had an isoelectric point of pH 6.51 as compared with pH 6.28 for the large-plaque strain. Isoelectric focusing of the isolated capsid protein revealed three components, a single major subunit and two minor forms. The coat proteins of two of the mutants, small-plaque and minute-plaque strains, were indistinguishable by this technique. The capsid protein peaks obtained by isoelectric focusing were further analyzed by polyacryalmide gel electrophoresis.  相似文献   

15.
When herpes simplex virus type 1 (HSV-1) DNA replication is blocked by viral polymerase inhibitors, such as phosphonoacetic acid (PAA) or acyclovir (ACV), UL29 (ICP8) localizes to numerous punctate nuclear foci which are called prereplicative sites. Since this pattern can form in cells infected with mutants which are defective in UL5, UL8, UL9, or UL52 in the presence of polymerase inhibitors (C. J. Lukonis and S. K. Weller, J. Virol. 70:1751-1758, 1996; L. M. Liptak, S. L. Uprichard, and D. M. Knipe, J. Virol. 70:1759-1767, 1996), we previously proposed that it is unlikely that these numerous UL29 foci actually represent a functional subassembly of viral replication proteins that could lead to the formation of replication compartments (C. J. Lukonis and S. K. Weller, J. Virol. 70:1751-1758, 1996). In this paper, we have investigated the requirement for formation of the prereplicative site pattern by using double mutants of HSV. From the analysis of mutants lacking both UL5 and UL9, we conclude that neither viral helicase is required for the prereplicative site pattern to form as long as a polymerase inhibitor is present. From the analysis of mutants defective in both UL30 and UL5, we suggest that the prereplicative site pattern can form under conditions in which viral and/or cellular polymerases are inhibited. Furthermore, reexamination of the UL29 staining pattern in cells infected with wild-type virus in the presence of PAA reveals that at least two different UL29 staining patterns can be detected in these cells. One population of cells contains numerous (greater than 20) punctate UL29 foci which are sites of cellular DNA synthesis. In another population of cells, fewer punctate foci (less than 15) are detected, and these structures do not colocalize with sites of cellular DNA synthesis. Instead, they colocalize with PML, a component of nuclear matrix structures known as ND10. We propose that ND10-associated UL29 sites represent domains at which replication compartments form.  相似文献   

16.
S C Ng  M Bina 《Journal of virology》1984,50(2):471-477
We examined the morphology, protein composition, and stability of the nucleoprotein complexes assembled in cells infected with simian virus 40 mutants belonging to the BC complementation group (tsBC11, tsBC208, tsBC214, tsB216, tsBC217, tsBC248, tsBC223, and tsBC274). We found that the 220S virions were not assembled in tsBC-infected cells under restrictive conditions. This block in assembly resulted in the accumulation of 75S chromatin in tsBC11-infected cells, as previously observed by Garber et al. (E.A. Garber, M.M. Seidman, and A.J. Levine, Virology 107:389-401, 1980). In cells infected with any other mutant listed above, the block in assembly resulted in the accumulation of 75S chromatin as well as nucleoprotein complexes sedimenting from 90 to 140S. Biochemical analysis revealed that these latter complexes contained the capsid proteins in addition to simian virus 40 DNA and the cellular core histones. Electron microscopic analysis clearly showed the association of the capsid proteins with the viral chromatin. Our results suggest that these proteins interact with simian virus 40 chromatin in the course of virion maturation and may thus play an active role in controlling simian virus 40 functions.  相似文献   

17.
The infection of permissive monkey kidney cells (CV-1) with simian virus 40 induces G1 growth-arrested cells into the cell cycle. After completion of the first S phase and movement into G2, mitosis was blocked and the cells entered another DNA synthesis cycle (second S phase). Growth-arrested CV-1 cells replicated significant amounts of viral DNA in the G2 phase with the majority of synthesis occurring during the second S phase. When mimosine-blocked (G1/S) infected cells were released into the cell cycle, a major portion of the viral DNA was detected in G2 with the largest accumulation in the second S phase. The total DNA produced per infected cell was 10-12C with approximately 0.5-2C of viral DNA replicated per cell. Therefore the majority of the DNA per cell was cellular, 4C from the first S phase and approximately 4-6C from the second cellular synthesis phase.  相似文献   

18.
Subacute sclerosing panencephalitis (SSPE) virus, a measles virus (MeV) mutant, was isolated from brain tissues of a patient shortly after the clinical onset, and the entire viral genome was sequenced. The virus, named SSPE-Kobe-1, formed syncytia on B95a and Vero/SLAM cells without producing cell-free infectious virus particles, which is characteristic of SSPE virus. Phylogenetic analysis classified SSPE-Kobe-1 into genotype D3. When compared with an MeV field isolate of the same genotype (Ich-B strain), SSPE-Kobe-1 exhibited mutation rates of 0.8-1.6% at the nucleotide level in each of the proteincoding regions of the viral genome. It is noteworthy that the mutation rate of the M gene (1.2%) of SSPE-Kobe-1 was considerably lower than for other SSPE virus strains reported so far, but that the majority of the mutations (75%) were the uridine-to-cytidine biased hypermutation characteristic of the SSPE virus M gene. At the amino acid level, the viral proteins, such as N, P, C, V, M, F, H and L proteins, had point-mutations on 3, 7, 1, 4, 3, 9, 8 and 14 residues, respectively, compared with the Ich-B strain. In addition, the F and H proteins had mutated C-termini due to single-point mutations near or at the stop codons. Two of the three mutations in the M protein were Leu-to-Pro mutations, which are likely to affect the conformation and, therefore, the function of the protein. Because of the relatively small number of mutations, SSPE-Kobe-1 would be a useful tool to study genetic evolution of SSPE virus.  相似文献   

19.
Mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that regulates cell growth, proliferation, and survival. mTOR is frequently activated in human cancers and is a commonly sought anticancer therapeutic target. However, whether the human mTOR gene itself is a proto-oncogene possessing tumorigenicity has not been firmly established. To answer this question, we mutated evolutionarily conserved amino acids, generated eight mutants in the HEAT repeats (M938T) and the FAT (W1456R and G1479N) and kinase (P2273S, V2284M, V2291I, T2294I, and E2288K) domains of mTOR, and studied their oncogenicity. On transient expression in HEK293T cells, these mTOR mutants displayed elevated protein kinase activities accompanied by activated mTOR/p70S6K signaling at varying levels, demonstrating the gain of function of the mTOR gene with these mutations. We selected P2273S and E2288K, the two most catalytically active mutants, to further examine their oncogenicity and tumorigenicity. Stable expression of the two mTOR mutants in NIH3T3 cells strongly activated mTOR/p70S6K signaling, induced cell transformation and invasion, and remarkably, caused rapid tumor formation and growth in athymic nude mice after subcutaneous inoculation of the transfected cells. This study confirms the oncogenic potential of mTOR suggested previously and demonstrates for the first time its tumorigenicity. Thus, beyond the pivotal position of mTOR to relay the oncogenic signals from the upstream phosphatidylinositol 3-kinase/Akt pathway in human cancer, mTOR is capable potentially of playing a direct role in human tumorigenesis if mutated. These results also further support the conclusion that mTOR is a major therapeutic target in human cancers.  相似文献   

20.
Most of the simian virus 40 (SV40) genome is conserved among isolates, but the noncoding regulatory region and the genomic region encoding the large T-antigen C terminus (T-ag-C) may exhibit considerable variation. We demonstrate here that SV40 isolates differ in their oncogenic potentials in Syrian golden hamsters. Experimental animals were inoculated intraperitoneally with 107 PFU of parental or recombinant SV40 viruses and were observed for 12 months to identify genetic determinants of oncogenicity. The viral regulatory region was found to exert a statistically significant influence on tumor incidence, whereas the T-ag-C played a minor role. Viruses with a single enhancer (1E) were more oncogenic than those with a two-enhancer (2E) structure. Rearrangements in the 1E viral regulatory region were detected in 4 of 60 (6.7%) tumors. Viral loads in tumors varied, with a median of 5.4 SV40 genome copies per cell. Infectious SV40 was rescued from 15 of 37 (40%) cell lines established from tumors. Most hamsters with tumors and many without tumors produced antibodies to T antigen. All viruses displayed similar transforming frequencies in vitro, suggesting that differences in oncogenic potential in vivo were due to host responses to viral infection. This study shows that SV40 strains differ in their biological properties, suggests that SV40 replicates to some level in hamsters, and indicates that the outcome of an SV40 infection may depend on the viral strain present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号