首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study focuses on the morphological development and secondary metabolite production of the red pigments from the group of betacyanins in hairy roots of Beta vulgaris. We demonstrate a working, medium throughput, customized, automatic image recognition solution for hairy roots on agar plates including the evaluation of 12 experimental samples. Image acquisition is conducted under comparable para‐meters using a tripod with light emitting diode background lighting and a digital single lens reflex camera. The server‐based image recognition system developed together with Wimasis GmbH, Munich, Germany helps to obtain not only quantitative values for morphological parameters, such as segment lengths and widths or metabolite concentrations, but also global parameters of root growth, such as total root length or the number of branching points. Using timed diagrams the development of the total root length, the total number of branching points, and the mean pigment concentration during the cultivation period were determined. The generated data present the basis for detailed mathematical modeling in order to achieve a structured growth model for hairy roots. A mathematical model for growth of hairy roots can be used to decrease experimental efforts as well as to optimize cultivation conditions and the bioreactor design.  相似文献   

2.
Analysis of the effects of soil management practices on crop production requires knowledge of these effects on plant roots. Much time is required to wash plant roots from soil and separate the living plant roots from organic debris and previous years’ roots. We developed a root washer that can accommodate relatively large soil samples for washing. The root washer has a rotary design and will accommodate up to 24 samples (100 mm diam. by 240 mm long) at one time. We used a flat-bed scanner to digitize an image of the roots from each sample and used a grid system with commercially-available image analysis software to analyze each sample for root surface area. Sensitivity analysis and subsequent comparisons of ‘dirty’ samples containing the roots and all the organic debris contained in the sample and ‘clean’ samples where the organic debris was manually removed from each sample showed that up to 15% of the projected image could be coveredwith debris without affecting accuracy and precision of root surface area measurements. Samples containing a large amount of debris may need to be partitioned into more than one scanning tray to allow accurate measurements of the root surface area. Sample processing time was reduced from 20 h, when hand separation of roots from debris was used, to about 0.5 h, when analyzing the image from an uncleaned sample. The method minimizes the need for preprocessing steps such as dying the roots to get better image contrast for image analysis. Some information, such as root length, root diameter classes and root weights, is not obtained when using this technique. Root length measurements, if needed, could be made by hand on the digital images. Root weight measurement would require sample cleaning and the advantage of less processing time per sample with this method would be lost. The significance of the tradeoff between information not obtained using this technique and the ability to process a greater number of samples with the time and personnel resources available must be determined by the individual researcher and research objectives.  相似文献   

3.
Kimura  K.  Yamasaki  S. 《Plant and Soil》2001,234(1):37-46
The objective of this study was to develop an image analysis algorithm for estimating the length versus diameter distribution of washed root samples. Image analysis was performed using a Macintosh computer and the public domain NIH Image program. After an appropriate binary image of roots was obtained, the image was processed to get the thinned image to calculate the length of the roots. The edge pixel of the binary image was then deleted and root length was calculated again. This `edge deletion–length calculation' cycle was repeated until no root pixel was left in the image. Repeated edge deletion removed one pixel layer from around the periphery of root objects in each iteration. The number of edge deletions, which is equivalent to the intercept length, can be used to estimate the root diameter. We used the vertical or horizontal intercept length, whichever was shorter. The accuracy of diameter estimation due to orientation of objects varied from 89.1 to 126.0%. Branching root systems consist of several orders of laterals, and as the root branches to a higher order, the diameter of the roots becomes smaller. Therefore, edge deletions eliminate sequentially from the highest order roots, which have the smallest diameter, to the lowest order roots, which have the widest diameter. Thus, the length and diameter of each root order can be calculated by the proposed method. For verification, images of copper wire of 0.23, 0.50, and 1.0 mm diameter were analyzed. The results showed reasonable agreement with the expected distribution of length versus diameter for randomly oriented objects, and consequently the wire length of each diameter could be estimated. The proposed method was tested for primary and secondary roots of water-cultured rice (Oryza sativa L.), and it was proven that the method can provide accurate length and diameter measurements for each root order.  相似文献   

4.
Forty-four Trichoderma strains from water-damaged building materials or indoor dust were classified with chromatographic image analysis on full chromatographic matrices obtained by high performance liquid chromatography with UV detection of culture extracts. The classes were compared with morphological identification and rDNA sequence data, and for each class all strains were of the same identity. With all three techniques each strain--except one--was identified as the same species. These strains belonged to Trichoderma atroviride (nine strains), Trichoderma viride (three strains), Trichoderma harzianum (10 strains), Trichoderma citrinoviride (12 strains), and Trichoderma longibrachiatum (nine strains). The odd strain was identified as Trichoderma hamatum by morphology and rDNA sequencing, but not by image analysis as no reference strains of this species were included. It is concluded that the secondary metabolite profile contains sufficient information for classification and species identification.  相似文献   

5.
Quantification of root dynamics by destructive methods is confounded by high coefficients of variation and loss of fine roots. The minirhizotron technique is non-destructive and allows for sequential root observations to be made at the same depth in situ. Observations can be stored on video tape which facilitates data handling and computer-aided image processing. A color composite technique using digital image analyses was adapted in this study to detect barley root dynamics from sequential minirhizotron images. Plants were grown in the greenhouse in boxes (80 × 80 × 75 cm) containing soil from a surface horizon of a Typic Cryoboroll. A minirhizotron was installed at a 45°C angle in each box. Roots intersecting the minirhizotron were observed and video-recorded at tillering, stem extension, heading, dough and ripening growth stages. The images from a particular depth were digitized from the analog video then registered to each other. Discrimination of roots from the soil matrix gave quantitative estimates of root appearance and disappearance. Changes in root appearance and disappearance were detected by assigning a separate primary color (red, green, blue) to selected growth stages, then overlaying the images to create red-green and red-green-blue color composites. The resulting composites allowed for a visual interpretation and quantification of barley root dynamics in situ.  相似文献   

6.
H Harms  H M Aus  M Haucke  U Gunzer 《Cytometry》1986,7(6):522-531
In hematological morphology, it is necessary to resolve and analyze the smallest possible cellular details appearing in the light microscope. A prerequisite for computer-aided analysis of subtle morphological features is measuring the cells at a high scanning density with high magnification and high numerical aperture optics. Contrary to visual observations, the information content in a measured picture can be increased by setting the condensor's numerical aperture (NA) greater than the objective's NA. The complexity and heterogeneity of such cell images necessitate a new segmentation method that conserves the morphological information required in the subsequent image analysis, feature extraction, and cell classification. In our segmentation strategy, characteristic color difference thresholds for each nucleus and cytoplasm are combined with geometric operations, probability functions, and a cell model. All thresholds are repeatedly recalculated during the successive improvements of the image masks. None of the thresholds are fixed. This strategy segments blood cell images containing touching cells and large variations in staining, texture, size, and shape. Biological inconsistencies in the calculated cell masks are eliminated by comparing each mask with the cell model criteria integrated into the entire segmentation process. All 20,000 leukocyte images from 120 smears in our leukemia project were segmented with this method.  相似文献   

7.
To investigate the role played by the distribution pattern of glucosinolates (GSLs) in root systems in the release of biocides to the rhizosphere, GSLs have been localized, for the first time, to specific regions and cells in field-grown roots. GSL concentrations in separated tissues of canola (Brassica napus) were determined by chemical analysis, and cell-specific concentrations by extrapolation from sulphur concentrations obtained by quantitative cryo-analytical scanning electron microscopy (SEM). In roots with secondary growth, GSL concentrations in the outer secondary tissues were up to 5x those of the inner core. The highest GSL concentrations (from sulphur measurements) were in two cell layers just under the outermost periderm layer, with up to 100x published concentrations for whole roots. Primary tissues had negligible GSL. Release and renewal of the peripheral GSLs is probably a normal developmental process as secondary thickening continues and surface cells senesce, accounting for published observations that intact roots release GSLs and their biocide hydrolosates to the rhizosphere. Absence of myrosin idioblasts close to the root surface suggests that GSLs released developmentally are hydrolysed by myrosinase in the rhizosphere, ensuring a continuous localized source of biotoxic hydrolysates which can deter soil-borne pests, and influence microbial populations associated with long-lived components of the root system.  相似文献   

8.
Pan  W.L.  Bolton  R.P.  Lundquist  E.J.  Hiller  L.K. 《Plant and Soil》1998,200(1):107-112
Rhizotrons allow the examination of spatial and temporal in situ root development. Permanent rhizotron installations provide 2-D images of whole root profiles, but their immobility limits the number of soil-plant systems that can be studied. Our objectives were to develop a portable rhizotron and color scanning system for studying the development of whole root systems. Potato root development was monitored in an irrigated experiment at Othello, WA. Covered, rectangular hollow boxes with a transparent glass face were installed perpendicular to planted potato rows, and a seed piece was planted in the soil adjacent to the glass. Rooting in the hill furrow topography was measured at 2 to 4 week intervals. Images of roots growing along the glass face are captured with five scans with a portable, color scanner and a portable computer. Image thresholding discriminated roots from soil using primary color values, color intensity differences, color proportions, or overall intensity. Seasonal patterns of computed root lengths by image analysis were comparable to manual tracing. Primary roots extended to 15 cm from the seed piece prior to shoot emergence, 21 days after planting. Lateral roots began to develop shortly thereafter. Potato roots extended to depths of 60 cm by 4 to 6 weeks after planting, and maximum root density in the hill and furrow was observed by tuber initiation to early tuber bulking. Temporal and spatial trends were similar to previous results using destructive sampling. The method has promise for studying the root growth and development of field-grown plants.  相似文献   

9.
Morphological variation in marine sessile organisms is frequently related to environmental factors. Quantifying such variation is relevant in a range of ecological studies. For example, analyzing the growth form of fossil organisms may indicate the state of the physical environment in which the organism lived. A quantitative morphological comparison is important in studies where marine sessile organisms are transplanted from one environment to another. This study presents a method for the quantitative analysis of three-dimensional (3D) images of scleractinian corals obtained with X-ray Computed Tomography scanning techniques. The advantage of Computed Tomography scanning is that a full 3D image of a complex branching object, including internal structures, can be obtained with a very high precision. There are several complications in the analysis of this data set. In the analysis of a complex branching object, landmark-based methods usually do not work and different approaches are required where various artifacts (for example cavities, holes in the skeleton, scanning artifacts, etc.) in the data set have to be removed before the analysis. A method is presented, which is based on the construction of a medial axis and a combination of image-processing techniques for the analysis of a 3D image of a complex branching object where the complications mentioned above can be overcome. The method is tested on a range of 3D images of samples of the branching scleractinian coral Madracis mirabilis collected at different depths. It is demonstrated that the morphological variation of these samples can be quantified, and that biologically relevant morphological characteristics, like branch-spacing and surface/volume ratios, can be computed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
This report describes an image analysis algorithm to estimate the length versus diameter of washed root samples accurately. Image analysis was performed using a Macintosh computer and the public domain NIH Image program. The binary image of the roots was processed to get the thinned image to calculate the length of the roots. The pixels of the root in a binary image were then stripped off from around the periphery based on the pixel's Pythagorean distance from the nearest background pixel. The length of the remaining root in each stripping off process was calculated after the image was thinned. Images (300 dpi) of copper wire of 0.23, 0.5, 1.0 mm diameter were analyzed for verification of the usefulness of the procedure. The results showed that more than 93% of the wires in each diameter wire were calculated to be in diameter classes including the true diameter and its adjoining classes: 93.6% of the wires of 0.23 mm diameter appeared in the 0.098–0.38 mm diameter classes, 96.19% of the wires of 0.5 mm diameter appeared in the 0.38–0.61 mm diameter classes, and 96.17% of the wires of 1 mm diameter appeared in the 0.85–1.08 mm diameter classes. The proposed method was tested for primary and secondary roots of water-cultured rice (Oryza sativa L.) and it was proven that the method could provide accurate length and diameter measurements for each root order. In addition, it was found that the method could provide the lengths of the thick primary, thin primary, and secondary roots. The effectiveness of applying sharpening for the grayscale image before making the binary image is also discussed.  相似文献   

11.
Mycelial morphology and metabolite production   总被引:10,自引:0,他引:10  
Mycelial microorganisms are exploited extensively in the commercial production of a wide range of secondary metabolites. They can be cultured as free mycelia, as aggregated forms (pellets/flocs), or as artificially bound/entrapped cells, though problems are associated with the culture of each morphological type. Since the morphological type can strongly influence metabolite production, the methodology for inducing pellet formation, and the type of pellets produced are an important consideration for effective metabolite production.  相似文献   

12.
Arbuscular mycorrhiza is a symbiotic association formed between plant roots and soil borne fungi that alter and at times improve the production of secondary metabolites. Detailed information is available on mycorrhizal development and its influence on plants grown under various edapho-climatic conditions, however, very little is known about their influence on transformed roots that are rich reserves of secondary metabolites. This raises the question of how mycorrhizal colonization progresses in transformed roots grown in vitro and whether the mycorrhizal fungus presence influences the production of secondary metabolites. To fully understand mycorrhizal ontogenesis and its effect on root morphology, root biomass, total phenolics, rosmarinic acid, caffeic acid and antioxidant production under in vitro conditions, a co-culture was developed between three Agrobacterium rhizogenes-derived, elite-transformed root lines of Ocimum basilicum and Rhizophagus irregularis. We found that mycorrhizal ontogenesis in transformed roots was similar to mycorrhizal roots obtained from an in planta system. Mycorrhizal establishment was also found to be transformed root line-specific. Colonization of transformed roots increased the concentration of rosmarinic acid, caffeic acid and antioxidant production while no effect was observed on root morphological traits and biomass. Enhancement of total phenolics and rosmarinic acid in the three mycorrhizal transformed root lines was found to be transformed root line-specific and age dependent. We reveal the potential of R. irregularis as a biotic elicitor in vitro and propose its incorporation into commercial in vitro secondary metabolite production via transformed roots.  相似文献   

13.
When analyzing computer simulations of mixtures of lipids and water, the questions to be answered are often of a morphological nature. They can deal with global properties, like the kind of phase that is adopted or the presence or absence of certain key features like a pore or stalk, or with local properties, like the local curvature present at a particular part of the lipid/water interface. While in principle all of the information relating to the global and local morphological properties of a system can be obtained from the set of atomic coordinates generated by a computer simulation, the extraction of this information is a tedious task that usually involves using a visualization program and performing the analysis by eye. Here we present a tool that employs the technique of morphological image analysis (MIA) to automatically extract the global morphology—as given by Minkowski functionals—from a set of atomic coordinates, and creates an image of the system onto which the local curvatures are mapped as a color code.  相似文献   

14.
The diverse morphology of the filamentous organism Streptomyces hygroscopicus var. geldanus was characterised by image analysis under various environmental conditions. In the presence of surfactant compounds, a significant decrease in the mean pellet diameter was observed. Cell aggregation was also influenced by spore inoculum level, with high concentrations reducing pellet size. In addition, the dispersion of pellets was found to increase with the inclusion of glass beads to submerged shake-flask cultures. In all cases, production of the secondary metabolite geldanamycin was determined to be dependent on the morphological profile of the organism, with a concomitant increase of 88% in geldanamycin yield observed as the mean pellet diameter was reduced by 70%. Thus, to maximise the yield of geldanamycin, it is necessary to limit pellet formation in Streptomyces hygroscopicus var. geldanus to an appropriate size.  相似文献   

15.
A new approach to establish morphological coexistence using computerized image analysis is described. With this technique, the coexisting pattern in two images is revealed by recording the images via a TV camera on a Zeiss/Kontron IBAS interctive image analyzer. Using an arithmetic or a Boolean algebraic operation, the computer then directly compares the respective patterns obtained for different neuroactive substances and shows the resulting coexisting cells (in white) on a TV-monitor. Also non-coexisting system can be showed in various shades of grey. The method allows for a non-biased, rapid and exact scanning of tissue sections where a possible coexistence may be present.  相似文献   

16.
Measuring fruit morphology and color traits of vegetable and fruit crops in an objective and reproducible way is important for detailed phenotypic analyses of these traits. Tomato Analyzer (TA) is a software program that measures 37 attributes related to two-dimensional shape in a semi-automatic and reproducible manner1,2. Many of these attributes, such as angles at the distal and proximal ends of the fruit and areas of indentation, are difficult to quantify manually. The attributes are organized in ten categories within the software: Basic Measurement, Fruit Shape Index, Blockiness, Homogeneity, Proximal Fruit End Shape, Distal Fruit End Shape, Asymmetry, Internal Eccentricity, Latitudinal Section and Morphometrics. The last category requires neither prior knowledge nor predetermined notions of the shape attributes, so morphometric analysis offers an unbiased option that may be better adapted to high-throughput analyses than attribute analysis. TA also offers the Color Test application that was designed to collect color measurements from scanned images and allow scanning devices to be calibrated using color standards3. TA provides several options to export and analyze shape attribute, morphometric, and color data. The data may be exported to an excel file in batch mode (more than 100 images at one time) or exported as individual images. The user can choose between output that displays the average for each attribute for the objects in each image (including standard deviation), or an output that displays the attribute values for each object on the image. TA has been a valuable and effective tool for indentifying and confirming tomato fruit shape Quantitative Trait Loci (QTL), as well as performing in-depth analyses of the effect of key fruit shape genes on plant morphology. Also, TA can be used to objectively classify fruit into various shape categories. Lastly, fruit shape and color traits in other plant species as well as other plant organs such as leaves and seeds can be evaluated with TA.  相似文献   

17.
Liver sinusoidal endothelial cells are the gateway to the liver, their transcellular fenestrations allow the unimpeded transfer of small and dissolved substances from the blood into the liver parenchyma for metabolism and processing. Fenestrations are dynamic structures - both their size and/or number can be altered in response to various physiological states, drugs, and disease, making them an important target for modulation. An understanding of how LSEC morphology is influenced by various disease, toxic, and physiological states and how these changes impact on liver function requires accurate measurement of the size and number of fenestrations. In this paper, we describe scanning electron microscopy fixation and processing techniques used in our laboratory to ensure reproducible specimen preparation and accurate interpretation. The methods include perfusion fixation, secondary fixation and dehydration, preparation for the scanning electron microscope and analysis. Finally, we provide a step by step method for standardized image analysis which will benefit all researchers in the field.  相似文献   

18.
T. Zhu  W. J. Lucas  T. L. Rost 《Protoplasma》1998,203(1-2):35-47
Summary As a foundation for studies on directional intercellular communication and its regulation in apical development, the network of plasmodesmata inArabidopsis root apical meristems was characterized by quantitative electron microscopy and dye-coupling analysis, using symplasmic probes, and real-time imaging in confocal laser scanning microscopy. A tissue-specific plasmodesmatal network, which interconnected the cells in the root apical meristem, was characterized by the following features, (a) Plasmodesmatal distribution and density were found to be tissue-specific, (b) Primary and secondary plasmodesmata were differentially grouped and regulated. Primary plasmodesmata were formed in large numbers in the transverse walls of each tissue, and were subject to deletion during cell differentiation. Secondary plasmodesmata were mostly distributed in longitudinal walls between cell files and common walls between neighboring tissues; they also provided a symplasmic path between different initial tiers in the meristem. Small fluorescent tracers moved through the plasmodesmatal network of the root apical meristem in two distinct phases. At low concentrations molecules trafficked in a non-tissue-specific manner, whereas at higher concentrations, their distribution reflected the presence of tissue-specific movement consistent with plasmodesmatal distribution. These findings are discussed in terms of the role of tissue-specific plasmodesmatal domains in the control of root development.  相似文献   

19.
 Suberized or brown roots have been traditionally considered secondary or woody tissues. The validity of using morphological features such as color to infer root anatomy for southern pines is questionable and unproven. The objectives of this study were (i) to establish relationships between root color, diameter, and developmental stage (i.e., primary or secondary tissues) for loblolly pine, (ii) to determine the percentages of primary and secondary brown roots by diameter class, and (iii) to use these percentages to make first order estimates of the amount of brown root length and surface area that is in the primary and secondary developmental stages for sampled roots of a semi-mature loblolly pine stand. ”Unsectioned” roots were collected by coring to a 25-cm depth 3 times a year and measuring roots for length and surface area by diameter class. ”Sectioned” roots were sampled from a one-time core and from periodic grab samples. These roots were sectioned and characterized by their color, diameter and developmental stage. Diameters of sectioned roots (n=353) ranged from 0.21 to 8.24 mm. White and orange roots ranged from 0.23 to 2.50 mm, while brown roots spanned the range. White roots were developmentally primary, whereas orange/brown roots were either primary (from 0.21 to 2.50 mm), secondary (from 0.33 to 8.24 mm), or in transition (from 0.27 to 0.76). Total live root length of the sampled stands was estimated to be composed of 38% primary tissue, 58% secondary tissue, and 4% transition tissue. Lastly, neither root color nor diameter was a reliable predictor of developmental stage unless roots were white (primary), or orange/brown and >2.5 mm in diameter (secondary). Received: 30 June 1997 / Accepted: 28 January 1998  相似文献   

20.
A colorimetric method is described which can be used for the routine determination of primary and secondary N-hydroxylamino compounds in drug metabolism studies using microsomal preparations. The assay is carried out on the supernatant obtained after protein precipitation of the incubation mixture. The method is based on the reduction of ferric ion by the hydroxylamino moiety with the resulting ferrous ion being quantitated by coupling with 2,4,6-tripyridyl-s-triazine to form a purple color with a maximum absorbance at 595 nm. The method is specific to primary and secondary hydroxylamino compounds and calibration curves can be obtained in the range of concentrations of 1 to 20 μg/ml. Hydroxamic acid, amido, amino, phenolic, nitro, nitroso, oxime, nitrone, aldehyde, and ketone compounds do not produce any color reaction when analyzed by the same method. The method is simple, rapid, and many samples can be analyzed in a short period of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号