首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A systematic study of the bioleaching of chalcopyrite (CuFeS 2 ) was conducted using axenic cultures of 11 species of acidophilic Bacteria and Archaea to obtain a direct comparison of the microbial chalcopyrite leaching capabilities of the different cultures and to determine the factors that affect Cu release. The characteristics of chalcopyrite leaching by the moderate thermophile Sulfobacillus thermosulfidooxidans , the mesophile Acidithiobacillus ferrooxidans , and the thermophile Acidianus brierleyi were used to elucidate the leaching process. Moderately thermophilic cultures of Sulfobacillus acidophilus, Acidimicrobium ferrooxidans , and Acidithiobacillus caldus were used to study the effects of different metabolic capabilities and relate those to leaching efficiency. The greatest rate of Cu solubilization from chalcopyrite was achieved at high temperatures (up to 70°C) at redox potentials below +550 mV (Ag/AgCl). The enhanced Cu solubilization observed at high temperatures resulted from accelerated chemical reaction rates, rather than from the rates at which individual acidophiles generated the mineral leaching reactants such as Fe 3+ .  相似文献   

2.
The novel putrescine oxidase based amperometric biosensor selectively measures putrescine, which can be considered as an indicator of microbial spoilage. Putrescine oxidase (PUOX, EC 1.4.3.10) was isolated from Kocuria rosea (Micrococcus rubens) by an improved and simplified purification process. Cells were grown on brain heart infusion medium supplemented with putrescine. Cell-free extract was prepared in Tris buffer (pH 8.0) by Bead-beater. A newly elaborated step based on three-phase partitioning (TPP) was applied in the purification protocol of PUOX. The purified enzyme was immobilized on the surface of a spectroscopic graphite electrode in redox hydrogel with horseradish peroxidase, Os mediator and poly(ethylene glycol) (400) diglycidyl ether (PEGDGE) as crosslinking agent. This modified working electrode was used in wall-jet type amperometric cell together with the Ag/AgCl (0.1M KCl) reference electrode and a platinum wire as auxiliary electrode in flow injection analysis system (FIA). Hydrogel composition, pH and potential dependence were studied. Optimal working conditions were 0.45mLmin(-1) flow rate of phosphate buffer (66mM, pH 8.0) and +50mV polarizing potential vs. Ag/AgCl. The linear measuring range of the method was 0.01-0.25mM putrescine, while the detection limit was 5μM. Beer samples were investigated by the putrescine biosensor and the results were compared by those of HPLC reference method.  相似文献   

3.
BioDeNOx is a novel technique for NOx removal from industrial flue gases. In principle, BioDeNOx is based on NO absorption into an aqueous Fe(II)EDTA2- solution combined with biological regeneration of that scrubber liquor in a bioreactor. The technical and economical feasibility of the BioDeNOx concept is strongly determined by high rate biological regeneration of the aqueous Fe(II)EDTA2- scrubber liquor and by EDTA degradation. This investigation deals with the Fe(II)EDTA2- regeneration capacity and EDTA degradation in a lab-scale BioDeNOx reactor (10-20 mM Fe(II)EDTA2-, pH 7.2 +/- 0.2, 55 degrees C), treating an artificial flue gas (1.5 m3/h) containing 60-155 ppm NO and 3.5-3.9% O2. The results obtained show a contradiction between the optimal redox state of the aqueous FeEDTA solution for NO absorption and the biological regeneration. A low redox potential (below -150 mV vs. Ag/AgCl) is needed to obtain a maximal NO removal efficiency from the gas phase via Fe(II)EDTA2- absorption. Fe(III)EDTA- reduction was found to be too slow to keep all FeEDTA in the reduced state. Stimulation of Fe(III)EDTA- reduction via periodical sulfide additions (2 mM spikes twice a week for the conditions applied in this study) was found to be necessary to regenerate the Fe(II)EDTA2- scrubber liquor and to achieve stable operation at redox potentials below -150 mV (pH 7.2 +/- 0.2). However, redox potentials of below -200 mV should be avoided since sulfide accumulation is unwanted because it is toxic for NO reduction. Very low values for biomass growth rate and yield, respectively, 0.043/d and 0.009 mg protein per mg ethanol, were observed. This might be due to substrate limitations, that is the electron acceptors NO and presumably polysulfide, or to physiological stress conditions induced by the EDTA rich medium or by radicals formed in the scrubber upon the oxidation of Fe(II)EDTA2- by oxygen present in the flue gas. Radicals possibly also induce EDTA degradation, which occurs at a substantial rate: 2.1 (+/-0.1) mM/d under the conditions investigated.  相似文献   

4.
Copper, zinc superoxide dismutase (CuZnSOD) from bovine erythrocytes and iron superoxide dismutase from Escherichia coli (FeSOD) were immobilized on 3-mercaptopropionic acid (MPA)-modified gold electrodes, respectively. The characterization of the SOD electrodes showed a quasi-reversible, electrochemical redox behavior with a formal potential of 47+/-4 mV and -154+/-5 mV (vs. Ag/AgCl, 1 M KCl) for surface adsorbed CuZnSOD and FeSOD, respectively. The heterogeneous electron transfer rate constants were determined to be about 65 and 35/s, respectively. Covalent fixation of both SODs was also feasible with only slight changes in the formal potential. The interaction of superoxide radicals (O(2)(-)) with the SOD electrode was investigated. No catalytic current could be observed. However, due to the fast cyclic redox reaction of SOD with superoxide, the communication of the protein with the electrode was strongly influenced. The amperometric detection of superoxide radicals is discussed.  相似文献   

5.
Dave SR 《Bioresource technology》2008,99(16):7803-7806
Presence of Leptospirillum ferrooxidans plays significant role in ferric sulphate generation during bioleaching process. Thus, an attempt was made to select L. ferrooxidans from the polymetallic concentrate leachate and further developed it for enhanced ferric iron regeneration from the leachate in shake flask, stirred tank and column reactor. When ferric to ferrous iron ratio in the shake flask reached to 20:1, L. ferrooxidans out competed Acidithiobacillus ferrooxidans and accounted for more than 99% of the total population. The isolate was confirmed by 16S rRNA genes sequence analysis and named as L. ferrooxidans SRPCBL. When the culture was exposure to UV dose and the oxidation-reduction potential of the inoculation medium was adjusted to 40 0mV by ferrous:ferric iron ratio, the IOR reached to as high as 1.2 g/L/h in shake flask, even with initial ferrous iron concentration of 200 g/L. The chalcopyrite concentrate leachate containing 12.8, 15.7, and 42.0 g/L ferrous iron, ferric iron and copper, respectively was studied for ferric iron regeneration with the developed polymetallic resistant L. ferrooxidans SRPCBL in stirred tank and a developed biofilm airlift column, the highest IOR achieved were 2.20 g/L/h and 3.1 g/L/h, respectively, with ferrous oxidation efficiency of 98%. The ferric regeneration ability of the developed isolate from the leachate proves useful for a two-stage metal extraction process.  相似文献   

6.
A sensitive and quick assay for redox proteins based on electrochemical titrations in a thin-layer electrochemical cell is described. Using a combination of modified-electrode and "mediator-enhanced" electrochemistry, equilibration of the cell volume (4 microliters) with the applied potential allows series of spectra as a function of the potential to be recorded rapidly. A complete redox titration between +500 and -600 mV (vs Ag/AgCl/3 M KCl) in 30-mV intervals takes approximately 2 h. The detection limit of the assay, evaluated for cytochrome c at the alpha-band absorption, is quoted to approximately 100 pmol. The use of this redox assay for the detection of redox-active contaminants in biochemical preparations, for the determination of midpoint potentials of redox enzymes, and for the characterization of complex membrane-bound or soluble redox systems is described.  相似文献   

7.
A choline (CHO) biosensor based on the determination of H(2)O(2) generated at the electrode surface by the enzyme choline oxidase (CHOx) was developed. The biosensor consisted of CHOx retained onto a horseradish peroxidase (HRP) immobilized solid carbon paste electrode (sCPE). The HRPsCPE contained the molecule phenothiazine as redox mediator and CHOx was physically retained on the electrode surface using a dialysis membrane. Several parameters have been studied such as, mediator amount, influence of applied potential, etc. The CHO measurements were performed in 0.1 M phosphate buffer, pH 7.4. Amperometric detection of CHO was realized at an applied potential of 0.0 mV vs Ag/AgCl. The response is linear over the concentration range 5.0x10(-7)-7.0x10(-5) M, with a detection limit of 1.0x10(-7) M. This biosensor was used to detect choline released from phosphatidylcholine (PC) by phospholipase D (PLD) in isolated rat salivary gland cells stimulated by a purinergic agonist (ATP).  相似文献   

8.
An amperometric and a colorimetric biosensor to detect and quantify D-amino acids selectively has been devised using D-amino acid oxidase from Rhodotorula gracilis. The sensor is characterised by a proportional response between 0.2-3 mM and 0.1-1 mM D-alanine for the amperometric (at a working potential of 1400 mV vs Ag/AgCl) and colorimetric system, respectively.  相似文献   

9.
A novel nafion-riboflavin membrane was constructed and characterized by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible spectroscopy and cyclic voltammetric techniques. The estimated average diameter of the designed nanoparticles was about 60 nm. The functional membrane showed a quasi-reversible electrochemical behaviour with a formal potential of -562 +/- 5 mV (vs Ag/AgCl) on the gold electrode. Some electrochemical parameters were estimated, indicating that the system has good and stable electron transfer properties. Moreover, horseradish peroxidase (HRP) was immobilized on the riboflavin-nafion functional membrane. The electrochemical behaviour of HRP was quasi-reversible with a formal potential of 80 +/- 5 mV (vs Ag/AgCl). The HRP in the film exhibited good catalytic activity towards the reduction of H2O2. It shows a linear dependence of its cathodic peak current on the concentration of H2O2, ranging from 10 to 300 (micro)M.  相似文献   

10.
Cyclic voltammetric studies on iron-tallysomycin complexes have been conducted with and without the presence of calf thymus DNA. Fe(II)-TLM samples exhibit a cyclic voltammogram with only a reduction peak at -230 +/- 5 mV vs Ag/AgCl. The addition of DNA substrate causes the shift of this reduction peak to -140 +/- 10 mV vs Ag/AgCl. This large shift in the positive direction implies that the regeneration of Fe(II)-TLM through the reduction of Fe(III)-TLM is facilitated with the aid of DNA. It also implies that the metal-binding/oxygen-activation domain may be directly involved in the formation of iron-tallysomycin-DNA ternary complex. Air oxidation of Fe(II)-TLM produces an activated intermediate with the following CV characteristics, Ipc/Ipa = 0.90; delta E = 65 mV; Ereduction peak = -100 mV vs Ag/AgCl. Addition of DNA abolishes the redox peaks of this voltammogram, signifying inactivation of the activated species through reaction with substrate. Air oxidation of preformed Fe(II)-TLM-DNA complex did not give a discernable cyclic voltammogram, nor did preformed Fe(III)-TLM and Fe(III)-TLM-DNA samples.  相似文献   

11.
Direct electrochemistry and bioelectrocatalysis of a newly discovered C-19 steroid 1α-hydroxylase (CYP260A1) from the myxobacterium Sorangium cellulosum So ce56 were investigated. CYP260A1 was immobilized on screen-printed graphite electrodes (SPE) modified with gold nanoparticles, stabilized by didodecyldimethylammonium bromide (SPE/DDAB/Au). Cyclic voltammograms in argon-saturated substrate free 0.1 M potassium phosphate buffer, pH 7.4, and in enzyme-substrate complex with androstenedione demonstrated a redox processes with a single redox couple of E0′ of −299 ± 16 mV and −297.5 ± 21 mV (vs. Ag/AgCl), respectively. CYP260A1 exhibited an electrocatalytic activity detected by an increase of the reduction current in the presence of dissolved oxygen and upon addition of the substrate (androstenedione) in the air-saturated buffer. The catalytic current of the enzyme correlated with substrate concentration in the electrochemical system and this dependence can be described by electrochemical Michaelis-Menten model. The products of CYP260A1-depended electrolysis at controlled working electrode potential of androstenedione were analyzed by mass-spectrometry. MS analysis revealed a mono-hydroxylated product of CYP260A1-dependent electrocatalytic reaction towards androstenedione.  相似文献   

12.
Monocrystalline natural diamond, L-amino acid oxidase (L-AAOD), D-amino acid oxidase (D-AAOD), and paraffin oil were used for the design of the modified diamond paste. The technique used for the direct voltammetric assay was differential pulse voltammetry (DPV) with applied potential pulse amplitude of 25 mV vs. Ag/AgCl. Using the new amperometric biosensors L-pipecolic acid (L-PA) and D-pipecolic acid (D-PA) were determined reliably from serum samples at 700 and 200 mV vs. Ag/AgCl, respectively, with low limits of detection.  相似文献   

13.
A simple selective method for determination of ascorbic acid using polymerized direct blue 71 (DB71) is described. Anodic polymerization of the azo dye DB71 on glassy carbon (GC) electrode in 0.1M H(2)SO(4) acidic medium was found to yield thin and stable polymeric films. The poly(DB71) films were electroactive in wide pH range (1-13). A pair of symmetrical redox peaks at a formal redox potential, E('0)=-0.02V vs. Ag/AgCl (pH 7.0) was observed with a Nernstian slope -0.058V, is attributed to a 1:1 proton+electron involving polymer redox reactions at the modified electrode. Scanning electron microscope (SEM), atomic force microscope (AFM) and electrochemical impedance spectroscopy (EIS) measurements were used for surface studies of polymer modified electrode. Poly(DB71) modified GC electrode showed excellent electrocatalytic activity towards ascorbic acid in neutral buffer solution. Using amperometric method, linear range (1x10(-6)-2x10(-3)M), dynamic range (1x10(-6)-0.01M) and detection limit (1x10(-6)M, S/N=3) were estimated for measurement of ascorbic acid in pH 7.0 buffer solution. Major interferences such as dopamine and uric acid are tested at this modified electrode and found that selective detection of ascorbic acid can be achieved. This new method successfully applied for determination of ascorbic acid in commercial tablets with satisfactory results.  相似文献   

14.
A biosensor for glucose using glucose dehydrogenase immobilized on a chemically modified graphite electrode was supplied with coenzyme, nicotinamide adenine dinucleotide (NAD+), through pores in the material. A graphite rod was hollowed out, leaving 0.3 mm at the end contacting the solution, filled with 10 mM NAD+ and pressurized. The response factor was 40% of that obtained when 2 mM NAD+ was mixed with the sample solution in a flow system. The coenzyme consumption was 11 microliters h-1 representing a 500-fold saving compared to supply through the bulk solution. The biosensor had a linear calibration curve from the detection limit, 1 microM, to 2 mM glucose and a repeatability of 0.3%. The graphite electrode was modified by adsorption of a bis-(benzophenoxazinyl)-terephthaloyl derivative in order to be able to oxidize NADH at 0 mV versus Ag/AgCl, 0.1 M KCl.  相似文献   

15.
Fe(3)O(4) magnetic nanoparticles were in situ loaded on the surface of multiwalled carbon nanotubes (MWCNTs) by a simple coprecipitation procedure. The resulting Fe(3)O(4)/MWCNTs nanocomposite brings new capabilities for electrochemical sensing by combining the advantages of Fe(3)O(4) magnetic nanoparticles and MWCNTs. It was found that Fe(3)O(4) has redox properties similar to those of frequently used mediators used for electron transfer between NADH and electrode. The cyclic voltammetric results indicated the ability of Fe(3)O(4)/MWCNTs modified GC electrode to catalyze the oxidation of NADH at a very low potential (0.0 mV vs. Ag/AgCl) and subsequently, a substantial decrease in the overpotential by about 650 mV compared with the bare GC electrode. The catalytic oxidation current allows the stable and selective amperometric detection of NADH at an applied potential of 0.0 mV (Ag/AgCl) with a detection limit of 0.3 μM and linear response up to 300 μM. This modified electrode can be used as an efficient transducer in the design of biosensors based on coupled dehydrogenase enzymes. Lactate dehydrogenase (LDH) and NAD(+) were subsequently immobilized onto the Fe(3)O(4)/MWCNTs nanocomposite film by covalent bond formation between the amine groups of enzyme or NAD(+) and the carboxylic acid groups of the Fe(3)O(4)/MWCNT film. Differential pulse voltammetric detection of lactate on Fe(3)O(4)/MWCNT/LDH/NAD(+) modified GC electrode gives linear responses over the concentration range of 50-500 μM with the detection limit of 5 μM and sensitivity of 7.67 μA mM(-1). Furthermore, the applicability of the sensor for the analysis of lactate concentration in human serum samples has been successfully demonstrated.  相似文献   

16.
Manganese oxide/carbon aerogel composite electrodes are prepared by a self‐limiting anodic‐electrochemical deposition of manganese oxide into a binder‐enriched carbon aerogel layer, drop‐cast on a graphite substrate, using 0.1 M Mn(CH3COO)2·4H2O as the electrolyte. Manganese oxide grows in the form of thin nanofibers along the backbone of the carbon aerogel, leaving adequate working space for the electrolyte and enabling a fuller extent of the utilization of the manganese oxide to make the composite an outstanding supercapacitor electrode material. The manganese oxide is determined to be Mn3O4 with the Raman spectroscopy and high‐resolution transmission electron microscopy. The rectangularity of the cyclic‐voltammogram loops of the composite electrode is excellent and remains that way for scan rates up to a very‐high value of 500 mV s?1, indicating extremely good redox reversibility and cycle efficiency. At a scan rate of 25 mV s?1, the specific capacitance, as measured in 0.5 M Na2SO4 for a potential window of 0.1–0.9 V vs. Ag/AgCl, reaches a maximum value of 503 F g?1 and experiences only a negligible decay of less than 1% at the 6000th cycle, implying an extraordinary cycling stability. The cycling efficiency is as high as 98% at a current density of 8 A g?1 cm?2, showing an almost‐ideal capacitive behavior. The power density reaches 48.5 kW kg?1 and the energy density 21.6 W h kg?1 at a scan rate of 500 mV s?1, well above the specifications of current state‐of‐the‐art supercapacitors.  相似文献   

17.
Cytochrome c oxidase is the terminal enzyme in mammalian respiration, and one of its main functions is to catalyze the reduction of oxygen under physiological conditions. Direct reduction of oxygen at electrodes requires application of substantial overpotentials. In this work, bovine cytochrome c oxidase has been immobilized in electrode-supported lipid bilayer membranes to investigate the electroreduction of oxygen under flow conditions. The effect that temperature, solution pH, and solution composition have on the reduction of oxygen by this novel enzyme-modified electrode is reported. Results indicate that the electroreduction of oxygen is most pronounced at low pH (6.4) and elevated temperature (38 degrees). At an applied potential of -350 mV vs. Ag/AgCl (1M KCl), a current density of ca. 7 microA/cm2 was obtained. The current responses obtained at these electrodes are stable over a period of ca. 10-14 days (10-15% decrease in response). The cytochrome c oxidase-modified electrodes described here could potentially be used for the direct electroreduction of oxygen to water in a biofuel cell.  相似文献   

18.
Copper electrochemistry at modified gold electrodes was investigated with two different states of the metal ion: first bound in azurin from Pseudomonas aeruginosa and second introduced via metal ion uptake in metallothionein (MT) from rabbit liver. Azurin was immobilised on a mercaptosuccinic acid (MSA) layer self-assembled on gold. The redox behaviour in the adsorbed as well as in the covalently immobilised state was found to be quasi-reversible with a formal potential of +198 mV versus Ag/AgCl. The pH variation suggests an optimal pH range for efficient electrode communication in the neutral range. MT was fixed at electrochemically cleaned gold using the accessible cysteins of the protein. Copper was found to bind to the MT-modified gold electrode. The electrochemical behaviour of the bound copper was characterised in copper-free solution with a formal potential of +245 mV versus Ag/AgCl. Stability and potential use is discussed.  相似文献   

19.
Because of the implication of N-oxidized metabolites of procainamide in the induction of drug-related lupus, we have studied the electrochemical behavior of these metabolites and developed an electrochemical synthesis of nitrosoprocainamide. This synthesis was developed using procainamide hydroxylamine as the starting material which was oxidized to the nitroso species at an applied potential of 700 mV vs Ag/AgCl using a carbon packed bed bulk electrolysis flow cell. Conversion efficiencies of greater than 95% were achieved with this method. Subsequent studies with a chemically diverse series of biocompounds were used to investigate possible reactions between the procainamide hydroxylamine and nitroso species and these selected molecules. Only antioxidants such as cysteine, glutathione and ascorbic acid were found to react with the nitroso compound as determined by electrochemical methods, and this reaction was characterized as primarily a simple redox reaction at physiological pH. Animal studies conducted with murine spleen cells incubated with mitogens and various procainamide compounds demonstrated that the N-oxidized metabolites are the active immunopharmacologic agents.  相似文献   

20.
Biological ferric iron production was combined with ferric sulphate leaching of chalcopyrite concentrate and the effects of pH, Fe3+, temperature and solids concentration on the leaching were studied. The copper leaching rates were similar at pH of 1.0-1.8 and in the presence of 7-90 g L-1 Fe3+ despite massive iron precipitation with 90 g L-1 Fe3+. Increase of the leaching temperature from 50 degrees C to 86 degrees C and solids concentration from 1% to 10% increased the copper leaching rate. Increase in solids concentration from 1% to 10% decreased the copper yields from 80% to 40%. Stepwise addition of ferric iron did not improve the copper yields. CuFeS2, Ag and Cu1.96S potentials indicated the formation of a passivating layer, which consisted of jarosite and sulphur precipitates and which was responsible for the decreased leaching rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号