首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cai L  Hu C  Shen S  Wang W  Huang W 《Journal of biochemistry》2004,135(3):397-403
DNA ligases of bacteriophage T4 and T7 have been widely used in molecular biology for decades, but little is known about bacteriophage T3 DNA ligase. Here is the first report on the cloning, expression and biochemical characterization of bacteriophage T3 DNA ligase. The polyhistidine-tagged recombinant T3 DNA ligase was shown to be an ATP-dependent enzyme. The enzymatic activity was not affected by high concentration of monovalent cations up to 1 M, whereas 2 mM ATP could inhibit its activity by 50%. Under optimal conditions (pH 8.0, 0.5 mM ATP, 5 mM DTT, 1 mM Mg(2+) and 300 mM Na(+)), 1 fmol of T3 DNA ligase could achieve 90% ligation of 450 fmol of cohesive dsDNA fragments in 30 min. T3 DNA ligase was shown to be over 5-fold more efficient than T4 DNA ligase for ligation of cohesive DNA fragments, but less active for blunt-ended DNA fragments. Phylogenetic analysis showed that T3 DNA ligase is more closely related to T7 DNA ligase than to T4 DNA ligase.  相似文献   

2.
Treatment of T7 DNA ligase with a range of proteases generates two major fragments which are resistant to further digestion. These fragments, of molecular weight 16 and 26 kDa, are derived from the N- and C-termini of the protein, respectively. The presence of ATP or a non-hydrolysable analogue, ADPNP, during limited proteolysis greatly reduces the level of digestion. The N-terminal 16 kDa region of the intact T7 ligase is labelled selectively in the presence of [alpha-32P]ATP, confirming that it contains the active site lysine residue. In common with the intact enzyme, the C-terminal portion of the protein retains the ability to band shift DNA fragments of various lengths, implicating it in DNA binding. It can also inhibit ligation by the intact protein, apparently by competing for target sites on DNA. We conclude that the N-terminal region, which contains the putative active site lysine, plays a role in the transfer of AMP from the enzyme-adenylate complex to the 5'phosphate at the nick site, while the C-terminal 26 kDa fragment appears to position the enzyme at the target site on DNA.  相似文献   

3.
Specificity of the nick-closing activity of bacteriophage T4 DNA ligase   总被引:14,自引:0,他引:14  
D Y Wu  R B Wallace 《Gene》1989,76(2):245-254
Bacteriophage T4 DNA ligase effectively joins two adjacent, short synthetic oligodeoxyribonucleotides (oligos), as guided by complementary oligo, plasmid and genomic DNA templates. When a single bp mismatch exists at either side of the ligation junction, the efficiency of the enzyme to ligate the two oligos decreases. Mismatch ligation is approximately five-fold greater if the mismatch occurs at the 3' side rather than at the 5' side of the junction. During mismatch ligation the 5' adenylate of the 3' oligo accumulates in the reaction. The level of the adenylate formation correlates closely with the level of the mismatch ligation. Both mismatch ligation and adenylate formation are suppressed at elevated temperatures and in the presence of 200 mM NaCl or 2-5 mM spermidine. The apparent Km for the oligo template in the absence of salt is 0.05 microM, whereas the Km increases to 0.2 microM in the presence of 200 mM of NaCl. In this report, we demonstrate these properties of T4 DNA ligase for oligo pairs complementary to the beta-globin gene at the sequence surrounding the single bp mutation responsible for sickle-cell anemia. Because of the highly specific nature of the nick-closing reaction, ligation of short oligos with DNA ligase can be used to distinguish two DNA templates differing by a single nucleotide.  相似文献   

4.
The DNA from Haemophilus influenzae temperate phage N3 was characterized by centrifugation and by electrophoresis after nuclease digestion. The double-stranded DNA, with a mass of 25.8 X 10(6) daltons, had single-strand cohesive ends. Strand association through cohesion was reduced by heat and removed by S1 nuclease digestion. N3 DNA contained five EcoRI, one KpnI, two SacI, six XbaI, and four XhoI cleavage sites. The cohesive end segments were identified by heating the digests before electrophoresis. This was the first step in the construction of the physical maps of this DNA.  相似文献   

5.
In human cells, there are three genes that encode DNA ligase polypeptides with distinct but overlapping functions. Previously small molecule inhibitors of human DNA ligases were identified using a structure-based approach. Three of these inhibitors, L82, a DNA ligase I (LigI)-selective inhibitor, and L67, an inhibitor of LigI and DNA ligases III (LigIII), and L189, an inhibitor of all three human DNA ligases, have related structures that are composed of two 6-member aromatic rings separated by different linkers. Here we have performed a structure-activity analysis to identify determinants of activity and selectivity. The majority of the LigI-selective inhibitors had a pyridazine ring whereas the LigI/III- and LigIII-selective inhibitors did not. In addition, the aromatic rings in LigI-selective inhibitors had either arylhydrazone or acylhydrazone, but not vinyl linkers. Among the LigI-selective inhibitors, L82-G17 exhibited increased activity against and selectivity for LigI compared with L82. Notably. L82-G17 is an uncompetitive inhibitor of the third step of the ligation reaction, phosphodiester bond formation. Cells expressing LigI were more sensitive to L82-G17 than isogenic LIG1 null cells. Furthermore, cells lacking nuclear LigIIIα, which can substitute for LigI in DNA replication, were also more sensitive to L82-G17 than isogenic parental cells. Together, our results demonstrate that L82-G17 is a LigI-selective inhibitor with utility as a probe of the catalytic activity and cellular functions of LigI and provide a framework for the future design of DNA ligase inhibitors.  相似文献   

6.
Cloning vèctor lambda gt-p MB9 has been used for cloning of DNA fragments of bacteriophage T5 produced by EcoR*I activity. One clone contains a DNA fragment of 2.2 Md which has been mapped at 67-71% on the physical map of the genome. Functional studies have shown that bacteriophage lambda gt-T5 can grow on E. coli lights 7. Infection of this E.coli strain with phage lambda gt-T5 induces DNA-ligase activity which has been previously observed in E. Coli infected with bacteriophage T5.  相似文献   

7.
A PCR protocol was used to identify and sequence a gene encoding a DNA ligase from Thermococcus fumicolans (Tfu). The recombinant enzyme, expressed in Escherichia coli BL21(DE3) pLysS, was purified to homogeneity and characterized. The optimum temperature and pH of Tfu DNA ligase were 65 degrees C and 7.0, respectively. The optimum concentration of MgCl2, which is indispensable for the enzyme activity, was 2 mM. We showed that Tfu DNA ligase displayed nick joining and blunt-end ligation activity using either ATP or NAD+, as a cofactor. In addition, our results would suggest that Tfu DNA ligase is likely to use the same catalytic residues with the two cofactors. The ability for DNA ligases, to use either ATP or NAD+, as a cofactor, appears to be specific of DNA ligases from Thermococcales, an order of hyperthermophilic microorganisms that belongs to the euryarchaeotal branch of the archaea domain.  相似文献   

8.
Characterization of the bacteriophage T4 gene 41 DNA helicase   总被引:5,自引:0,他引:5  
The T4 gene 41 protein and the gene 61 protein function together as a primase-helicase within the seven protein bacteriophage T4 multienzyme complex that replicates duplex DNA in vitro. We have previously shown that the 41 protein is a 5' to 3' helicase that requires a single-stranded region on the 5' side of the duplex to be unwound and is stimulated by the 61 protein (Venkatesan, M., Silver L. L., and Nossal, N. G. (1982) J. biol. Chem. 257, 12426-12434). The 41 protein, in turn, is required for pentamer primer synthesis by the 61 protein. We now show that the 41 protein helicase unwinds a partially duplex DNA molecule containing a performed fork more efficiently than a DNA molecule without a fork. Optimal helicase activity requires greater than 29 nucleotides of single-stranded DNA on the 3' side of the duplex (analogous to the leading strand template). This result suggests the 41 protein helicase interacts with the leading strand template as well as the lagging strand template as it unwinds the duplex region at the replication fork. As the single-stranded DNA on the 3' side of a short duplex (51 base pairs) is lengthened, the stimulation of the 41 protein helicase by the 61 protein is diminished. However, both the 61 protein and a preformed fork are essential for efficient unwinding of longer duplex regions (650 base pairs). These findings suggest that the 61 protein promotes both the initial unwinding of the duplex to form a fork and subsequent unwinding of longer duplexes by the 41 protein. A stable protein-DNA complex, detected by a gel mobility shift of phi X174 single-stranded DNA, requires both the 41 and 61 proteins and a rNTP (preferably rATP or rGTP, the nucleotides with the greatest effect on the helicase activity). In the accompanying paper, we report the altered properties of a proteolytic fragment of the 41 protein helicase and its effect on in vitro DNA synthesis in the T4 multienzyme replication system.  相似文献   

9.
We report the production, purification and characterization of a DNA ligase encoded by the thermophilic archaeon Methanobacterium thermoautotrophicum. The 561 amino acid Mth ligase catalyzed strand-joining on a singly nicked DNA in the presence of a divalent cation (magnesium, manganese or cobalt) and ATP (Km 1.1 µM). dATP can substitute for ATP, but CTP, GTP, UTP and NAD+ cannot. Mth ligase activity is thermophilic in vitro, with optimal nick-joining at 60°C. Mutational analysis of the conserved active site motif I (KxDG) illuminated essential roles for Lys251 and Asp253 at different steps of the ligation reaction. Mutant K251A is unable to form the covalent ligase–adenylate intermediate (step 1) and hence cannot seal a 3′-OH/5′-PO4 nick. Yet, K251A catalyzes phosphodiester bond formation at a pre-adenylated nick (step 3). Mutant D253A is active in ligase–adenylate formation, but defective in activating the nick via formation of the DNA–adenylate intermediate (step 2). D253A is also impaired in phosphodiester bond formation at a pre-adenylated nick. A profound step 3 arrest, with accumulation of high levels of DNA–adenylate, could be elicited for the wild-type Mth ligase by inclusion of calcium as the divalent cation cofactor. Mth ligase sediments as a monomer in a glycerol gradient. Structure probing by limited proteolysis suggested that Mth ligase is a tightly folded protein punctuated by a surface-accessible loop between nucleotidyl transferase motifs III and IIIa.  相似文献   

10.
The lambda O and P gene products are required for the initiation of lambda DNA replication. In order to study the biochemistry of this process, we have constructed plasmids that carry the lambda O gene, P gene, and half of the O gene coding for the amino-terminal half of the O protein. Each is under the control of the inducible lambda promoter, PL. We have purified these three proteins from induced cells carrying the plasmids. Our results show that the amino-terminal portion of the O protein binds to the lambda origin of replication in a manner similar to the intact lambda O protein, demonstrating that the amino-terminal portion of O protein contains the DNA binding domain. Using chromatographic procedures, we have isolated a complex of lambda O and P proteins with lambda dv DNA. The amino-terminal portion of the O protein does not complex with P protein under the same conditions. This suggests that the specificity of the lambda O protein for P protein resides in the carboxyl-terminal half of the lambda O protein. Our results also show that, while the intact O protein is active in in vitro replication of lambda dv plasmid DNA, the amino-terminal portion of the O protein is inactive and is a competitive inhibitor of the lambda O protein in this reaction. These results confirm previous genetic observations that were interpreted as indicating a bifunctional structure for the lambda O protein with the amino-terminal domain recognizing the lambda origin of replication and the carboxyl-terminal domain interacting with the lambda P protein.  相似文献   

11.
12.
Characterization of the tubulin-tyrosine ligase   总被引:5,自引:1,他引:5       下载免费PDF全文
The sequence of tubulin-tyrosine ligase (TTL), the enzyme catalyzing the ATP-dependent posttranslational addition of a tyrosine to the carboxyterminal end of detyrosinated alpha-tubulin, has been determined. TTL from bovine and porcine brain was purified by immunoaffinity chromatography and extensively characterized by protein sequencing. Oligonucleotides derived from the protein sequence were synthesized and partial cDNA sequences were obtained using reversed transcribed brain mRNA in polymerase chain reactions. Polymerase chain reaction fragments were used to isolate a full-length cDNA clone from a randomly primed lambda gt10 cDNA library obtained from embryonic porcine brain mRNA. Porcine TTL is encoded by 1,137 nucleotides corresponding to 379 amino acid residues. It has a molecular weight of 43,425 and a calculated isoelectric point of 6.51. Northern blot analysis revealed a surprisingly long mRNA (approximately 6 kb in embryonic porcine brain). The protein sequence of TTL shares no extended homology with the sequences in the data banks. TTL contains a potential serine phosphorylation site for cAMP-dependent protein kinase (RKAS at positions 73 to 76). Residues 244 to 258 lie at the surface of the molecule. A rabbit antibody raised against a synthetic peptide corresponding to this sequence binds to native TTL. The same sequence contains the cleavage site for endoproteinase Glu-C (residue 248) previously shown to convert TTL into a nicked derivative in which the two fragments still form a tight complex but don't display enzymatic activity.  相似文献   

13.
Archaea encode a DNA ligase composed of a C-terminal catalytic domain typical of ATP-dependent ligases plus an N-terminal domain similar to that found in eukaryotic cellular and poxvirus DNA ligases. All archaeal DNA ligases characterized to date have ATP-dependent adenylyltransferase and nick-joining activities. However, recent reports of dual-specificity ATP/NAD+ ligases in two Thermococcus species and Pyrococcus abyssi and an ATP/ADP ligase in Aeropyrum pernix raise the prospect that certain archaeal enzymes might exemplify an undifferentiated ancestral stage in the evolution of ligase substrate specificity. Here we analyze the biochemical properties of Pyrococcus horikoshii DNA ligase. P. horikoshii ligase catalyzes auto-adenylylation and nick sealing in the presence of a divalent cation and ATP; it is unable to utilize NAD+ or ADP to promote ligation in lieu of ATP. P. horikoshii ligase is thermophilic in vitro, with optimal adenylyltransferase activity at 90 degrees C and nick-joining activity at 70 to 90 degrees C. P. horikoshii ligase resembles the ligases of Methanobacterium thermautotrophicum and Sulfolobus shibatae in its strict specificity for ATP.  相似文献   

14.
15.
The DNA of bacteriophage Mu has been studied to characterize a region of inhomogeneous sequence that occurs at one end of the molecule. The kinetics of reassocation of tracer amounts of labeled host DNA in the presence of Mu DNA show that Mu DNA contains a complete selection of host sequences. These host sequences are shown to be covalently attached to phage-specific sequences and are present at a concentration that accounts for the inhomogeneity observed in the electron microscope. The significance and possible function of the host DNA attachment is discussed.  相似文献   

16.
The origins of replication of phi 29 DNA have been studied by analyzing the activity as templates in the phi 29 in vitro replication system of E. coli recombinant plasmids and M13 derivatives containing phi 29 DNA terminal sequences. Plasmid pITR, containing the 6 bp long inverted terminal repeat of phi 29 DNA, was shown to be essentially inactive. The analysis of a series of deletion derivatives of plasmid pID13, that contains the 73 and 269 bp from the left and right phi 29 DNA ends, respectively, indicated that the minimal origins of replication are comprised within the mutagenesis at these sequences was carried out. Changes of the second or third A into a C completely abolished the template activity. In the case of changes at position from 4 to 12, only 3 out of 14 mutations reduced the template activity; these 3 mutations were double changes and 2 of them affected the inverted terminal repeat. The results suggest that the sequence requirement at the end-proximal region of the origin of replication is more strict than that at the distal region.  相似文献   

17.
We report that Haemophilus influenzae encodes a 268 amino acid ATP-dependent DNA ligase. The specificity of Haemophilus DNA ligase was investigated using recombinant protein produced in Escherichia coli. The enzyme catalyzed efficient strand joining on a singly nicked DNA in the presence of magnesium and ATP (Km = 0.2 microM). Other nucleoside triphosphates or deoxynucleoside triphosphates could not substitute for ATP. Haemophilus ligase reacted with ATP in the absence of DNA substrate to form a covalent ligase-adenylate intermediate. This nucleotidyl transferase reaction required a divalent cation and was specific for ATP. The Haemophilus enzyme is the first example of an ATP-dependent DNA ligase encoded by a eubacterial genome. It is also the smallest member of the covalent nucleotidyl transferase superfamily, which includes the bacteriophage and eukaryotic ATP-dependent polynucleotide ligases and the GTP-dependent RNA capping enzymes.  相似文献   

18.
During the last 50 years, major advances in molecular biology and biotechnology have been attributed to the discovery of enzymes that allow molecular cloning of important genes. One of these enzymes that has been widely acknowledged for its role in the development of biotechnology is the T4 DNA ligase. This enzyme joins the break in the DNA backbone structure by creating a phosphodiester bond between 5′ PO4 and 3′ OH ends, in an ATP dependent multi-step reaction, thus allowing the ligation of related and foreign DNA sequences. Due to its role in modern DNA recombinant technology, there is a high demand on DNA ligase to allow the ligation of target DNA inserts into a chosen vector as part of DNA cloning technology. To closely look at ligase sequence diversity, a bacteriophage that infects DH5α (commercial lab strain of Escherichia coli) was isolated from sewage system in Hebron, Palestine. The DNA ligase gene of this phage was cloned and its sequence was compared to the NCBI database. The new bacteriophage ligase, named (South Hebron Phage, SHPh) DNA ligase, shows homology to T even bacteriophage DNA ligases posted in the NCBI database with 35 nucleotide differences, an indication of existed diversity among T even DNA ligation enzymes that can be used as markers in phage classification.  相似文献   

19.
The bacteriophage lambda excisionase (Xis) is a sequence-specific DNA binding protein required for excisive recombination. Xis binds cooperatively to two DNA sites arranged as direct repeats on the phage DNA. Efficient excision is achieved through a cooperative interaction between Xis and the host-encoded factor for inversion stimulation as well as a cooperative interaction between Xis and integrase. The secondary structure of the Xis protein was predicted to contain a typical amphipathic helix that spans residues 18 to 28. Several mutants, defective in promoting excision in vivo, were isolated with mutations at positions encoding polar amino acids in the putative helix (T. E. Numrych, R. I. Gumport, and J. F. Gardner, EMBO J. 11:3797-3806, 1992). We substituted alanines for the polar amino acids in this region. Mutant proteins with substitutions for polar amino acids in the amino-terminal region of the putative helix exhibited decreased excision in vivo and were defective in DNA binding. In addition, an alanine substitution at glutamic acid 40 also resulted in altered DNA binding. This indicates that the hydrophilic face of the alpha-helix and the region containing glutamic acid 40 may form the DNA binding surfaces of the Xis protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号